Proving inequality for positive definite matrix Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Eigenvalues of A+B where A is symmetric positive definite and B is diagonalA spectral inequality for positive-definite matrices Showing positive stability of a matrix constructed from a positive matrixCondition number after some “non standard” transformProve that matrix is positive definiteInequality between nuclear norm and operator norm for positive definite matricesStability of a matrix productInverse of a matrix and the inverse of its diagonalsMaximum rotation made by a symmetric positive definite matrix?Angle inequality for inverse of PD diagonal matrix

Proving inequality for positive definite matrix



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Eigenvalues of A+B where A is symmetric positive definite and B is diagonalA spectral inequality for positive-definite matrices Showing positive stability of a matrix constructed from a positive matrixCondition number after some “non standard” transformProve that matrix is positive definiteInequality between nuclear norm and operator norm for positive definite matricesStability of a matrix productInverse of a matrix and the inverse of its diagonalsMaximum rotation made by a symmetric positive definite matrix?Angle inequality for inverse of PD diagonal matrix










4












$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac iff\ fracA^1/2x < frac^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ frac < frac iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    3 hours ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    2 hours ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    2 hours ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    1 hour ago
















4












$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac iff\ fracA^1/2x < frac^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ frac < frac iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    3 hours ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    2 hours ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    2 hours ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    1 hour ago














4












4








4


1



$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$







linear-algebra






share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









B Merlot

725




725






New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









ReginaldReginald

286




286




New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac iff\ fracA^1/2x < frac^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ frac < frac iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    3 hours ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    2 hours ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    2 hours ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    1 hour ago













  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac iff\ fracA^1/2x < frac^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ frac < frac iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    3 hours ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    2 hours ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    2 hours ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    1 hour ago








3




3




$begingroup$
A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac iff\ fracA^1/2x < frac^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ frac < frac iff |B^3y|,,|y|^2 < |By|^3 $$
$endgroup$
– Omnomnomnom
3 hours ago




$begingroup$
A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac iff\ fracA^1/2x < frac^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ frac < frac iff |B^3y|,,|y|^2 < |By|^3 $$
$endgroup$
– Omnomnomnom
3 hours ago




1




1




$begingroup$
Also, note that we fail to have strict inequality when $A = I$, for instance.
$endgroup$
– Omnomnomnom
2 hours ago




$begingroup$
Also, note that we fail to have strict inequality when $A = I$, for instance.
$endgroup$
– Omnomnomnom
2 hours ago




1




1




$begingroup$
More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
$endgroup$
– Omnomnomnom
2 hours ago





$begingroup$
More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
$endgroup$
– Omnomnomnom
2 hours ago





1




1




$begingroup$
Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
$endgroup$
– Omnomnomnom
1 hour ago





$begingroup$
Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
$endgroup$
– Omnomnomnom
1 hour ago











1 Answer
1






active

oldest

votes


















6












$begingroup$

Your inequality says



$$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

or after a simple transformation
$$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
left(sumlambda_j^2x_j^2right)^1/3$$

And this is Holder's inequality with
$p=3/2$ and $q=3$. The strict inequality does not always hold.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Reginald is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328694%2fproving-inequality-for-positive-definite-matrix%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    Your inequality says



    $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
    fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

    or after a simple transformation
    $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
    left(sumlambda_j^2x_j^2right)^1/3$$

    And this is Holder's inequality with
    $p=3/2$ and $q=3$. The strict inequality does not always hold.






    share|cite|improve this answer









    $endgroup$

















      6












      $begingroup$

      Your inequality says



      $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
      fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

      or after a simple transformation
      $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
      left(sumlambda_j^2x_j^2right)^1/3$$

      And this is Holder's inequality with
      $p=3/2$ and $q=3$. The strict inequality does not always hold.






      share|cite|improve this answer









      $endgroup$















        6












        6








        6





        $begingroup$

        Your inequality says



        $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
        fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

        or after a simple transformation
        $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
        left(sumlambda_j^2x_j^2right)^1/3$$

        And this is Holder's inequality with
        $p=3/2$ and $q=3$. The strict inequality does not always hold.






        share|cite|improve this answer









        $endgroup$



        Your inequality says



        $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
        fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

        or after a simple transformation
        $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
        left(sumlambda_j^2x_j^2right)^1/3$$

        And this is Holder's inequality with
        $p=3/2$ and $q=3$. The strict inequality does not always hold.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        Alexandre EremenkoAlexandre Eremenko

        51.8k6144264




        51.8k6144264




















            Reginald is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Reginald is a new contributor. Be nice, and check out our Code of Conduct.












            Reginald is a new contributor. Be nice, and check out our Code of Conduct.











            Reginald is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328694%2fproving-inequality-for-positive-definite-matrix%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

            Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

            Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거