Monty Hall Problem with a Fallible MontyTotal probability problemNeed assistance with problem involving conditional probabilityProbabilistic problem with two diceLocomotive problem with various size companiesBalls in Bins ProblemMonty hall problem, getting different probabilities using different formulas?I need help with this stat problemEvaluation problem for Hidden markov models - conditional probability error?Problem with conditional Probability with multiple conditionsPosterior mean computation of “Monty Hall Poblem”

Xcode 10.3 Installation

How can I calculate the cost of Skyss bus tickets

How often should alkaline batteries be checked when they are in a device?

Adding one more column to a table

Why are Oscar, India, and X-Ray (O, I, and X) not used as taxiway identifiers?

Why did modems have speakers?

Has Peter Parker ever eaten bugs?

What is "ass door"?

Dedicated to our #1 Fan

Are there any English words pronounced with sounds/syllables that aren't part of the spelling?

Why is DC so, so, so Democratic?

Strange LED behavior: Why is there a voltage over the LED with only one wire connected to it?

Found more old paper shares from broken up companies

What is "It is x o'clock" in Japanese with subject

Does switching on an old games console without a cartridge damage it?

Ultraproduct of Dividing Lines

ExactlyOne extension method

How can I show that the speed of light in vacuum is the same in all reference frames?

Wiring IKEA light fixture into old fixture

Why does the salt in the oceans not sink to the bottom?

Inverse Colombian Function

Are gangsters hired to attack people at a train station classified as a terrorist attack?

Is it OK to accept a job opportunity while planning on not taking it?

Does quantity of data extensions impact performance?



Monty Hall Problem with a Fallible Monty


Total probability problemNeed assistance with problem involving conditional probabilityProbabilistic problem with two diceLocomotive problem with various size companiesBalls in Bins ProblemMonty hall problem, getting different probabilities using different formulas?I need help with this stat problemEvaluation problem for Hidden markov models - conditional probability error?Problem with conditional Probability with multiple conditionsPosterior mean computation of “Monty Hall Poblem”






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


Monty had perfect knowledge of whether the Door had a goat behind it (or was empty). This fact allows Player to Double his success rate over time by switching “guesses” to the other Door.
What if Monty’s knowledge was less than perfect? What if sometimes the Prize truly WAS in the same Doorway as the Goat? But you could not see it until after you chose and opened YOUR door?
Can you please help me to understand how to calculate IF— and by how much — Player can improve his success when Monty’s accuracy rate is less than 100%?
For example: what if Monty is wrong — on Average-50% of the time?
Can the Player STILL benefit from switching his Guess/Door?
I imagine that if Monty has less than 33.3% chance of being correct that Prize is NOT behind the Door, then Player's best option is to NOT Switch his Door choice.
Can you please provide me with a way to calculate the potential benefit of switching by inserting different Probabilities of Monty being Correct about the Prize NOT being behind the Door? I have nothing beyond High School math, and am 69 years old, so please be gentle.










share|cite|improve this question









$endgroup$


















    5












    $begingroup$


    Monty had perfect knowledge of whether the Door had a goat behind it (or was empty). This fact allows Player to Double his success rate over time by switching “guesses” to the other Door.
    What if Monty’s knowledge was less than perfect? What if sometimes the Prize truly WAS in the same Doorway as the Goat? But you could not see it until after you chose and opened YOUR door?
    Can you please help me to understand how to calculate IF— and by how much — Player can improve his success when Monty’s accuracy rate is less than 100%?
    For example: what if Monty is wrong — on Average-50% of the time?
    Can the Player STILL benefit from switching his Guess/Door?
    I imagine that if Monty has less than 33.3% chance of being correct that Prize is NOT behind the Door, then Player's best option is to NOT Switch his Door choice.
    Can you please provide me with a way to calculate the potential benefit of switching by inserting different Probabilities of Monty being Correct about the Prize NOT being behind the Door? I have nothing beyond High School math, and am 69 years old, so please be gentle.










    share|cite|improve this question









    $endgroup$














      5












      5








      5





      $begingroup$


      Monty had perfect knowledge of whether the Door had a goat behind it (or was empty). This fact allows Player to Double his success rate over time by switching “guesses” to the other Door.
      What if Monty’s knowledge was less than perfect? What if sometimes the Prize truly WAS in the same Doorway as the Goat? But you could not see it until after you chose and opened YOUR door?
      Can you please help me to understand how to calculate IF— and by how much — Player can improve his success when Monty’s accuracy rate is less than 100%?
      For example: what if Monty is wrong — on Average-50% of the time?
      Can the Player STILL benefit from switching his Guess/Door?
      I imagine that if Monty has less than 33.3% chance of being correct that Prize is NOT behind the Door, then Player's best option is to NOT Switch his Door choice.
      Can you please provide me with a way to calculate the potential benefit of switching by inserting different Probabilities of Monty being Correct about the Prize NOT being behind the Door? I have nothing beyond High School math, and am 69 years old, so please be gentle.










      share|cite|improve this question









      $endgroup$




      Monty had perfect knowledge of whether the Door had a goat behind it (or was empty). This fact allows Player to Double his success rate over time by switching “guesses” to the other Door.
      What if Monty’s knowledge was less than perfect? What if sometimes the Prize truly WAS in the same Doorway as the Goat? But you could not see it until after you chose and opened YOUR door?
      Can you please help me to understand how to calculate IF— and by how much — Player can improve his success when Monty’s accuracy rate is less than 100%?
      For example: what if Monty is wrong — on Average-50% of the time?
      Can the Player STILL benefit from switching his Guess/Door?
      I imagine that if Monty has less than 33.3% chance of being correct that Prize is NOT behind the Door, then Player's best option is to NOT Switch his Door choice.
      Can you please provide me with a way to calculate the potential benefit of switching by inserting different Probabilities of Monty being Correct about the Prize NOT being behind the Door? I have nothing beyond High School math, and am 69 years old, so please be gentle.







      conditional-probability






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 8 hours ago









      PseudoegoPseudoego

      362 bronze badges




      362 bronze badges




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          This should be a fairly simple variation of the problem (though I note your limited maths background, so I guess that is relative). I would suggest that you first try to determine the solution conditional on whether Monte is infallible, or fully fallible. The first case is just the ordinary Monte Hall problem, so no work required there. In the second case, you would treat the door he picks as being random over all the doors, including the door with the prize (i.e., he might still pick a door with no prize, but this is now random). If you can calculate the probability of a win in each of these cases then you an use the law of total probability to determine the relevant win probabilities in the case where Monte has some specified level of fallibility (specified by a probability that we is infallible versus fully fallible).






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I appreciate the response, but I was looking for something more specific. I'm specifying that Monty has picked a Door. I'm specifying that the probability of the Prize being behind that door could be anywhere from Zero to 100%. I was hoping for a formula which would allow me to simply enter the Probability that Monty is Right/Wrong and then working out the rest of the formula would provide a Numerical Estimate which indicates the Probability that Switching will result in a Win. Is that degree of assistance an unrealistic request?
            $endgroup$
            – Pseudoego
            2 hours ago


















          3












          $begingroup$

          Let's start with the regular Monty Hall problem. Three doors, behind one of which is a car. The other two have goats behind them. You pick door number 1 and Monty opens door number 2 to show you there is a goat behind that one. Should you switch your guess to door number 3? (Note that the numbers we use to refer to each door don't matter here. We could choose any order and the problem is the same, so to simplify things we can just use this numbering.)



          The answer of course is yes, as you already know, but let's go through the calculations to see how they change later. Let $C$ be the index of the door with the car and $M$ denote the event that Monty revealed that door 2 has a goat. We need to calculate $p(C=3|M)$. If this is larger than $1/2$, we need to switch our guess to that door (since we only have two remaining options). This probability is given by:
          $$
          p(C=3|M)=fracC=3)C=1)+p(M
          $$

          (This is just applying Bayes' rule with a flat prior on $C$.) $p(M|C=3)$ equals 1: if the car is behind door number 3 then Monty had no choice but to open door number 2 as he did. $p(M|C=1)$ equals $1/2$: if the car is behind door 1, then Monty had a choice of opening either one of the remaining doors, 2 or 3. $p(M|C=2)$ equals 0, because Monty never opens the door that he knows has the car. Filling in these numbers, we get:
          $$
          p(C=3|M)=frac10.5+0+1=frac23
          $$

          Which is the result we're familiar with.



          Now let's consider the case where Monty doesn't have perfect knowledge of which door has the car. We don't want him to give away the game entirely though, so we'll change things up slightly and say that he doesn't actually open any door (because we don't want him to accidentally reveal the car - at least if I understand your question correctly), he just points at one and tells you he's pretty sure that one has a goat behind it. So, let $C'$ be the door that Monty thinks has the car, and let $p(C'|C)$ be the probability that he thinks the car is in a certain place, conditional on its actual location. We'll assume that this is described by a single parameter $q$ that determines his accuracy, such that: $p(C'=x|C=x) = q = 1-p(C'=x|Cneq x)$. If $q$ equals 1, Monty is always right. If $q$ is 0, Monty is always wrong (which is still informative). If $q$ is $1/3$, Monty's information is no better than random guessing.



          This means that we now have:
          $$p(M|C=3) = sum_x p(M|C'=x)p(C'=x|C=3)$$
          $$= p(M|C'=1)p(C'=1|C=3) + p(M|C'=2)p(C'=2|C=3) + p(M|C'=3)p(C'=3|C=3)$$
          $$= frac12 times frac12(1-q) + 0times frac12(1-q) + 1 times q$$
          $$= frac14 - fracq4 + q = frac34q+frac14$$



          That is, if the car was truly behind door 3, there were three possibilities that could have played out: (1) Monty thought it was behind 1, (2) Monty thought 2 or (3) Monty thought 3. The last option occurs with probability $q$ (how often he gets it right), the other two split the probability that he gets it wrong $(1-q)$ between them. Then, given each scenario, what's the probability that he would have chosen to point at door number 2, as he did? If he thought the car was behind 1, that probability was 1 in 2, as he could have chosen 2 or 3. If he thought it was behind 2, he would have never chosen to point at 2. If he thought it was behind 3, he would always have chosen 2.



          We can similarly work out the remaining probabilities:
          $$p(M|C=1) = sum_x p(M|C'=x)p(C'=x|C=1)$$
          $$=frac12times q + 1times frac12(1-q)$$
          $$=fracq2+frac12-fracq2=frac12$$



          $$p(M|C=2) = sum_x p(M|C'=x)p(C'=x|C=2)$$
          $$=frac12timesfrac12(1-q) + 1 timesfrac12(1-q)$$
          $$=frac34-frac34q$$



          Filling this all in, we get:
          $$
          p(C=3|M)=fracfrac34q+frac14frac12+frac34-frac34q+frac34q+frac14
          $$

          $$
          =frac0.75q+0.251.5
          $$

          As a sanity check, when $q=1$, we can see that we get back our original answer of $frac11.5=frac23$.



          So, when should we switch? I'll assume for simplicity that we're not allowed to switch to the door Monty pointed to. And in fact, as long as Monty is at least somewhat likely to be correct (more so than random guessing), the door he points to will always be less likely than the others to have the car, so this isn't a viable option for us anyway. So we only need to consider the probabilities of doors 1 and 3. But whereas it used to be impossible for the car to be behind door 2, this option now has non-zero probability, and so it's no longer the case that we should switch when $p(C=3|M)>0.5$, but rather we should switch when $p(C=3|M)>p(C=1|M)$ (which used to be the same thing). This probability is given by $p(C=1|M)=frac0.51.5=frac13$, same as in the original Monty Hall problem. (This makes sense since Monty can never point towards door 1, regardless of what's behind it, and so he cannot provide information about that door. Rather, when his accuracy drops below 100%, the effect is that some probability "leaks" towards door 2 actually having the car.) So, we need to find $q$ such that $p(C=3|M) > frac13$:
          $$frac0.75q+0.251.5>frac13$$
          $$0.75q+0.25 > 0.5$$
          $$0.75q > 0.25$$
          $$q > frac13$$
          So basically, this was a very long-winded way to find out that, as long as Monty's knowledge about the car's true location is better than a random guess, you should switch doors (which is actually kind of obvious, when you think about it). We can also calculate how much more likely we are to win when we switch, as a function of Morty's accuracy, as this is given by:
          $$fracM)p(C=1$$
          $$=fracfrac0.75q+0.251.5frac13=1.5q+0.5$$
          (Which, when $q=1$, gives an answer of 2, matching the fact that we double our chances of winning by switching doors in the original Monty Hall problem.)






          share|cite|improve this answer









          $endgroup$















            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "65"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f418882%2fmonty-hall-problem-with-a-fallible-monty%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            This should be a fairly simple variation of the problem (though I note your limited maths background, so I guess that is relative). I would suggest that you first try to determine the solution conditional on whether Monte is infallible, or fully fallible. The first case is just the ordinary Monte Hall problem, so no work required there. In the second case, you would treat the door he picks as being random over all the doors, including the door with the prize (i.e., he might still pick a door with no prize, but this is now random). If you can calculate the probability of a win in each of these cases then you an use the law of total probability to determine the relevant win probabilities in the case where Monte has some specified level of fallibility (specified by a probability that we is infallible versus fully fallible).






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I appreciate the response, but I was looking for something more specific. I'm specifying that Monty has picked a Door. I'm specifying that the probability of the Prize being behind that door could be anywhere from Zero to 100%. I was hoping for a formula which would allow me to simply enter the Probability that Monty is Right/Wrong and then working out the rest of the formula would provide a Numerical Estimate which indicates the Probability that Switching will result in a Win. Is that degree of assistance an unrealistic request?
              $endgroup$
              – Pseudoego
              2 hours ago















            3












            $begingroup$

            This should be a fairly simple variation of the problem (though I note your limited maths background, so I guess that is relative). I would suggest that you first try to determine the solution conditional on whether Monte is infallible, or fully fallible. The first case is just the ordinary Monte Hall problem, so no work required there. In the second case, you would treat the door he picks as being random over all the doors, including the door with the prize (i.e., he might still pick a door with no prize, but this is now random). If you can calculate the probability of a win in each of these cases then you an use the law of total probability to determine the relevant win probabilities in the case where Monte has some specified level of fallibility (specified by a probability that we is infallible versus fully fallible).






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I appreciate the response, but I was looking for something more specific. I'm specifying that Monty has picked a Door. I'm specifying that the probability of the Prize being behind that door could be anywhere from Zero to 100%. I was hoping for a formula which would allow me to simply enter the Probability that Monty is Right/Wrong and then working out the rest of the formula would provide a Numerical Estimate which indicates the Probability that Switching will result in a Win. Is that degree of assistance an unrealistic request?
              $endgroup$
              – Pseudoego
              2 hours ago













            3












            3








            3





            $begingroup$

            This should be a fairly simple variation of the problem (though I note your limited maths background, so I guess that is relative). I would suggest that you first try to determine the solution conditional on whether Monte is infallible, or fully fallible. The first case is just the ordinary Monte Hall problem, so no work required there. In the second case, you would treat the door he picks as being random over all the doors, including the door with the prize (i.e., he might still pick a door with no prize, but this is now random). If you can calculate the probability of a win in each of these cases then you an use the law of total probability to determine the relevant win probabilities in the case where Monte has some specified level of fallibility (specified by a probability that we is infallible versus fully fallible).






            share|cite|improve this answer









            $endgroup$



            This should be a fairly simple variation of the problem (though I note your limited maths background, so I guess that is relative). I would suggest that you first try to determine the solution conditional on whether Monte is infallible, or fully fallible. The first case is just the ordinary Monte Hall problem, so no work required there. In the second case, you would treat the door he picks as being random over all the doors, including the door with the prize (i.e., he might still pick a door with no prize, but this is now random). If you can calculate the probability of a win in each of these cases then you an use the law of total probability to determine the relevant win probabilities in the case where Monte has some specified level of fallibility (specified by a probability that we is infallible versus fully fallible).







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 7 hours ago









            BenBen

            35.2k2 gold badges43 silver badges155 bronze badges




            35.2k2 gold badges43 silver badges155 bronze badges











            • $begingroup$
              I appreciate the response, but I was looking for something more specific. I'm specifying that Monty has picked a Door. I'm specifying that the probability of the Prize being behind that door could be anywhere from Zero to 100%. I was hoping for a formula which would allow me to simply enter the Probability that Monty is Right/Wrong and then working out the rest of the formula would provide a Numerical Estimate which indicates the Probability that Switching will result in a Win. Is that degree of assistance an unrealistic request?
              $endgroup$
              – Pseudoego
              2 hours ago
















            • $begingroup$
              I appreciate the response, but I was looking for something more specific. I'm specifying that Monty has picked a Door. I'm specifying that the probability of the Prize being behind that door could be anywhere from Zero to 100%. I was hoping for a formula which would allow me to simply enter the Probability that Monty is Right/Wrong and then working out the rest of the formula would provide a Numerical Estimate which indicates the Probability that Switching will result in a Win. Is that degree of assistance an unrealistic request?
              $endgroup$
              – Pseudoego
              2 hours ago















            $begingroup$
            I appreciate the response, but I was looking for something more specific. I'm specifying that Monty has picked a Door. I'm specifying that the probability of the Prize being behind that door could be anywhere from Zero to 100%. I was hoping for a formula which would allow me to simply enter the Probability that Monty is Right/Wrong and then working out the rest of the formula would provide a Numerical Estimate which indicates the Probability that Switching will result in a Win. Is that degree of assistance an unrealistic request?
            $endgroup$
            – Pseudoego
            2 hours ago




            $begingroup$
            I appreciate the response, but I was looking for something more specific. I'm specifying that Monty has picked a Door. I'm specifying that the probability of the Prize being behind that door could be anywhere from Zero to 100%. I was hoping for a formula which would allow me to simply enter the Probability that Monty is Right/Wrong and then working out the rest of the formula would provide a Numerical Estimate which indicates the Probability that Switching will result in a Win. Is that degree of assistance an unrealistic request?
            $endgroup$
            – Pseudoego
            2 hours ago













            3












            $begingroup$

            Let's start with the regular Monty Hall problem. Three doors, behind one of which is a car. The other two have goats behind them. You pick door number 1 and Monty opens door number 2 to show you there is a goat behind that one. Should you switch your guess to door number 3? (Note that the numbers we use to refer to each door don't matter here. We could choose any order and the problem is the same, so to simplify things we can just use this numbering.)



            The answer of course is yes, as you already know, but let's go through the calculations to see how they change later. Let $C$ be the index of the door with the car and $M$ denote the event that Monty revealed that door 2 has a goat. We need to calculate $p(C=3|M)$. If this is larger than $1/2$, we need to switch our guess to that door (since we only have two remaining options). This probability is given by:
            $$
            p(C=3|M)=fracC=3)C=1)+p(M
            $$

            (This is just applying Bayes' rule with a flat prior on $C$.) $p(M|C=3)$ equals 1: if the car is behind door number 3 then Monty had no choice but to open door number 2 as he did. $p(M|C=1)$ equals $1/2$: if the car is behind door 1, then Monty had a choice of opening either one of the remaining doors, 2 or 3. $p(M|C=2)$ equals 0, because Monty never opens the door that he knows has the car. Filling in these numbers, we get:
            $$
            p(C=3|M)=frac10.5+0+1=frac23
            $$

            Which is the result we're familiar with.



            Now let's consider the case where Monty doesn't have perfect knowledge of which door has the car. We don't want him to give away the game entirely though, so we'll change things up slightly and say that he doesn't actually open any door (because we don't want him to accidentally reveal the car - at least if I understand your question correctly), he just points at one and tells you he's pretty sure that one has a goat behind it. So, let $C'$ be the door that Monty thinks has the car, and let $p(C'|C)$ be the probability that he thinks the car is in a certain place, conditional on its actual location. We'll assume that this is described by a single parameter $q$ that determines his accuracy, such that: $p(C'=x|C=x) = q = 1-p(C'=x|Cneq x)$. If $q$ equals 1, Monty is always right. If $q$ is 0, Monty is always wrong (which is still informative). If $q$ is $1/3$, Monty's information is no better than random guessing.



            This means that we now have:
            $$p(M|C=3) = sum_x p(M|C'=x)p(C'=x|C=3)$$
            $$= p(M|C'=1)p(C'=1|C=3) + p(M|C'=2)p(C'=2|C=3) + p(M|C'=3)p(C'=3|C=3)$$
            $$= frac12 times frac12(1-q) + 0times frac12(1-q) + 1 times q$$
            $$= frac14 - fracq4 + q = frac34q+frac14$$



            That is, if the car was truly behind door 3, there were three possibilities that could have played out: (1) Monty thought it was behind 1, (2) Monty thought 2 or (3) Monty thought 3. The last option occurs with probability $q$ (how often he gets it right), the other two split the probability that he gets it wrong $(1-q)$ between them. Then, given each scenario, what's the probability that he would have chosen to point at door number 2, as he did? If he thought the car was behind 1, that probability was 1 in 2, as he could have chosen 2 or 3. If he thought it was behind 2, he would have never chosen to point at 2. If he thought it was behind 3, he would always have chosen 2.



            We can similarly work out the remaining probabilities:
            $$p(M|C=1) = sum_x p(M|C'=x)p(C'=x|C=1)$$
            $$=frac12times q + 1times frac12(1-q)$$
            $$=fracq2+frac12-fracq2=frac12$$



            $$p(M|C=2) = sum_x p(M|C'=x)p(C'=x|C=2)$$
            $$=frac12timesfrac12(1-q) + 1 timesfrac12(1-q)$$
            $$=frac34-frac34q$$



            Filling this all in, we get:
            $$
            p(C=3|M)=fracfrac34q+frac14frac12+frac34-frac34q+frac34q+frac14
            $$

            $$
            =frac0.75q+0.251.5
            $$

            As a sanity check, when $q=1$, we can see that we get back our original answer of $frac11.5=frac23$.



            So, when should we switch? I'll assume for simplicity that we're not allowed to switch to the door Monty pointed to. And in fact, as long as Monty is at least somewhat likely to be correct (more so than random guessing), the door he points to will always be less likely than the others to have the car, so this isn't a viable option for us anyway. So we only need to consider the probabilities of doors 1 and 3. But whereas it used to be impossible for the car to be behind door 2, this option now has non-zero probability, and so it's no longer the case that we should switch when $p(C=3|M)>0.5$, but rather we should switch when $p(C=3|M)>p(C=1|M)$ (which used to be the same thing). This probability is given by $p(C=1|M)=frac0.51.5=frac13$, same as in the original Monty Hall problem. (This makes sense since Monty can never point towards door 1, regardless of what's behind it, and so he cannot provide information about that door. Rather, when his accuracy drops below 100%, the effect is that some probability "leaks" towards door 2 actually having the car.) So, we need to find $q$ such that $p(C=3|M) > frac13$:
            $$frac0.75q+0.251.5>frac13$$
            $$0.75q+0.25 > 0.5$$
            $$0.75q > 0.25$$
            $$q > frac13$$
            So basically, this was a very long-winded way to find out that, as long as Monty's knowledge about the car's true location is better than a random guess, you should switch doors (which is actually kind of obvious, when you think about it). We can also calculate how much more likely we are to win when we switch, as a function of Morty's accuracy, as this is given by:
            $$fracM)p(C=1$$
            $$=fracfrac0.75q+0.251.5frac13=1.5q+0.5$$
            (Which, when $q=1$, gives an answer of 2, matching the fact that we double our chances of winning by switching doors in the original Monty Hall problem.)






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              Let's start with the regular Monty Hall problem. Three doors, behind one of which is a car. The other two have goats behind them. You pick door number 1 and Monty opens door number 2 to show you there is a goat behind that one. Should you switch your guess to door number 3? (Note that the numbers we use to refer to each door don't matter here. We could choose any order and the problem is the same, so to simplify things we can just use this numbering.)



              The answer of course is yes, as you already know, but let's go through the calculations to see how they change later. Let $C$ be the index of the door with the car and $M$ denote the event that Monty revealed that door 2 has a goat. We need to calculate $p(C=3|M)$. If this is larger than $1/2$, we need to switch our guess to that door (since we only have two remaining options). This probability is given by:
              $$
              p(C=3|M)=fracC=3)C=1)+p(M
              $$

              (This is just applying Bayes' rule with a flat prior on $C$.) $p(M|C=3)$ equals 1: if the car is behind door number 3 then Monty had no choice but to open door number 2 as he did. $p(M|C=1)$ equals $1/2$: if the car is behind door 1, then Monty had a choice of opening either one of the remaining doors, 2 or 3. $p(M|C=2)$ equals 0, because Monty never opens the door that he knows has the car. Filling in these numbers, we get:
              $$
              p(C=3|M)=frac10.5+0+1=frac23
              $$

              Which is the result we're familiar with.



              Now let's consider the case where Monty doesn't have perfect knowledge of which door has the car. We don't want him to give away the game entirely though, so we'll change things up slightly and say that he doesn't actually open any door (because we don't want him to accidentally reveal the car - at least if I understand your question correctly), he just points at one and tells you he's pretty sure that one has a goat behind it. So, let $C'$ be the door that Monty thinks has the car, and let $p(C'|C)$ be the probability that he thinks the car is in a certain place, conditional on its actual location. We'll assume that this is described by a single parameter $q$ that determines his accuracy, such that: $p(C'=x|C=x) = q = 1-p(C'=x|Cneq x)$. If $q$ equals 1, Monty is always right. If $q$ is 0, Monty is always wrong (which is still informative). If $q$ is $1/3$, Monty's information is no better than random guessing.



              This means that we now have:
              $$p(M|C=3) = sum_x p(M|C'=x)p(C'=x|C=3)$$
              $$= p(M|C'=1)p(C'=1|C=3) + p(M|C'=2)p(C'=2|C=3) + p(M|C'=3)p(C'=3|C=3)$$
              $$= frac12 times frac12(1-q) + 0times frac12(1-q) + 1 times q$$
              $$= frac14 - fracq4 + q = frac34q+frac14$$



              That is, if the car was truly behind door 3, there were three possibilities that could have played out: (1) Monty thought it was behind 1, (2) Monty thought 2 or (3) Monty thought 3. The last option occurs with probability $q$ (how often he gets it right), the other two split the probability that he gets it wrong $(1-q)$ between them. Then, given each scenario, what's the probability that he would have chosen to point at door number 2, as he did? If he thought the car was behind 1, that probability was 1 in 2, as he could have chosen 2 or 3. If he thought it was behind 2, he would have never chosen to point at 2. If he thought it was behind 3, he would always have chosen 2.



              We can similarly work out the remaining probabilities:
              $$p(M|C=1) = sum_x p(M|C'=x)p(C'=x|C=1)$$
              $$=frac12times q + 1times frac12(1-q)$$
              $$=fracq2+frac12-fracq2=frac12$$



              $$p(M|C=2) = sum_x p(M|C'=x)p(C'=x|C=2)$$
              $$=frac12timesfrac12(1-q) + 1 timesfrac12(1-q)$$
              $$=frac34-frac34q$$



              Filling this all in, we get:
              $$
              p(C=3|M)=fracfrac34q+frac14frac12+frac34-frac34q+frac34q+frac14
              $$

              $$
              =frac0.75q+0.251.5
              $$

              As a sanity check, when $q=1$, we can see that we get back our original answer of $frac11.5=frac23$.



              So, when should we switch? I'll assume for simplicity that we're not allowed to switch to the door Monty pointed to. And in fact, as long as Monty is at least somewhat likely to be correct (more so than random guessing), the door he points to will always be less likely than the others to have the car, so this isn't a viable option for us anyway. So we only need to consider the probabilities of doors 1 and 3. But whereas it used to be impossible for the car to be behind door 2, this option now has non-zero probability, and so it's no longer the case that we should switch when $p(C=3|M)>0.5$, but rather we should switch when $p(C=3|M)>p(C=1|M)$ (which used to be the same thing). This probability is given by $p(C=1|M)=frac0.51.5=frac13$, same as in the original Monty Hall problem. (This makes sense since Monty can never point towards door 1, regardless of what's behind it, and so he cannot provide information about that door. Rather, when his accuracy drops below 100%, the effect is that some probability "leaks" towards door 2 actually having the car.) So, we need to find $q$ such that $p(C=3|M) > frac13$:
              $$frac0.75q+0.251.5>frac13$$
              $$0.75q+0.25 > 0.5$$
              $$0.75q > 0.25$$
              $$q > frac13$$
              So basically, this was a very long-winded way to find out that, as long as Monty's knowledge about the car's true location is better than a random guess, you should switch doors (which is actually kind of obvious, when you think about it). We can also calculate how much more likely we are to win when we switch, as a function of Morty's accuracy, as this is given by:
              $$fracM)p(C=1$$
              $$=fracfrac0.75q+0.251.5frac13=1.5q+0.5$$
              (Which, when $q=1$, gives an answer of 2, matching the fact that we double our chances of winning by switching doors in the original Monty Hall problem.)






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                Let's start with the regular Monty Hall problem. Three doors, behind one of which is a car. The other two have goats behind them. You pick door number 1 and Monty opens door number 2 to show you there is a goat behind that one. Should you switch your guess to door number 3? (Note that the numbers we use to refer to each door don't matter here. We could choose any order and the problem is the same, so to simplify things we can just use this numbering.)



                The answer of course is yes, as you already know, but let's go through the calculations to see how they change later. Let $C$ be the index of the door with the car and $M$ denote the event that Monty revealed that door 2 has a goat. We need to calculate $p(C=3|M)$. If this is larger than $1/2$, we need to switch our guess to that door (since we only have two remaining options). This probability is given by:
                $$
                p(C=3|M)=fracC=3)C=1)+p(M
                $$

                (This is just applying Bayes' rule with a flat prior on $C$.) $p(M|C=3)$ equals 1: if the car is behind door number 3 then Monty had no choice but to open door number 2 as he did. $p(M|C=1)$ equals $1/2$: if the car is behind door 1, then Monty had a choice of opening either one of the remaining doors, 2 or 3. $p(M|C=2)$ equals 0, because Monty never opens the door that he knows has the car. Filling in these numbers, we get:
                $$
                p(C=3|M)=frac10.5+0+1=frac23
                $$

                Which is the result we're familiar with.



                Now let's consider the case where Monty doesn't have perfect knowledge of which door has the car. We don't want him to give away the game entirely though, so we'll change things up slightly and say that he doesn't actually open any door (because we don't want him to accidentally reveal the car - at least if I understand your question correctly), he just points at one and tells you he's pretty sure that one has a goat behind it. So, let $C'$ be the door that Monty thinks has the car, and let $p(C'|C)$ be the probability that he thinks the car is in a certain place, conditional on its actual location. We'll assume that this is described by a single parameter $q$ that determines his accuracy, such that: $p(C'=x|C=x) = q = 1-p(C'=x|Cneq x)$. If $q$ equals 1, Monty is always right. If $q$ is 0, Monty is always wrong (which is still informative). If $q$ is $1/3$, Monty's information is no better than random guessing.



                This means that we now have:
                $$p(M|C=3) = sum_x p(M|C'=x)p(C'=x|C=3)$$
                $$= p(M|C'=1)p(C'=1|C=3) + p(M|C'=2)p(C'=2|C=3) + p(M|C'=3)p(C'=3|C=3)$$
                $$= frac12 times frac12(1-q) + 0times frac12(1-q) + 1 times q$$
                $$= frac14 - fracq4 + q = frac34q+frac14$$



                That is, if the car was truly behind door 3, there were three possibilities that could have played out: (1) Monty thought it was behind 1, (2) Monty thought 2 or (3) Monty thought 3. The last option occurs with probability $q$ (how often he gets it right), the other two split the probability that he gets it wrong $(1-q)$ between them. Then, given each scenario, what's the probability that he would have chosen to point at door number 2, as he did? If he thought the car was behind 1, that probability was 1 in 2, as he could have chosen 2 or 3. If he thought it was behind 2, he would have never chosen to point at 2. If he thought it was behind 3, he would always have chosen 2.



                We can similarly work out the remaining probabilities:
                $$p(M|C=1) = sum_x p(M|C'=x)p(C'=x|C=1)$$
                $$=frac12times q + 1times frac12(1-q)$$
                $$=fracq2+frac12-fracq2=frac12$$



                $$p(M|C=2) = sum_x p(M|C'=x)p(C'=x|C=2)$$
                $$=frac12timesfrac12(1-q) + 1 timesfrac12(1-q)$$
                $$=frac34-frac34q$$



                Filling this all in, we get:
                $$
                p(C=3|M)=fracfrac34q+frac14frac12+frac34-frac34q+frac34q+frac14
                $$

                $$
                =frac0.75q+0.251.5
                $$

                As a sanity check, when $q=1$, we can see that we get back our original answer of $frac11.5=frac23$.



                So, when should we switch? I'll assume for simplicity that we're not allowed to switch to the door Monty pointed to. And in fact, as long as Monty is at least somewhat likely to be correct (more so than random guessing), the door he points to will always be less likely than the others to have the car, so this isn't a viable option for us anyway. So we only need to consider the probabilities of doors 1 and 3. But whereas it used to be impossible for the car to be behind door 2, this option now has non-zero probability, and so it's no longer the case that we should switch when $p(C=3|M)>0.5$, but rather we should switch when $p(C=3|M)>p(C=1|M)$ (which used to be the same thing). This probability is given by $p(C=1|M)=frac0.51.5=frac13$, same as in the original Monty Hall problem. (This makes sense since Monty can never point towards door 1, regardless of what's behind it, and so he cannot provide information about that door. Rather, when his accuracy drops below 100%, the effect is that some probability "leaks" towards door 2 actually having the car.) So, we need to find $q$ such that $p(C=3|M) > frac13$:
                $$frac0.75q+0.251.5>frac13$$
                $$0.75q+0.25 > 0.5$$
                $$0.75q > 0.25$$
                $$q > frac13$$
                So basically, this was a very long-winded way to find out that, as long as Monty's knowledge about the car's true location is better than a random guess, you should switch doors (which is actually kind of obvious, when you think about it). We can also calculate how much more likely we are to win when we switch, as a function of Morty's accuracy, as this is given by:
                $$fracM)p(C=1$$
                $$=fracfrac0.75q+0.251.5frac13=1.5q+0.5$$
                (Which, when $q=1$, gives an answer of 2, matching the fact that we double our chances of winning by switching doors in the original Monty Hall problem.)






                share|cite|improve this answer









                $endgroup$



                Let's start with the regular Monty Hall problem. Three doors, behind one of which is a car. The other two have goats behind them. You pick door number 1 and Monty opens door number 2 to show you there is a goat behind that one. Should you switch your guess to door number 3? (Note that the numbers we use to refer to each door don't matter here. We could choose any order and the problem is the same, so to simplify things we can just use this numbering.)



                The answer of course is yes, as you already know, but let's go through the calculations to see how they change later. Let $C$ be the index of the door with the car and $M$ denote the event that Monty revealed that door 2 has a goat. We need to calculate $p(C=3|M)$. If this is larger than $1/2$, we need to switch our guess to that door (since we only have two remaining options). This probability is given by:
                $$
                p(C=3|M)=fracC=3)C=1)+p(M
                $$

                (This is just applying Bayes' rule with a flat prior on $C$.) $p(M|C=3)$ equals 1: if the car is behind door number 3 then Monty had no choice but to open door number 2 as he did. $p(M|C=1)$ equals $1/2$: if the car is behind door 1, then Monty had a choice of opening either one of the remaining doors, 2 or 3. $p(M|C=2)$ equals 0, because Monty never opens the door that he knows has the car. Filling in these numbers, we get:
                $$
                p(C=3|M)=frac10.5+0+1=frac23
                $$

                Which is the result we're familiar with.



                Now let's consider the case where Monty doesn't have perfect knowledge of which door has the car. We don't want him to give away the game entirely though, so we'll change things up slightly and say that he doesn't actually open any door (because we don't want him to accidentally reveal the car - at least if I understand your question correctly), he just points at one and tells you he's pretty sure that one has a goat behind it. So, let $C'$ be the door that Monty thinks has the car, and let $p(C'|C)$ be the probability that he thinks the car is in a certain place, conditional on its actual location. We'll assume that this is described by a single parameter $q$ that determines his accuracy, such that: $p(C'=x|C=x) = q = 1-p(C'=x|Cneq x)$. If $q$ equals 1, Monty is always right. If $q$ is 0, Monty is always wrong (which is still informative). If $q$ is $1/3$, Monty's information is no better than random guessing.



                This means that we now have:
                $$p(M|C=3) = sum_x p(M|C'=x)p(C'=x|C=3)$$
                $$= p(M|C'=1)p(C'=1|C=3) + p(M|C'=2)p(C'=2|C=3) + p(M|C'=3)p(C'=3|C=3)$$
                $$= frac12 times frac12(1-q) + 0times frac12(1-q) + 1 times q$$
                $$= frac14 - fracq4 + q = frac34q+frac14$$



                That is, if the car was truly behind door 3, there were three possibilities that could have played out: (1) Monty thought it was behind 1, (2) Monty thought 2 or (3) Monty thought 3. The last option occurs with probability $q$ (how often he gets it right), the other two split the probability that he gets it wrong $(1-q)$ between them. Then, given each scenario, what's the probability that he would have chosen to point at door number 2, as he did? If he thought the car was behind 1, that probability was 1 in 2, as he could have chosen 2 or 3. If he thought it was behind 2, he would have never chosen to point at 2. If he thought it was behind 3, he would always have chosen 2.



                We can similarly work out the remaining probabilities:
                $$p(M|C=1) = sum_x p(M|C'=x)p(C'=x|C=1)$$
                $$=frac12times q + 1times frac12(1-q)$$
                $$=fracq2+frac12-fracq2=frac12$$



                $$p(M|C=2) = sum_x p(M|C'=x)p(C'=x|C=2)$$
                $$=frac12timesfrac12(1-q) + 1 timesfrac12(1-q)$$
                $$=frac34-frac34q$$



                Filling this all in, we get:
                $$
                p(C=3|M)=fracfrac34q+frac14frac12+frac34-frac34q+frac34q+frac14
                $$

                $$
                =frac0.75q+0.251.5
                $$

                As a sanity check, when $q=1$, we can see that we get back our original answer of $frac11.5=frac23$.



                So, when should we switch? I'll assume for simplicity that we're not allowed to switch to the door Monty pointed to. And in fact, as long as Monty is at least somewhat likely to be correct (more so than random guessing), the door he points to will always be less likely than the others to have the car, so this isn't a viable option for us anyway. So we only need to consider the probabilities of doors 1 and 3. But whereas it used to be impossible for the car to be behind door 2, this option now has non-zero probability, and so it's no longer the case that we should switch when $p(C=3|M)>0.5$, but rather we should switch when $p(C=3|M)>p(C=1|M)$ (which used to be the same thing). This probability is given by $p(C=1|M)=frac0.51.5=frac13$, same as in the original Monty Hall problem. (This makes sense since Monty can never point towards door 1, regardless of what's behind it, and so he cannot provide information about that door. Rather, when his accuracy drops below 100%, the effect is that some probability "leaks" towards door 2 actually having the car.) So, we need to find $q$ such that $p(C=3|M) > frac13$:
                $$frac0.75q+0.251.5>frac13$$
                $$0.75q+0.25 > 0.5$$
                $$0.75q > 0.25$$
                $$q > frac13$$
                So basically, this was a very long-winded way to find out that, as long as Monty's knowledge about the car's true location is better than a random guess, you should switch doors (which is actually kind of obvious, when you think about it). We can also calculate how much more likely we are to win when we switch, as a function of Morty's accuracy, as this is given by:
                $$fracM)p(C=1$$
                $$=fracfrac0.75q+0.251.5frac13=1.5q+0.5$$
                (Which, when $q=1$, gives an answer of 2, matching the fact that we double our chances of winning by switching doors in the original Monty Hall problem.)







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                Ruben van BergenRuben van Bergen

                4,8091 gold badge12 silver badges28 bronze badges




                4,8091 gold badge12 silver badges28 bronze badges



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f418882%2fmonty-hall-problem-with-a-fallible-monty%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                    Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                    Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)