Circle divided by lines between a blue dotsDifficult IQ test question: What is the box suggesting?What is the minimum number of straight lines to connect all the dots on this grid?Hikers Meeting in the MiddleYet another adventitious triangleMy roommate is back add it!Letters and dots and paperInner Triangles in the circleAsk for suggestion on a hard IQ questionMissing Number in a Seven Segment Circle

Why NASA publish all the results/data it gets?

Is there an in-universe reason Harry says this or is this simply a Rowling mistake?

To this riddle, I invite

Nanomachines exist that enable Axolotl-levels of regeneration - So how can crippling injuries exist as well?

What do these pins mean? Where should I plug them in?

What are the end bytes of *.docx file format

As an employer, can I compel my employees to vote?

Can Bless or Bardic Inspiration help a creature from rolling a 1 on a death save?

Pandas aggregate with dynamic column names

Wired to Wireless Doorbell

Circle divided by lines between a blue dots

How do I reduce cost for a circular PCB shape?

Is there any reason nowadays to use a neon indicator lamp instead of an LED?

Pseudo Game of Cups in Python

Writing a letter of recommendation for a mediocre student

Can planetary bodies have a second axis of rotation?

What is a Heptagon Number™?

Is the sentence "何でも忘れた" correct?

Why are some of the Stunts in The Expanse RPG labelled 'Core'?

Are actors contractually obligated to certain things like going nude/ Sensual Scenes/ Gory Scenes?

Where are they calling from?

Do things made of adamantine rust?

How does one calculate the distribution of the Matt Colville way of rolling stats?

Repeat elements in list, but the number of times each element is repeated is provided by a separate list



Circle divided by lines between a blue dots


Difficult IQ test question: What is the box suggesting?What is the minimum number of straight lines to connect all the dots on this grid?Hikers Meeting in the MiddleYet another adventitious triangleMy roommate is back add it!Letters and dots and paperInner Triangles in the circleAsk for suggestion on a hard IQ questionMissing Number in a Seven Segment Circle






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


What is the solution for this IQ test question?



enter image description here



Source: https://www.quora.com/What-are-some-extremely-difficult-genius-level-160-IQ-questions










share|improve this question









New contributor



CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    Added source now
    $endgroup$
    – CuriousSuperhero
    10 hours ago

















5












$begingroup$


What is the solution for this IQ test question?



enter image description here



Source: https://www.quora.com/What-are-some-extremely-difficult-genius-level-160-IQ-questions










share|improve this question









New contributor



CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    Added source now
    $endgroup$
    – CuriousSuperhero
    10 hours ago













5












5








5





$begingroup$


What is the solution for this IQ test question?



enter image description here



Source: https://www.quora.com/What-are-some-extremely-difficult-genius-level-160-IQ-questions










share|improve this question









New contributor



CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




What is the solution for this IQ test question?



enter image description here



Source: https://www.quora.com/What-are-some-extremely-difficult-genius-level-160-IQ-questions







mathematics visual geometry






share|improve this question









New contributor



CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|improve this question









New contributor



CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|improve this question




share|improve this question








edited 10 hours ago









Rand al'Thor

76k15 gold badges249 silver badges499 bronze badges




76k15 gold badges249 silver badges499 bronze badges






New contributor



CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 10 hours ago









CuriousSuperheroCuriousSuperhero

1285 bronze badges




1285 bronze badges




New contributor



CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




CuriousSuperhero is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • $begingroup$
    Added source now
    $endgroup$
    – CuriousSuperhero
    10 hours ago
















  • $begingroup$
    Added source now
    $endgroup$
    – CuriousSuperhero
    10 hours ago















$begingroup$
Added source now
$endgroup$
– CuriousSuperhero
10 hours ago




$begingroup$
Added source now
$endgroup$
– CuriousSuperhero
10 hours ago










4 Answers
4






active

oldest

votes


















9














$begingroup$

The answer is




57.




This is a well-known problem called




Moser's circle problem. The sequence given by "maximal number of regions with $n$ blue dots" for increasing values of $n$ is $1,2,4,8,16,31,57,dots$. It's famously deceptive because the first few terms make it look like it's going to be simply the powers of 2, as another answer guessed, but it isn't.






share









$endgroup$














  • $begingroup$
    Well done, you got me again!
    $endgroup$
    – Weather Vane
    10 hours ago











  • $begingroup$
    What are other deceptive sequences? (non-trivial ones that have real applications)?
    $endgroup$
    – smci
    2 hours ago


















2














$begingroup$

An answer from @Randal'Thor was posted while I prepared this.

My (independent) answer is




57




Which I obtained by counting successive diagrams.

This is confirmed by the sequence




2,4,8,16,31,57

which is shown by OEIS to be A000127

Maximal number of regions obtained by joining n points around a circle by straight lines.







share|improve this answer









$endgroup$














  • $begingroup$
    this is what I thought of by seeing the picture but the thing is if each point is connected by the line then there is? 42 lines right? the region formula I got is wrong?
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    @SayedMohdAli that linked page gives the forrmula $(n^4 - 6n^3 + 23n^2 - 18n + 24)/24$
    $endgroup$
    – Weather Vane
    10 hours ago







  • 1




    $begingroup$
    @SayedMohdAli the numbers of lines is half that because each each is shared by two points. So $n(n-1)/2$
    $endgroup$
    – Weather Vane
    10 hours ago










  • $begingroup$
    I saw later :P previously I calculated number of lines wrong it should be 7*6/2 and I did 7*6... but later I corrected it :P I created sets. but my ideas was exactly same as yours but with little more research I got another way.. :D +1
    $endgroup$
    – Sayed Mohd Ali
    6 hours ago



















1














$begingroup$

My answer is reference




Regions of a Circle Cut by Chords to n Points
---------------------------------------------- n points are distributed round the circumference of a circle and each point is
joined to every other point by a chord of the circle. Assuming that
no three chords intersect at a point inside the circle we require the
number of regions into which the circle is divided.



With no lines the circle has just one region. Now consider any
collection of lines. If you draw a new line across the circle which
does not cross any existing lines, then the effect is to increase the
number of regions by 1. In addition, every time a new line crosses an
existing line inside the circle the number of regions is increased by
1 again.



So in any such arrangement


number of regions = 1 + number of lines + number of interior
intersections



= 1 + C(n,2) + C(n,4)


Note that the number of lines is the number of ways 2 points can be
chosen from n points. Also, the number of interior intersections is
the number of quadrilaterals that can be formed from n points, since
each quadrilateral produces just 1 intersection where the diagonals
of the quadrilateral intersect.


Examples:


n=4 Number of regions = 1 + C(4,2) + C(4,4) = 8

n=5 Number of regions = 1 + C(5,2) + C(5,4) = 16

n=6 " " = 1 + C(6,2) + C(6,4) = 31

n=7 " " = 1 + C(7,2) + C(7,4) = 57







share|improve this answer











$endgroup$














  • $begingroup$
    I will update the answer counting :P the total lines wait.
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    It is asking for the number of regions, not the number of lines.
    $endgroup$
    – Jaap Scherphuis
    10 hours ago










  • $begingroup$
    In case you are still wondering, the region formula you previously used does not apply to this case. It assumes that every pair of lines intersect in a unique point, and counts all the regions. In this case we have points where more than 2 lines intersect (the blue points). We also have lines intersecting outside the circle (e.g. non-adjacent edges) leading to extra regions outside the circle that we are not interested in counting here.
    $endgroup$
    – Jaap Scherphuis
    9 hours ago


















-3














$begingroup$

64 - the number appears to be doubling with each additional point.






share|improve this answer








New contributor



AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 2




    $begingroup$
    Nope. This is a famously deceptive sequence.
    $endgroup$
    – Rand al'Thor
    10 hours ago













Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "559"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);







CuriousSuperhero is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded
















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f89273%2fcircle-divided-by-lines-between-a-blue-dots%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























4 Answers
4






active

oldest

votes








4 Answers
4






active

oldest

votes









active

oldest

votes






active

oldest

votes









9














$begingroup$

The answer is




57.




This is a well-known problem called




Moser's circle problem. The sequence given by "maximal number of regions with $n$ blue dots" for increasing values of $n$ is $1,2,4,8,16,31,57,dots$. It's famously deceptive because the first few terms make it look like it's going to be simply the powers of 2, as another answer guessed, but it isn't.






share









$endgroup$














  • $begingroup$
    Well done, you got me again!
    $endgroup$
    – Weather Vane
    10 hours ago











  • $begingroup$
    What are other deceptive sequences? (non-trivial ones that have real applications)?
    $endgroup$
    – smci
    2 hours ago















9














$begingroup$

The answer is




57.




This is a well-known problem called




Moser's circle problem. The sequence given by "maximal number of regions with $n$ blue dots" for increasing values of $n$ is $1,2,4,8,16,31,57,dots$. It's famously deceptive because the first few terms make it look like it's going to be simply the powers of 2, as another answer guessed, but it isn't.






share









$endgroup$














  • $begingroup$
    Well done, you got me again!
    $endgroup$
    – Weather Vane
    10 hours ago











  • $begingroup$
    What are other deceptive sequences? (non-trivial ones that have real applications)?
    $endgroup$
    – smci
    2 hours ago













9














9










9







$begingroup$

The answer is




57.




This is a well-known problem called




Moser's circle problem. The sequence given by "maximal number of regions with $n$ blue dots" for increasing values of $n$ is $1,2,4,8,16,31,57,dots$. It's famously deceptive because the first few terms make it look like it's going to be simply the powers of 2, as another answer guessed, but it isn't.






share









$endgroup$



The answer is




57.




This is a well-known problem called




Moser's circle problem. The sequence given by "maximal number of regions with $n$ blue dots" for increasing values of $n$ is $1,2,4,8,16,31,57,dots$. It's famously deceptive because the first few terms make it look like it's going to be simply the powers of 2, as another answer guessed, but it isn't.







share











share


share










answered 10 hours ago









Rand al'ThorRand al'Thor

76k15 gold badges249 silver badges499 bronze badges




76k15 gold badges249 silver badges499 bronze badges














  • $begingroup$
    Well done, you got me again!
    $endgroup$
    – Weather Vane
    10 hours ago











  • $begingroup$
    What are other deceptive sequences? (non-trivial ones that have real applications)?
    $endgroup$
    – smci
    2 hours ago
















  • $begingroup$
    Well done, you got me again!
    $endgroup$
    – Weather Vane
    10 hours ago











  • $begingroup$
    What are other deceptive sequences? (non-trivial ones that have real applications)?
    $endgroup$
    – smci
    2 hours ago















$begingroup$
Well done, you got me again!
$endgroup$
– Weather Vane
10 hours ago





$begingroup$
Well done, you got me again!
$endgroup$
– Weather Vane
10 hours ago













$begingroup$
What are other deceptive sequences? (non-trivial ones that have real applications)?
$endgroup$
– smci
2 hours ago




$begingroup$
What are other deceptive sequences? (non-trivial ones that have real applications)?
$endgroup$
– smci
2 hours ago













2














$begingroup$

An answer from @Randal'Thor was posted while I prepared this.

My (independent) answer is




57




Which I obtained by counting successive diagrams.

This is confirmed by the sequence




2,4,8,16,31,57

which is shown by OEIS to be A000127

Maximal number of regions obtained by joining n points around a circle by straight lines.







share|improve this answer









$endgroup$














  • $begingroup$
    this is what I thought of by seeing the picture but the thing is if each point is connected by the line then there is? 42 lines right? the region formula I got is wrong?
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    @SayedMohdAli that linked page gives the forrmula $(n^4 - 6n^3 + 23n^2 - 18n + 24)/24$
    $endgroup$
    – Weather Vane
    10 hours ago







  • 1




    $begingroup$
    @SayedMohdAli the numbers of lines is half that because each each is shared by two points. So $n(n-1)/2$
    $endgroup$
    – Weather Vane
    10 hours ago










  • $begingroup$
    I saw later :P previously I calculated number of lines wrong it should be 7*6/2 and I did 7*6... but later I corrected it :P I created sets. but my ideas was exactly same as yours but with little more research I got another way.. :D +1
    $endgroup$
    – Sayed Mohd Ali
    6 hours ago
















2














$begingroup$

An answer from @Randal'Thor was posted while I prepared this.

My (independent) answer is




57




Which I obtained by counting successive diagrams.

This is confirmed by the sequence




2,4,8,16,31,57

which is shown by OEIS to be A000127

Maximal number of regions obtained by joining n points around a circle by straight lines.







share|improve this answer









$endgroup$














  • $begingroup$
    this is what I thought of by seeing the picture but the thing is if each point is connected by the line then there is? 42 lines right? the region formula I got is wrong?
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    @SayedMohdAli that linked page gives the forrmula $(n^4 - 6n^3 + 23n^2 - 18n + 24)/24$
    $endgroup$
    – Weather Vane
    10 hours ago







  • 1




    $begingroup$
    @SayedMohdAli the numbers of lines is half that because each each is shared by two points. So $n(n-1)/2$
    $endgroup$
    – Weather Vane
    10 hours ago










  • $begingroup$
    I saw later :P previously I calculated number of lines wrong it should be 7*6/2 and I did 7*6... but later I corrected it :P I created sets. but my ideas was exactly same as yours but with little more research I got another way.. :D +1
    $endgroup$
    – Sayed Mohd Ali
    6 hours ago














2














2










2







$begingroup$

An answer from @Randal'Thor was posted while I prepared this.

My (independent) answer is




57




Which I obtained by counting successive diagrams.

This is confirmed by the sequence




2,4,8,16,31,57

which is shown by OEIS to be A000127

Maximal number of regions obtained by joining n points around a circle by straight lines.







share|improve this answer









$endgroup$



An answer from @Randal'Thor was posted while I prepared this.

My (independent) answer is




57




Which I obtained by counting successive diagrams.

This is confirmed by the sequence




2,4,8,16,31,57

which is shown by OEIS to be A000127

Maximal number of regions obtained by joining n points around a circle by straight lines.








share|improve this answer












share|improve this answer



share|improve this answer










answered 10 hours ago









Weather VaneWeather Vane

6,2661 gold badge4 silver badges26 bronze badges




6,2661 gold badge4 silver badges26 bronze badges














  • $begingroup$
    this is what I thought of by seeing the picture but the thing is if each point is connected by the line then there is? 42 lines right? the region formula I got is wrong?
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    @SayedMohdAli that linked page gives the forrmula $(n^4 - 6n^3 + 23n^2 - 18n + 24)/24$
    $endgroup$
    – Weather Vane
    10 hours ago







  • 1




    $begingroup$
    @SayedMohdAli the numbers of lines is half that because each each is shared by two points. So $n(n-1)/2$
    $endgroup$
    – Weather Vane
    10 hours ago










  • $begingroup$
    I saw later :P previously I calculated number of lines wrong it should be 7*6/2 and I did 7*6... but later I corrected it :P I created sets. but my ideas was exactly same as yours but with little more research I got another way.. :D +1
    $endgroup$
    – Sayed Mohd Ali
    6 hours ago

















  • $begingroup$
    this is what I thought of by seeing the picture but the thing is if each point is connected by the line then there is? 42 lines right? the region formula I got is wrong?
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    @SayedMohdAli that linked page gives the forrmula $(n^4 - 6n^3 + 23n^2 - 18n + 24)/24$
    $endgroup$
    – Weather Vane
    10 hours ago







  • 1




    $begingroup$
    @SayedMohdAli the numbers of lines is half that because each each is shared by two points. So $n(n-1)/2$
    $endgroup$
    – Weather Vane
    10 hours ago










  • $begingroup$
    I saw later :P previously I calculated number of lines wrong it should be 7*6/2 and I did 7*6... but later I corrected it :P I created sets. but my ideas was exactly same as yours but with little more research I got another way.. :D +1
    $endgroup$
    – Sayed Mohd Ali
    6 hours ago
















$begingroup$
this is what I thought of by seeing the picture but the thing is if each point is connected by the line then there is? 42 lines right? the region formula I got is wrong?
$endgroup$
– Sayed Mohd Ali
10 hours ago




$begingroup$
this is what I thought of by seeing the picture but the thing is if each point is connected by the line then there is? 42 lines right? the region formula I got is wrong?
$endgroup$
– Sayed Mohd Ali
10 hours ago












$begingroup$
@SayedMohdAli that linked page gives the forrmula $(n^4 - 6n^3 + 23n^2 - 18n + 24)/24$
$endgroup$
– Weather Vane
10 hours ago





$begingroup$
@SayedMohdAli that linked page gives the forrmula $(n^4 - 6n^3 + 23n^2 - 18n + 24)/24$
$endgroup$
– Weather Vane
10 hours ago





1




1




$begingroup$
@SayedMohdAli the numbers of lines is half that because each each is shared by two points. So $n(n-1)/2$
$endgroup$
– Weather Vane
10 hours ago




$begingroup$
@SayedMohdAli the numbers of lines is half that because each each is shared by two points. So $n(n-1)/2$
$endgroup$
– Weather Vane
10 hours ago












$begingroup$
I saw later :P previously I calculated number of lines wrong it should be 7*6/2 and I did 7*6... but later I corrected it :P I created sets. but my ideas was exactly same as yours but with little more research I got another way.. :D +1
$endgroup$
– Sayed Mohd Ali
6 hours ago





$begingroup$
I saw later :P previously I calculated number of lines wrong it should be 7*6/2 and I did 7*6... but later I corrected it :P I created sets. but my ideas was exactly same as yours but with little more research I got another way.. :D +1
$endgroup$
– Sayed Mohd Ali
6 hours ago












1














$begingroup$

My answer is reference




Regions of a Circle Cut by Chords to n Points
---------------------------------------------- n points are distributed round the circumference of a circle and each point is
joined to every other point by a chord of the circle. Assuming that
no three chords intersect at a point inside the circle we require the
number of regions into which the circle is divided.



With no lines the circle has just one region. Now consider any
collection of lines. If you draw a new line across the circle which
does not cross any existing lines, then the effect is to increase the
number of regions by 1. In addition, every time a new line crosses an
existing line inside the circle the number of regions is increased by
1 again.



So in any such arrangement


number of regions = 1 + number of lines + number of interior
intersections



= 1 + C(n,2) + C(n,4)


Note that the number of lines is the number of ways 2 points can be
chosen from n points. Also, the number of interior intersections is
the number of quadrilaterals that can be formed from n points, since
each quadrilateral produces just 1 intersection where the diagonals
of the quadrilateral intersect.


Examples:


n=4 Number of regions = 1 + C(4,2) + C(4,4) = 8

n=5 Number of regions = 1 + C(5,2) + C(5,4) = 16

n=6 " " = 1 + C(6,2) + C(6,4) = 31

n=7 " " = 1 + C(7,2) + C(7,4) = 57







share|improve this answer











$endgroup$














  • $begingroup$
    I will update the answer counting :P the total lines wait.
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    It is asking for the number of regions, not the number of lines.
    $endgroup$
    – Jaap Scherphuis
    10 hours ago










  • $begingroup$
    In case you are still wondering, the region formula you previously used does not apply to this case. It assumes that every pair of lines intersect in a unique point, and counts all the regions. In this case we have points where more than 2 lines intersect (the blue points). We also have lines intersecting outside the circle (e.g. non-adjacent edges) leading to extra regions outside the circle that we are not interested in counting here.
    $endgroup$
    – Jaap Scherphuis
    9 hours ago















1














$begingroup$

My answer is reference




Regions of a Circle Cut by Chords to n Points
---------------------------------------------- n points are distributed round the circumference of a circle and each point is
joined to every other point by a chord of the circle. Assuming that
no three chords intersect at a point inside the circle we require the
number of regions into which the circle is divided.



With no lines the circle has just one region. Now consider any
collection of lines. If you draw a new line across the circle which
does not cross any existing lines, then the effect is to increase the
number of regions by 1. In addition, every time a new line crosses an
existing line inside the circle the number of regions is increased by
1 again.



So in any such arrangement


number of regions = 1 + number of lines + number of interior
intersections



= 1 + C(n,2) + C(n,4)


Note that the number of lines is the number of ways 2 points can be
chosen from n points. Also, the number of interior intersections is
the number of quadrilaterals that can be formed from n points, since
each quadrilateral produces just 1 intersection where the diagonals
of the quadrilateral intersect.


Examples:


n=4 Number of regions = 1 + C(4,2) + C(4,4) = 8

n=5 Number of regions = 1 + C(5,2) + C(5,4) = 16

n=6 " " = 1 + C(6,2) + C(6,4) = 31

n=7 " " = 1 + C(7,2) + C(7,4) = 57







share|improve this answer











$endgroup$














  • $begingroup$
    I will update the answer counting :P the total lines wait.
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    It is asking for the number of regions, not the number of lines.
    $endgroup$
    – Jaap Scherphuis
    10 hours ago










  • $begingroup$
    In case you are still wondering, the region formula you previously used does not apply to this case. It assumes that every pair of lines intersect in a unique point, and counts all the regions. In this case we have points where more than 2 lines intersect (the blue points). We also have lines intersecting outside the circle (e.g. non-adjacent edges) leading to extra regions outside the circle that we are not interested in counting here.
    $endgroup$
    – Jaap Scherphuis
    9 hours ago













1














1










1







$begingroup$

My answer is reference




Regions of a Circle Cut by Chords to n Points
---------------------------------------------- n points are distributed round the circumference of a circle and each point is
joined to every other point by a chord of the circle. Assuming that
no three chords intersect at a point inside the circle we require the
number of regions into which the circle is divided.



With no lines the circle has just one region. Now consider any
collection of lines. If you draw a new line across the circle which
does not cross any existing lines, then the effect is to increase the
number of regions by 1. In addition, every time a new line crosses an
existing line inside the circle the number of regions is increased by
1 again.



So in any such arrangement


number of regions = 1 + number of lines + number of interior
intersections



= 1 + C(n,2) + C(n,4)


Note that the number of lines is the number of ways 2 points can be
chosen from n points. Also, the number of interior intersections is
the number of quadrilaterals that can be formed from n points, since
each quadrilateral produces just 1 intersection where the diagonals
of the quadrilateral intersect.


Examples:


n=4 Number of regions = 1 + C(4,2) + C(4,4) = 8

n=5 Number of regions = 1 + C(5,2) + C(5,4) = 16

n=6 " " = 1 + C(6,2) + C(6,4) = 31

n=7 " " = 1 + C(7,2) + C(7,4) = 57







share|improve this answer











$endgroup$



My answer is reference




Regions of a Circle Cut by Chords to n Points
---------------------------------------------- n points are distributed round the circumference of a circle and each point is
joined to every other point by a chord of the circle. Assuming that
no three chords intersect at a point inside the circle we require the
number of regions into which the circle is divided.



With no lines the circle has just one region. Now consider any
collection of lines. If you draw a new line across the circle which
does not cross any existing lines, then the effect is to increase the
number of regions by 1. In addition, every time a new line crosses an
existing line inside the circle the number of regions is increased by
1 again.



So in any such arrangement


number of regions = 1 + number of lines + number of interior
intersections



= 1 + C(n,2) + C(n,4)


Note that the number of lines is the number of ways 2 points can be
chosen from n points. Also, the number of interior intersections is
the number of quadrilaterals that can be formed from n points, since
each quadrilateral produces just 1 intersection where the diagonals
of the quadrilateral intersect.


Examples:


n=4 Number of regions = 1 + C(4,2) + C(4,4) = 8

n=5 Number of regions = 1 + C(5,2) + C(5,4) = 16

n=6 " " = 1 + C(6,2) + C(6,4) = 31

n=7 " " = 1 + C(7,2) + C(7,4) = 57








share|improve this answer














share|improve this answer



share|improve this answer








edited 6 hours ago

























answered 10 hours ago









Sayed Mohd AliSayed Mohd Ali

54716 bronze badges




54716 bronze badges














  • $begingroup$
    I will update the answer counting :P the total lines wait.
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    It is asking for the number of regions, not the number of lines.
    $endgroup$
    – Jaap Scherphuis
    10 hours ago










  • $begingroup$
    In case you are still wondering, the region formula you previously used does not apply to this case. It assumes that every pair of lines intersect in a unique point, and counts all the regions. In this case we have points where more than 2 lines intersect (the blue points). We also have lines intersecting outside the circle (e.g. non-adjacent edges) leading to extra regions outside the circle that we are not interested in counting here.
    $endgroup$
    – Jaap Scherphuis
    9 hours ago
















  • $begingroup$
    I will update the answer counting :P the total lines wait.
    $endgroup$
    – Sayed Mohd Ali
    10 hours ago










  • $begingroup$
    It is asking for the number of regions, not the number of lines.
    $endgroup$
    – Jaap Scherphuis
    10 hours ago










  • $begingroup$
    In case you are still wondering, the region formula you previously used does not apply to this case. It assumes that every pair of lines intersect in a unique point, and counts all the regions. In this case we have points where more than 2 lines intersect (the blue points). We also have lines intersecting outside the circle (e.g. non-adjacent edges) leading to extra regions outside the circle that we are not interested in counting here.
    $endgroup$
    – Jaap Scherphuis
    9 hours ago















$begingroup$
I will update the answer counting :P the total lines wait.
$endgroup$
– Sayed Mohd Ali
10 hours ago




$begingroup$
I will update the answer counting :P the total lines wait.
$endgroup$
– Sayed Mohd Ali
10 hours ago












$begingroup$
It is asking for the number of regions, not the number of lines.
$endgroup$
– Jaap Scherphuis
10 hours ago




$begingroup$
It is asking for the number of regions, not the number of lines.
$endgroup$
– Jaap Scherphuis
10 hours ago












$begingroup$
In case you are still wondering, the region formula you previously used does not apply to this case. It assumes that every pair of lines intersect in a unique point, and counts all the regions. In this case we have points where more than 2 lines intersect (the blue points). We also have lines intersecting outside the circle (e.g. non-adjacent edges) leading to extra regions outside the circle that we are not interested in counting here.
$endgroup$
– Jaap Scherphuis
9 hours ago




$begingroup$
In case you are still wondering, the region formula you previously used does not apply to this case. It assumes that every pair of lines intersect in a unique point, and counts all the regions. In this case we have points where more than 2 lines intersect (the blue points). We also have lines intersecting outside the circle (e.g. non-adjacent edges) leading to extra regions outside the circle that we are not interested in counting here.
$endgroup$
– Jaap Scherphuis
9 hours ago











-3














$begingroup$

64 - the number appears to be doubling with each additional point.






share|improve this answer








New contributor



AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 2




    $begingroup$
    Nope. This is a famously deceptive sequence.
    $endgroup$
    – Rand al'Thor
    10 hours ago















-3














$begingroup$

64 - the number appears to be doubling with each additional point.






share|improve this answer








New contributor



AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$










  • 2




    $begingroup$
    Nope. This is a famously deceptive sequence.
    $endgroup$
    – Rand al'Thor
    10 hours ago













-3














-3










-3







$begingroup$

64 - the number appears to be doubling with each additional point.






share|improve this answer








New contributor



AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





$endgroup$



64 - the number appears to be doubling with each additional point.







share|improve this answer








New contributor



AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|improve this answer



share|improve this answer






New contributor



AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








answered 10 hours ago









AndyJ97AndyJ97

1




1




New contributor



AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




AndyJ97 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • 2




    $begingroup$
    Nope. This is a famously deceptive sequence.
    $endgroup$
    – Rand al'Thor
    10 hours ago












  • 2




    $begingroup$
    Nope. This is a famously deceptive sequence.
    $endgroup$
    – Rand al'Thor
    10 hours ago







2




2




$begingroup$
Nope. This is a famously deceptive sequence.
$endgroup$
– Rand al'Thor
10 hours ago




$begingroup$
Nope. This is a famously deceptive sequence.
$endgroup$
– Rand al'Thor
10 hours ago











CuriousSuperhero is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded

















CuriousSuperhero is a new contributor. Be nice, and check out our Code of Conduct.












CuriousSuperhero is a new contributor. Be nice, and check out our Code of Conduct.











CuriousSuperhero is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Puzzling Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f89273%2fcircle-divided-by-lines-between-a-blue-dots%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

Черчино Становништво Референце Спољашње везе Мени за навигацију46°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.5081446°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.508143179111„The GeoNames geographical database”„Istituto Nazionale di Statistica”Званични веб-сајтпроширитиуу