Why doesn't ever smooth vector bundle admits a line bundle?Tautological vector bundle over $G_1(mathbbR^2)$ isomorphic to the Möbius bundleAlternate definition of vector bundle?Dual of a holomorphic vector bundleSmooth sections of smooth vector bundleIs the unit bundle of a Finsler vector bundle a sphere bundle?Redundancy in the definition of vector bundles?Why are $E/F$ and $E^ast$ smooth manifolds?Restriction of a smooth vector bundle is a smooth bundle?Show that the Mobius bundle is a smooth real line bundle and it is non-trivial.Why is this wrong? Orientation-reversing vector bundle isomorphism on even-rank vector bundles

Why does sound not move through a wall?

Why did WWI include Japan?

How do I calculate how many of an item I'll have in this inventory system?

A factorization game

Find magical solution to magical equation

Why do people keep telling me that I am a bad photographer?

Handling Null values (and equivalents) routinely in Python

How can Internet speed be 10 times slower without a router than when using the same connection with a router?

All of my Firefox add-ons been disabled suddenly, how can I re-enable them?

Hostile Divisor Numbers

Correct way of drawing empty, half-filled and fully filled circles?

Is any special diet an effective treatment of autism?

How do I allocate more memory to an app on Sheepshaver running Mac OS 9?

Why symmetry transformations have to commute with Hamiltonian?

Constitutional limitation of criminalizing behavior in US law?

Is Benjen dead?

Where to draw the line between quantum mechanics theory and its interpretation(s)?

Which sphere is fastest?

Should homeowners insurance cover the cost of the home?

Can my 2 children, aged 10 and 12, who are US citizens, travel to the USA on expired American passports?

What are the advantages of luxury car brands like Acura/Lexus over their sibling non-luxury brands Honda/Toyota?

Why did the Apollo 13 crew extend the LM landing gear?

Are the Night's Watch still required?

Which US defense organization would respond to an invasion like this?



Why doesn't ever smooth vector bundle admits a line bundle?


Tautological vector bundle over $G_1(mathbbR^2)$ isomorphic to the Möbius bundleAlternate definition of vector bundle?Dual of a holomorphic vector bundleSmooth sections of smooth vector bundleIs the unit bundle of a Finsler vector bundle a sphere bundle?Redundancy in the definition of vector bundles?Why are $E/F$ and $E^ast$ smooth manifolds?Restriction of a smooth vector bundle is a smooth bundle?Show that the Mobius bundle is a smooth real line bundle and it is non-trivial.Why is this wrong? Orientation-reversing vector bundle isomorphism on even-rank vector bundles













1












$begingroup$


Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
    $endgroup$
    – Jane Doé
    2 hours ago











  • $begingroup$
    Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
    $endgroup$
    – Eric Wofsey
    2 hours ago















1












$begingroup$


Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
    $endgroup$
    – Jane Doé
    2 hours ago











  • $begingroup$
    Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
    $endgroup$
    – Eric Wofsey
    2 hours ago













1












1








1


1



$begingroup$


Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?










share|cite|improve this question









$endgroup$




Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?







differential-geometry differential-topology smooth-manifolds vector-bundles






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









kochkoch

22518




22518







  • 1




    $begingroup$
    How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
    $endgroup$
    – Jane Doé
    2 hours ago











  • $begingroup$
    Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
    $endgroup$
    – Eric Wofsey
    2 hours ago












  • 1




    $begingroup$
    How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
    $endgroup$
    – Jane Doé
    2 hours ago











  • $begingroup$
    Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
    $endgroup$
    – Eric Wofsey
    2 hours ago







1




1




$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago





$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago













$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago




$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.



You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.



Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    Some comments:



    1. The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.


    2. The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.


    3. There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.


    4. By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.


    5. It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.


    6. We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$


    7. Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.


    8. In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3212960%2fwhy-doesnt-ever-smooth-vector-bundle-admits-a-line-bundle%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.



      You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.



      Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.






      share|cite|improve this answer











      $endgroup$

















        3












        $begingroup$

        Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.



        You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.



        Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.






        share|cite|improve this answer











        $endgroup$















          3












          3








          3





          $begingroup$

          Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.



          You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.



          Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.






          share|cite|improve this answer











          $endgroup$



          Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.



          You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.



          Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 hours ago

























          answered 2 hours ago









          Eric WofseyEric Wofsey

          195k14224355




          195k14224355





















              0












              $begingroup$

              Some comments:



              1. The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.


              2. The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.


              3. There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.


              4. By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.


              5. It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.


              6. We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$


              7. Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.


              8. In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Some comments:



                1. The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.


                2. The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.


                3. There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.


                4. By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.


                5. It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.


                6. We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$


                7. Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.


                8. In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Some comments:



                  1. The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.


                  2. The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.


                  3. There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.


                  4. By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.


                  5. It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.


                  6. We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$


                  7. Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.


                  8. In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.






                  share|cite|improve this answer









                  $endgroup$



                  Some comments:



                  1. The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.


                  2. The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.


                  3. There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.


                  4. By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.


                  5. It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.


                  6. We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$


                  7. Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.


                  8. In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  goblingoblin

                  37.2k1159197




                  37.2k1159197



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3212960%2fwhy-doesnt-ever-smooth-vector-bundle-admits-a-line-bundle%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                      Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                      Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)