use of the disk commandHow to use Undocumented Functions Prism, Tetrahedron and HexahedronHow to create a Poincaré disk type kaleidoscope in Mathematica?Unable to compute the area of regionHow to display MeshRegion without verticesPolytopes package for represents the intersection of elementsThe fastest thing since sliced cubes?How to find area of intersection of disk and cone?Checking whether the line is parallel to the plane

Can Northern Ireland's border issue be solved by repartition?

How does one calculate the distribution of the Matt Colville way of rolling stats?

How do I improve in sight reading?

What was the deeper meaning of Hermione wanting the cloak?

When does removing Goblin Warchief affect its cost reduction ability?

Determine whether a file has no EOL at the end from the command line

Where Does VDD+0.3V Input Limit Come From on IC chips?

Did Apollo carry and use WD40?

Can someone explain to me the parameters of a lognormal distribution?

Is this a Sherman, and if so what model?

As an employer, can I compel my employees to vote?

Escape the labyrinth!

To this riddle, I invite

Asking an expert in your field that you have never met to review your manuscript

Are actors contractually obligated to certain things like going nude/ Sensual Scenes/ Gory Scenes?

Was there a trial by combat between a man and a dog in medieval France?

What is the fastest way to do Array Table Lookup with an Integer Index?

Pandas aggregate with dynamic column names

I feel like most of my characters are the same, what can I do?

Is there any actual security benefit to restricting foreign IPs?

Social leper versus social leopard

Wired to Wireless Doorbell

Why does NASA publish all the results/data it gets?

How to create a grid following points in QGIS?



use of the disk command


How to use Undocumented Functions Prism, Tetrahedron and HexahedronHow to create a Poincaré disk type kaleidoscope in Mathematica?Unable to compute the area of regionHow to display MeshRegion without verticesPolytopes package for represents the intersection of elementsThe fastest thing since sliced cubes?How to find area of intersection of disk and cone?Checking whether the line is parallel to the plane






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
<<<< any help is welcome



enter image description here










share|improve this question











$endgroup$




















    3












    $begingroup$


    They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



    I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
    <<<< any help is welcome



    enter image description here










    share|improve this question











    $endgroup$
















      3












      3








      3





      $begingroup$


      They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



      I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
      <<<< any help is welcome



      enter image description here










      share|improve this question











      $endgroup$




      They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



      I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
      <<<< any help is welcome



      enter image description here







      regions geometry






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 4 hours ago









      J. M. will be back soon

      100k10 gold badges317 silver badges476 bronze badges




      100k10 gold badges317 silver badges476 bronze badges










      asked 12 hours ago









      zeroszeros

      8291 gold badge7 silver badges13 bronze badges




      8291 gold badge7 silver badges13 bronze badges























          3 Answers
          3






          active

          oldest

          votes


















          3














          $begingroup$

          Here is an alternative of
          the previous answer
          that might give you the plots in your question (after a sufficient number of experiments.)



          Clear[RandomDisk]
          RandomDisk[] := Opacity[RandomChoice[Range[0, 1, 0.25]]],
          FaceForm[RandomChoice[None, Pink, Gray, LightBlue]],
          EdgeForm[Black],
          Disk[RandomChoice[
          Append[Flatten[Outer[List, 0, 1, 0, 1], 1], 0.5, 0.5]],
          RandomChoice[0.5, 1]];

          Clear[RandomRectangle]
          RandomRectangle[] := EdgeForm[
          RandomChoice[None, Black, Blue, Red, Gray, Orange, LightBlue]],
          FaceForm[None], Rectangle[]

          Multicolumn[
          Table[Graphics[Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
          1], RandomRectangle[], Frame -> True, PlotRangeClipping -> True,
          PlotRange -> 0, 1, 0, 1], 16], 4]


          enter image description here



          enter image description here






          share|improve this answer











          $endgroup$






















            3














            $begingroup$

            You can specify the quarter disks using the three-argument form of Disk.



            For the first picture:



            a = 1;
            d1 = Disk[0, 0, a, 0, Pi/2];
            d2 = Disk[a, 0, a, Pi/2, Pi];
            d3 = Disk[0, a, a, -Pi/2, 0];

            Graphics[EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3]


            enter image description here



            ri = RegionIntersection[d1, d2, d3];

            Perimeter[ri]



            2.61799




            N @ Area[ri]



            0.442972




            A simpler alternative is to take the intersections of full disks with Rectangle[0,0,a,a]:



            d1b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,0, a]];
            d2b=RegionIntersection[Rectangle[0,0, a,a], Disk[a,0, a]];
            d3b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,a, a]];

            Graphics[EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b]



            same picture




            Similarly, for the third picture:



            Graphics[Opacity[.25], Blue, d2b, Red, Disk[a, a/2, a/2]]


            enter image description here



            rd = RegionDifference[ Disk[a, a/2, a/2], d2b];
            Through[Perimeter, N@*Area@rd]



            2.18282, 0.146381







            share|improve this answer











            $endgroup$






















              2














              $begingroup$

              Clear["Global`*"]


              For the first image



              reg[1, a_] = Disk[0, 0, a, 0, Pi/2];
              reg[2, a_] = Disk[a, 0, a, Pi/2, Pi];
              reg[3, a_] = Disk[0, a, a, -Pi/2, 0];
              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

              Show[
              Graphics[
              EdgeForm[Black],
              Lighter[Blue, 0.6],
              Opacity[0.75],
              reg[1, 1], reg[2, 1], reg[3, 1]],
              Region[reg[4, 1],
              BaseStyle -> Opacity[0.5, Blue]]]


              enter image description here



              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



              Graphics[
              EdgeForm[Black],
              Lighter[Blue, 0.6],
              Opacity[0.75],
              reg[1, 1], reg[2, 1], reg[3, 1],
              DiscretizeRegion[reg[4, 1],
              MeshCellStyle -> Opacity[0.5, Blue],
              MaxCellMeasure -> 1]]


              enter image description here



              The area is proportional to a^2



              And @@ Table[
              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
              a, 1, 10]

              (* True *)

              area1 = a^2*Area[reg[4, 1]]

              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

              area1 // N

              (* 0.442972 a^2 *)

              Perimeter[reg[4, 1]]

              (* 2.61799 *)


              For the second image



              reg[5, a_] = Disk[a, a, a, Pi, 3 Pi/2]; reg[6, a_] = 
              RegionUnion[
              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
              reg[1, a], reg[2, a],
              reg[3, a], reg[5, a],
              reg[2, a], reg[5, a], reg[1, a], reg[3, a],
              reg[1, a], reg[3, a], reg[2, a], reg[5, a],
              reg[3, a], reg[5, a], reg[1, a], reg[2, a]];

              Show[
              Graphics[
              EdgeForm[Black],
              White, Opacity[0.25],
              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]],
              Region[reg[6, 1], BaseStyle -> LightGray],
              Frame -> True]


              enter image description here



              The area is proportional to a^2



              And @@ Table[
              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
              a, 1, 10]

              (* True *)

              area2 = a^2*Area[reg[6, 1]] // Simplify

              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

              area2 // N

              (* 0.173554 a^2 *)

              Perimeter[reg[6, 1]]

              (* 7.11792 *)


              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
              reg[1, a], reg[2, a], reg[3, a], reg[5, a]];

              4*Perimeter[reg[6 sr, 1]]

              (* 8.18879 *)


              For the last image



              reg[7, a_] = Disk[a/2, a/2, a/2];

              reg[8, a_] = BooleanRegion[#1 && ! #2 &, reg[7, a], reg[2, a]];

              Show[
              Graphics[
              EdgeForm[Black],
              White, Opacity[0.25],
              Rectangle[0, 0],
              reg[2, 1], reg[7, 1]],
              Region[reg[8, 1], BaseStyle -> Red]]


              enter image description here



              The area is proportional to a^2



              And @@ Table[
              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
              a, 1, 10]

              (* True *)

              area3 = a^2*Area[reg[8, 1]] //
              TrigToExp // FullSimplify

              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

              area3 // N

              (* 0.146381 a^2 *)

              Perimeter[reg[8, 1]]

              (* 2.18282 *)





              share|improve this answer











              $endgroup$














              • $begingroup$
                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                $endgroup$
                – zeros
                7 hours ago










              • $begingroup$
                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                $endgroup$
                – Bob Hanlon
                2 hours ago













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );














              draft saved

              draft discarded
















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f206447%2fuse-of-the-disk-command%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3














              $begingroup$

              Here is an alternative of
              the previous answer
              that might give you the plots in your question (after a sufficient number of experiments.)



              Clear[RandomDisk]
              RandomDisk[] := Opacity[RandomChoice[Range[0, 1, 0.25]]],
              FaceForm[RandomChoice[None, Pink, Gray, LightBlue]],
              EdgeForm[Black],
              Disk[RandomChoice[
              Append[Flatten[Outer[List, 0, 1, 0, 1], 1], 0.5, 0.5]],
              RandomChoice[0.5, 1]];

              Clear[RandomRectangle]
              RandomRectangle[] := EdgeForm[
              RandomChoice[None, Black, Blue, Red, Gray, Orange, LightBlue]],
              FaceForm[None], Rectangle[]

              Multicolumn[
              Table[Graphics[Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
              1], RandomRectangle[], Frame -> True, PlotRangeClipping -> True,
              PlotRange -> 0, 1, 0, 1], 16], 4]


              enter image description here



              enter image description here






              share|improve this answer











              $endgroup$



















                3














                $begingroup$

                Here is an alternative of
                the previous answer
                that might give you the plots in your question (after a sufficient number of experiments.)



                Clear[RandomDisk]
                RandomDisk[] := Opacity[RandomChoice[Range[0, 1, 0.25]]],
                FaceForm[RandomChoice[None, Pink, Gray, LightBlue]],
                EdgeForm[Black],
                Disk[RandomChoice[
                Append[Flatten[Outer[List, 0, 1, 0, 1], 1], 0.5, 0.5]],
                RandomChoice[0.5, 1]];

                Clear[RandomRectangle]
                RandomRectangle[] := EdgeForm[
                RandomChoice[None, Black, Blue, Red, Gray, Orange, LightBlue]],
                FaceForm[None], Rectangle[]

                Multicolumn[
                Table[Graphics[Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
                1], RandomRectangle[], Frame -> True, PlotRangeClipping -> True,
                PlotRange -> 0, 1, 0, 1], 16], 4]


                enter image description here



                enter image description here






                share|improve this answer











                $endgroup$

















                  3














                  3










                  3







                  $begingroup$

                  Here is an alternative of
                  the previous answer
                  that might give you the plots in your question (after a sufficient number of experiments.)



                  Clear[RandomDisk]
                  RandomDisk[] := Opacity[RandomChoice[Range[0, 1, 0.25]]],
                  FaceForm[RandomChoice[None, Pink, Gray, LightBlue]],
                  EdgeForm[Black],
                  Disk[RandomChoice[
                  Append[Flatten[Outer[List, 0, 1, 0, 1], 1], 0.5, 0.5]],
                  RandomChoice[0.5, 1]];

                  Clear[RandomRectangle]
                  RandomRectangle[] := EdgeForm[
                  RandomChoice[None, Black, Blue, Red, Gray, Orange, LightBlue]],
                  FaceForm[None], Rectangle[]

                  Multicolumn[
                  Table[Graphics[Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
                  1], RandomRectangle[], Frame -> True, PlotRangeClipping -> True,
                  PlotRange -> 0, 1, 0, 1], 16], 4]


                  enter image description here



                  enter image description here






                  share|improve this answer











                  $endgroup$



                  Here is an alternative of
                  the previous answer
                  that might give you the plots in your question (after a sufficient number of experiments.)



                  Clear[RandomDisk]
                  RandomDisk[] := Opacity[RandomChoice[Range[0, 1, 0.25]]],
                  FaceForm[RandomChoice[None, Pink, Gray, LightBlue]],
                  EdgeForm[Black],
                  Disk[RandomChoice[
                  Append[Flatten[Outer[List, 0, 1, 0, 1], 1], 0.5, 0.5]],
                  RandomChoice[0.5, 1]];

                  Clear[RandomRectangle]
                  RandomRectangle[] := EdgeForm[
                  RandomChoice[None, Black, Blue, Red, Gray, Orange, LightBlue]],
                  FaceForm[None], Rectangle[]

                  Multicolumn[
                  Table[Graphics[Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
                  1], RandomRectangle[], Frame -> True, PlotRangeClipping -> True,
                  PlotRange -> 0, 1, 0, 1], 16], 4]


                  enter image description here



                  enter image description here







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 10 hours ago

























                  answered 10 hours ago









                  Anton AntonovAnton Antonov

                  25.8k1 gold badge68 silver badges122 bronze badges




                  25.8k1 gold badge68 silver badges122 bronze badges


























                      3














                      $begingroup$

                      You can specify the quarter disks using the three-argument form of Disk.



                      For the first picture:



                      a = 1;
                      d1 = Disk[0, 0, a, 0, Pi/2];
                      d2 = Disk[a, 0, a, Pi/2, Pi];
                      d3 = Disk[0, a, a, -Pi/2, 0];

                      Graphics[EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3]


                      enter image description here



                      ri = RegionIntersection[d1, d2, d3];

                      Perimeter[ri]



                      2.61799




                      N @ Area[ri]



                      0.442972




                      A simpler alternative is to take the intersections of full disks with Rectangle[0,0,a,a]:



                      d1b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,0, a]];
                      d2b=RegionIntersection[Rectangle[0,0, a,a], Disk[a,0, a]];
                      d3b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,a, a]];

                      Graphics[EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b]



                      same picture




                      Similarly, for the third picture:



                      Graphics[Opacity[.25], Blue, d2b, Red, Disk[a, a/2, a/2]]


                      enter image description here



                      rd = RegionDifference[ Disk[a, a/2, a/2], d2b];
                      Through[Perimeter, N@*Area@rd]



                      2.18282, 0.146381







                      share|improve this answer











                      $endgroup$



















                        3














                        $begingroup$

                        You can specify the quarter disks using the three-argument form of Disk.



                        For the first picture:



                        a = 1;
                        d1 = Disk[0, 0, a, 0, Pi/2];
                        d2 = Disk[a, 0, a, Pi/2, Pi];
                        d3 = Disk[0, a, a, -Pi/2, 0];

                        Graphics[EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3]


                        enter image description here



                        ri = RegionIntersection[d1, d2, d3];

                        Perimeter[ri]



                        2.61799




                        N @ Area[ri]



                        0.442972




                        A simpler alternative is to take the intersections of full disks with Rectangle[0,0,a,a]:



                        d1b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,0, a]];
                        d2b=RegionIntersection[Rectangle[0,0, a,a], Disk[a,0, a]];
                        d3b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,a, a]];

                        Graphics[EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b]



                        same picture




                        Similarly, for the third picture:



                        Graphics[Opacity[.25], Blue, d2b, Red, Disk[a, a/2, a/2]]


                        enter image description here



                        rd = RegionDifference[ Disk[a, a/2, a/2], d2b];
                        Through[Perimeter, N@*Area@rd]



                        2.18282, 0.146381







                        share|improve this answer











                        $endgroup$

















                          3














                          3










                          3







                          $begingroup$

                          You can specify the quarter disks using the three-argument form of Disk.



                          For the first picture:



                          a = 1;
                          d1 = Disk[0, 0, a, 0, Pi/2];
                          d2 = Disk[a, 0, a, Pi/2, Pi];
                          d3 = Disk[0, a, a, -Pi/2, 0];

                          Graphics[EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3]


                          enter image description here



                          ri = RegionIntersection[d1, d2, d3];

                          Perimeter[ri]



                          2.61799




                          N @ Area[ri]



                          0.442972




                          A simpler alternative is to take the intersections of full disks with Rectangle[0,0,a,a]:



                          d1b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,0, a]];
                          d2b=RegionIntersection[Rectangle[0,0, a,a], Disk[a,0, a]];
                          d3b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,a, a]];

                          Graphics[EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b]



                          same picture




                          Similarly, for the third picture:



                          Graphics[Opacity[.25], Blue, d2b, Red, Disk[a, a/2, a/2]]


                          enter image description here



                          rd = RegionDifference[ Disk[a, a/2, a/2], d2b];
                          Through[Perimeter, N@*Area@rd]



                          2.18282, 0.146381







                          share|improve this answer











                          $endgroup$



                          You can specify the quarter disks using the three-argument form of Disk.



                          For the first picture:



                          a = 1;
                          d1 = Disk[0, 0, a, 0, Pi/2];
                          d2 = Disk[a, 0, a, Pi/2, Pi];
                          d3 = Disk[0, a, a, -Pi/2, 0];

                          Graphics[EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3]


                          enter image description here



                          ri = RegionIntersection[d1, d2, d3];

                          Perimeter[ri]



                          2.61799




                          N @ Area[ri]



                          0.442972




                          A simpler alternative is to take the intersections of full disks with Rectangle[0,0,a,a]:



                          d1b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,0, a]];
                          d2b=RegionIntersection[Rectangle[0,0, a,a], Disk[a,0, a]];
                          d3b=RegionIntersection[Rectangle[0,0, a,a], Disk[0,a, a]];

                          Graphics[EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b]



                          same picture




                          Similarly, for the third picture:



                          Graphics[Opacity[.25], Blue, d2b, Red, Disk[a, a/2, a/2]]


                          enter image description here



                          rd = RegionDifference[ Disk[a, a/2, a/2], d2b];
                          Through[Perimeter, N@*Area@rd]



                          2.18282, 0.146381








                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 9 hours ago

























                          answered 10 hours ago









                          kglrkglr

                          217k10 gold badges247 silver badges497 bronze badges




                          217k10 gold badges247 silver badges497 bronze badges
























                              2














                              $begingroup$

                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[0, 0, a, 0, Pi/2];
                              reg[2, a_] = Disk[a, 0, a, Pi/2, Pi];
                              reg[3, a_] = Disk[0, a, a, -Pi/2, 0];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              a, 1, 10]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[a, a, a, Pi, 3 Pi/2]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a],
                              reg[2, a], reg[5, a], reg[1, a], reg[3, a],
                              reg[1, a], reg[3, a], reg[2, a], reg[5, a],
                              reg[3, a], reg[5, a], reg[1, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              a, 1, 10]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              reg[1, a], reg[2, a], reg[3, a], reg[5, a]];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[a/2, a/2, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, reg[7, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[0, 0],
                              reg[2, 1], reg[7, 1]],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              a, 1, 10]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)





                              share|improve this answer











                              $endgroup$














                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                7 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago















                              2














                              $begingroup$

                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[0, 0, a, 0, Pi/2];
                              reg[2, a_] = Disk[a, 0, a, Pi/2, Pi];
                              reg[3, a_] = Disk[0, a, a, -Pi/2, 0];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              a, 1, 10]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[a, a, a, Pi, 3 Pi/2]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a],
                              reg[2, a], reg[5, a], reg[1, a], reg[3, a],
                              reg[1, a], reg[3, a], reg[2, a], reg[5, a],
                              reg[3, a], reg[5, a], reg[1, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              a, 1, 10]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              reg[1, a], reg[2, a], reg[3, a], reg[5, a]];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[a/2, a/2, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, reg[7, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[0, 0],
                              reg[2, 1], reg[7, 1]],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              a, 1, 10]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)





                              share|improve this answer











                              $endgroup$














                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                7 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago













                              2














                              2










                              2







                              $begingroup$

                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[0, 0, a, 0, Pi/2];
                              reg[2, a_] = Disk[a, 0, a, Pi/2, Pi];
                              reg[3, a_] = Disk[0, a, a, -Pi/2, 0];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              a, 1, 10]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[a, a, a, Pi, 3 Pi/2]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a],
                              reg[2, a], reg[5, a], reg[1, a], reg[3, a],
                              reg[1, a], reg[3, a], reg[2, a], reg[5, a],
                              reg[3, a], reg[5, a], reg[1, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              a, 1, 10]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              reg[1, a], reg[2, a], reg[3, a], reg[5, a]];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[a/2, a/2, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, reg[7, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[0, 0],
                              reg[2, 1], reg[7, 1]],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              a, 1, 10]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)





                              share|improve this answer











                              $endgroup$



                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[0, 0, a, 0, Pi/2];
                              reg[2, a_] = Disk[a, 0, a, Pi/2, Pi];
                              reg[3, a_] = Disk[0, a, a, -Pi/2, 0];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              a, 1, 10]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[a, a, a, Pi, 3 Pi/2]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a],
                              reg[2, a], reg[5, a], reg[1, a], reg[3, a],
                              reg[1, a], reg[3, a], reg[2, a], reg[5, a],
                              reg[3, a], reg[5, a], reg[1, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              a, 1, 10]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              reg[1, a], reg[2, a], reg[3, a], reg[5, a]];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[a/2, a/2, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, reg[7, a], reg[2, a]];

                              Show[
                              Graphics[
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[0, 0],
                              reg[2, 1], reg[7, 1]],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              a, 1, 10]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)






                              share|improve this answer














                              share|improve this answer



                              share|improve this answer








                              edited 2 hours ago

























                              answered 8 hours ago









                              Bob HanlonBob Hanlon

                              65.6k3 gold badges37 silver badges100 bronze badges




                              65.6k3 gold badges37 silver badges100 bronze badges














                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                7 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago
















                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                7 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago















                              $begingroup$
                              a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                              $endgroup$
                              – zeros
                              7 hours ago




                              $begingroup$
                              a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                              $endgroup$
                              – zeros
                              7 hours ago












                              $begingroup$
                              In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                              $endgroup$
                              – Bob Hanlon
                              2 hours ago




                              $begingroup$
                              In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                              $endgroup$
                              – Bob Hanlon
                              2 hours ago


















                              draft saved

                              draft discarded















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f206447%2fuse-of-the-disk-command%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                              Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                              Черчино Становништво Референце Спољашње везе Мени за навигацију46°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.5081446°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.508143179111„The GeoNames geographical database”„Istituto Nazionale di Statistica”Званични веб-сајтпроширитиуу