What is the difference between position, displacement, and distance traveled?Distance and displacement of an object on a straight lineDetermine the distance from time-velocity graphIs in this case distance same as displacement?A car is moving in a circular trajectory with radius R=20m. The equation of motion is : x(t) = 15 + 8t – t^2Distance traveled from displacementDoes this calculation give displacement or distance?Displacement and position for a ball thrown up into the airA basic question in kinematicsTravelled displacement - how do we take care of the possibility that it might be negative?Why are all the other sub-displacements included into to the total displacement?

What is the most efficient way to write 'for' loops in Matlab?

Could the rotation of a black hole cause other planets to rotate?

If a 2019 UA artificer has the Repeating Shot infusion on two hand crossbows, can they use two-weapon fighting?

Heisenberg uncertainty principle in daily life

Are the named pipe created by `mknod` and the FIFO created by `mkfifo` equivalent?

How to get CPU-G to run on 18.04

Melee or Ranged attacks by Monsters, no distinction in modifiers?

Why is it considered Acid Rain with pH <5.6

3D Statue Park: Daggers and dashes

Why can't my huge trees be chopped down?

Why/when is AC-DC-AC conversion superior to direct AC-AC conversion?

Recommendations or Experiences on Archiving Mailing Data

What does "see" in "the Holy See" mean?

What is this spacecraft tethered to another spacecraft in LEO (vintage)

Is a topological space considered to be a class in set theory?

How could Nomadic scholars effectively memorize libraries worth of information

Japanese reading of an integer

How to kill my goat in Goat Simulator

How to tar a list of directories only if they exist

Decreasing star count

What do I do with a party that is much stronger than their level?

Did the IBM PC use the 8088's NMI line?

Unethical behavior : should I report it?

All unitary errors are correctable



What is the difference between position, displacement, and distance traveled?


Distance and displacement of an object on a straight lineDetermine the distance from time-velocity graphIs in this case distance same as displacement?A car is moving in a circular trajectory with radius R=20m. The equation of motion is : x(t) = 15 + 8t – t^2Distance traveled from displacementDoes this calculation give displacement or distance?Displacement and position for a ball thrown up into the airA basic question in kinematicsTravelled displacement - how do we take care of the possibility that it might be negative?Why are all the other sub-displacements included into to the total displacement?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


Suppose the question is somewhat like this:




If $v=8-4t$ and the position at time $t= 0 rm s$ is $2 rm m$, find the distance traveled, displacement, and final position at $t=3 rm s$




Since $text dx/text dt=v=8-4t$, then $text dx=(8-4t)text dt$. After integrating we find $x(t)-2=8t-2t^2$, and substituting the value of $t=3 rm s$ we get $x(3)=8 rm m$.



Is the answer that I found displacement, position or distance?



It can't be distance. I am sure of this. But is it position or displacement?










share|cite|improve this question









New contributor



Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$


















    4












    $begingroup$


    Suppose the question is somewhat like this:




    If $v=8-4t$ and the position at time $t= 0 rm s$ is $2 rm m$, find the distance traveled, displacement, and final position at $t=3 rm s$




    Since $text dx/text dt=v=8-4t$, then $text dx=(8-4t)text dt$. After integrating we find $x(t)-2=8t-2t^2$, and substituting the value of $t=3 rm s$ we get $x(3)=8 rm m$.



    Is the answer that I found displacement, position or distance?



    It can't be distance. I am sure of this. But is it position or displacement?










    share|cite|improve this question









    New contributor



    Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$














      4












      4








      4





      $begingroup$


      Suppose the question is somewhat like this:




      If $v=8-4t$ and the position at time $t= 0 rm s$ is $2 rm m$, find the distance traveled, displacement, and final position at $t=3 rm s$




      Since $text dx/text dt=v=8-4t$, then $text dx=(8-4t)text dt$. After integrating we find $x(t)-2=8t-2t^2$, and substituting the value of $t=3 rm s$ we get $x(3)=8 rm m$.



      Is the answer that I found displacement, position or distance?



      It can't be distance. I am sure of this. But is it position or displacement?










      share|cite|improve this question









      New contributor



      Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      Suppose the question is somewhat like this:




      If $v=8-4t$ and the position at time $t= 0 rm s$ is $2 rm m$, find the distance traveled, displacement, and final position at $t=3 rm s$




      Since $text dx/text dt=v=8-4t$, then $text dx=(8-4t)text dt$. After integrating we find $x(t)-2=8t-2t^2$, and substituting the value of $t=3 rm s$ we get $x(3)=8 rm m$.



      Is the answer that I found displacement, position or distance?



      It can't be distance. I am sure of this. But is it position or displacement?







      homework-and-exercises kinematics time distance displacement






      share|cite|improve this question









      New contributor



      Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|cite|improve this question









      New contributor



      Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|cite|improve this question




      share|cite|improve this question








      edited 47 mins ago









      Qmechanic

      112k12 gold badges215 silver badges1318 bronze badges




      112k12 gold badges215 silver badges1318 bronze badges






      New contributor



      Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 9 hours ago









      NevilleNeville

      254 bronze badges




      254 bronze badges




      New contributor



      Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      Neville is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          5 Answers
          5






          active

          oldest

          votes


















          1












          $begingroup$

          Position is a single point. Usually in space we indicate positions with coordinates like $(x,y,z)$ in Cartesian coordinates, $(r,theta,phi)$ in spherical coordinates, etc. We can also define the position as a vector, i.e. the position vector, that is a vector that points from the origin (subjectively defined) to the position of the particle in question. It could be $mathbf r=xhat x+yhat y+zhat z$ using Cartesian coordinates, $mathbf r=rhat r$ using spherical coordinates, etc. In 1D there really isn't anything different between the position coordinate and the position vector, so you don't need to worry about the distinction in the problem you have described in your question.



          Displacement is the change in position. It is a vector quantity; it is the difference between two position vectors. So, for example, if you go around a circle exactly one time, your displacement over that time is $0$. You can get the displacement at some time $t$ by integrating the instantaneous velocity over time:
          $$Deltamathbf r=mathbf r(t)-mathbf r(t_0)=int_t_0^tmathbf v(tau)text dtau$$
          Notice that $mathbf r(t)$ is the position at time $t$, and $mathbf r(t_0)$ is the initial position you are calculating the displacement with respect to. Hence the integral gives displacement since it is the difference between the final and initial position vectors.



          Distance is a little different, but it is easy to understand. You can think of it as what the odometer in your car gives to you. It just tells you how far you have traveled without reference to some starting point. Going back to the example of going around a circle one time, your displacement was $0$, but the distance you traveled is equal to the circumference of the circle. Distance is a scalar value. You can determine it by integrating the speed over time:
          $$D(t)=int_0^t|mathbf v(tau)|text dtau$$
          Note that this integral is the same thing as the curve length of the path the particle moves along (i.e. the distance you have traveled).



          These explanations should help you in your own problem.






          share|cite|improve this answer











          $endgroup$




















            2












            $begingroup$


            What is the difference between position, displacement, and distance
            traveled?




            Succinctly:



            (1) the position of an object is a vector with tail at the origin of the coordinate system and head at the location of the object.



            (2) the displacement of an object is the vector difference of the current position vector of the object and the position vector of the object at an earlier time. That is, the tail of this displacement vector is at the earlier position and the head is at the current position. The length of this vector is, generally, the shortest distance between the earlier and current positions.



            (3) the distance traveled from the earlier position to the current position is not a vector but is, rather, a path length. There are an infinity of paths that an object may take from the earlier position to the current position and, in general, each has a different associated length.






            share|cite|improve this answer









            $endgroup$




















              0












              $begingroup$

              If we go from point A to point B we undergo a displacement. This is the distance from A to B, together with its direction, and is the archetypal vector quantity.



              We can give the position of a point as a displacement from some agreed datum point or origin, O.



              In your question – which in my opinion is not nicely worded – the motion is presumably along a straight line. Saying that the position at time 0 is 2 m implies a displacement of +2 m from some origin. Your x is the position of the particle at time t, that is its displacement from the origin at time t.






              share|cite|improve this answer









              $endgroup$




















                0












                $begingroup$

                Position and displacement are different, but you will find people use them as synonyms. For school purposes, its important to learn exactly how your textbook and teacher handle these terms and to understand that they are different. When you get out into the real world, you will find context makes it much more obvious what people are talking about, and you can ask for clarification if you need.



                Positions are points in space. They are always defined within some coordinate system. Equations of motion are typically phrased in terms of position. There is always exactly one origin for a coordinate system like this, so we can unambiguously identify positions.



                In your example, you are calculating positions. They give you an initial position of x=2m, and you calculate the final position to be x=8m



                Displacement is a difference in position from some reference point. Most commonly this is the point at t=0, though that may not always be the case. In your example, the most reasonable assumption is that "displacement" means "displacement [from its initial position]." Since it starts at x=2m and ends at x=8m, the total displacement is 8m-2m=6m. If you want to make a displacement clear, the Delta ($Delta$) symbol is typically used. I might write $Delta x=6;text m$.



                Displacement is commonly used when some measurements are more meaningful or easy to describe than others. Consider the movement of a piston up and down. If I have one big coordinate system for the entire engine, the piston may be at y=208mm at "top dead center" and y=186mm at the bottom of its movement. It's much easier for me to say "At the bottom of the stroke, the piston has been displaced 22mm from its position at top dead center" than it is to measure it from some origin. This is especially true if there's variability. There may be 5mm of variability in how high the piston is installed in the engine, but only 1mm of variability in its stroke length. Talking about displacement makes it easy to discard variability you didn't need.



                Now comes the confusion. One can always talk about a position as a displacement from an origin. In fact, in some systems this is a far easier approach because it treats points and vectors as one and the same. Likewise, I can always define a reference frame centered on the initial position of an object, and then its position in that frame is the same as its displacement.



                This is why the two terms are easy to confuse. While they are different, we will often smoothly flow from one term to another. In the real world, ask questions. In the world of test taking, learn the language hints your textbooks use and pass your tests.



                Which brings us to distances. A distance is a length of a line in space. The distance between point A and point B is the length of a line between them. However, we can also talk about the length of arbitrary curves, not just straight lines. This is what your homework problem is trying to do. I believe it was supposed to read "distance traveled," which is the length of the curve tracing the path the object takes.



                In your case, the object travels in one direction from t=0 until t=2, when its velocity is zero, then it travels the other direction from t=2 to t=3. Thus the length of this curve is the length between where it was at t=0 and where it was at t=2, plus length between where it was a t=2 and t=3. At t=2, x=10, so the particle has traveld from x=2 to x=10, a distance of 8. Then it travels from x=10 at t=2 to x=8 at t=3, for an additional distance of 2. The total distance traveled will be 10m.






                share|cite|improve this answer









                $endgroup$




















                  0












                  $begingroup$


                  So the 8m is displacement or distance?




                  The 8m is the position of the particle. The displacement is 6 m.



                  When you integrated the velocity function to get position you included a constant of integration (2 m) to account for the initial position of the particle, that is, its position at time t=0, which is given as 2 meters. If you omitted the constant of integration then you would be calculating the change in position, i.e. the displacement, and not the position. In this case the displacement would be 6 m.



                  Position can be considered as a point in a coordinate system relative to the origin of the coordinate system. The diagram below shows the position $s$ of the particle in a one dimensional coordinate system, relative to the origin of the system, s=0. In effect, when the particle's position is 2 m the timer is started, i.e. t=0. Displacement is then distance between two positions of the coordinate system as a function of elapsed time (3 s), which in this case 6 m.



                  Hope this helps.



                  enter image description here






                  share|cite|improve this answer











                  $endgroup$












                  • $begingroup$
                    Small note, the OP is interested in 3 seconds, but your content is good :)
                    $endgroup$
                    – Aaron Stevens
                    7 hours ago










                  • $begingroup$
                    @AaronStevens Oops! I'll correct. What would I do without you (keeping me honest!)
                    $endgroup$
                    – Bob D
                    6 hours ago










                  • $begingroup$
                    I think we just tend to be interested in the same questions :)
                    $endgroup$
                    – Aaron Stevens
                    6 hours ago













                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "151"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: false,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: null,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );






                  Neville is a new contributor. Be nice, and check out our Code of Conduct.









                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f494096%2fwhat-is-the-difference-between-position-displacement-and-distance-traveled%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  1












                  $begingroup$

                  Position is a single point. Usually in space we indicate positions with coordinates like $(x,y,z)$ in Cartesian coordinates, $(r,theta,phi)$ in spherical coordinates, etc. We can also define the position as a vector, i.e. the position vector, that is a vector that points from the origin (subjectively defined) to the position of the particle in question. It could be $mathbf r=xhat x+yhat y+zhat z$ using Cartesian coordinates, $mathbf r=rhat r$ using spherical coordinates, etc. In 1D there really isn't anything different between the position coordinate and the position vector, so you don't need to worry about the distinction in the problem you have described in your question.



                  Displacement is the change in position. It is a vector quantity; it is the difference between two position vectors. So, for example, if you go around a circle exactly one time, your displacement over that time is $0$. You can get the displacement at some time $t$ by integrating the instantaneous velocity over time:
                  $$Deltamathbf r=mathbf r(t)-mathbf r(t_0)=int_t_0^tmathbf v(tau)text dtau$$
                  Notice that $mathbf r(t)$ is the position at time $t$, and $mathbf r(t_0)$ is the initial position you are calculating the displacement with respect to. Hence the integral gives displacement since it is the difference between the final and initial position vectors.



                  Distance is a little different, but it is easy to understand. You can think of it as what the odometer in your car gives to you. It just tells you how far you have traveled without reference to some starting point. Going back to the example of going around a circle one time, your displacement was $0$, but the distance you traveled is equal to the circumference of the circle. Distance is a scalar value. You can determine it by integrating the speed over time:
                  $$D(t)=int_0^t|mathbf v(tau)|text dtau$$
                  Note that this integral is the same thing as the curve length of the path the particle moves along (i.e. the distance you have traveled).



                  These explanations should help you in your own problem.






                  share|cite|improve this answer











                  $endgroup$

















                    1












                    $begingroup$

                    Position is a single point. Usually in space we indicate positions with coordinates like $(x,y,z)$ in Cartesian coordinates, $(r,theta,phi)$ in spherical coordinates, etc. We can also define the position as a vector, i.e. the position vector, that is a vector that points from the origin (subjectively defined) to the position of the particle in question. It could be $mathbf r=xhat x+yhat y+zhat z$ using Cartesian coordinates, $mathbf r=rhat r$ using spherical coordinates, etc. In 1D there really isn't anything different between the position coordinate and the position vector, so you don't need to worry about the distinction in the problem you have described in your question.



                    Displacement is the change in position. It is a vector quantity; it is the difference between two position vectors. So, for example, if you go around a circle exactly one time, your displacement over that time is $0$. You can get the displacement at some time $t$ by integrating the instantaneous velocity over time:
                    $$Deltamathbf r=mathbf r(t)-mathbf r(t_0)=int_t_0^tmathbf v(tau)text dtau$$
                    Notice that $mathbf r(t)$ is the position at time $t$, and $mathbf r(t_0)$ is the initial position you are calculating the displacement with respect to. Hence the integral gives displacement since it is the difference between the final and initial position vectors.



                    Distance is a little different, but it is easy to understand. You can think of it as what the odometer in your car gives to you. It just tells you how far you have traveled without reference to some starting point. Going back to the example of going around a circle one time, your displacement was $0$, but the distance you traveled is equal to the circumference of the circle. Distance is a scalar value. You can determine it by integrating the speed over time:
                    $$D(t)=int_0^t|mathbf v(tau)|text dtau$$
                    Note that this integral is the same thing as the curve length of the path the particle moves along (i.e. the distance you have traveled).



                    These explanations should help you in your own problem.






                    share|cite|improve this answer











                    $endgroup$















                      1












                      1








                      1





                      $begingroup$

                      Position is a single point. Usually in space we indicate positions with coordinates like $(x,y,z)$ in Cartesian coordinates, $(r,theta,phi)$ in spherical coordinates, etc. We can also define the position as a vector, i.e. the position vector, that is a vector that points from the origin (subjectively defined) to the position of the particle in question. It could be $mathbf r=xhat x+yhat y+zhat z$ using Cartesian coordinates, $mathbf r=rhat r$ using spherical coordinates, etc. In 1D there really isn't anything different between the position coordinate and the position vector, so you don't need to worry about the distinction in the problem you have described in your question.



                      Displacement is the change in position. It is a vector quantity; it is the difference between two position vectors. So, for example, if you go around a circle exactly one time, your displacement over that time is $0$. You can get the displacement at some time $t$ by integrating the instantaneous velocity over time:
                      $$Deltamathbf r=mathbf r(t)-mathbf r(t_0)=int_t_0^tmathbf v(tau)text dtau$$
                      Notice that $mathbf r(t)$ is the position at time $t$, and $mathbf r(t_0)$ is the initial position you are calculating the displacement with respect to. Hence the integral gives displacement since it is the difference between the final and initial position vectors.



                      Distance is a little different, but it is easy to understand. You can think of it as what the odometer in your car gives to you. It just tells you how far you have traveled without reference to some starting point. Going back to the example of going around a circle one time, your displacement was $0$, but the distance you traveled is equal to the circumference of the circle. Distance is a scalar value. You can determine it by integrating the speed over time:
                      $$D(t)=int_0^t|mathbf v(tau)|text dtau$$
                      Note that this integral is the same thing as the curve length of the path the particle moves along (i.e. the distance you have traveled).



                      These explanations should help you in your own problem.






                      share|cite|improve this answer











                      $endgroup$



                      Position is a single point. Usually in space we indicate positions with coordinates like $(x,y,z)$ in Cartesian coordinates, $(r,theta,phi)$ in spherical coordinates, etc. We can also define the position as a vector, i.e. the position vector, that is a vector that points from the origin (subjectively defined) to the position of the particle in question. It could be $mathbf r=xhat x+yhat y+zhat z$ using Cartesian coordinates, $mathbf r=rhat r$ using spherical coordinates, etc. In 1D there really isn't anything different between the position coordinate and the position vector, so you don't need to worry about the distinction in the problem you have described in your question.



                      Displacement is the change in position. It is a vector quantity; it is the difference between two position vectors. So, for example, if you go around a circle exactly one time, your displacement over that time is $0$. You can get the displacement at some time $t$ by integrating the instantaneous velocity over time:
                      $$Deltamathbf r=mathbf r(t)-mathbf r(t_0)=int_t_0^tmathbf v(tau)text dtau$$
                      Notice that $mathbf r(t)$ is the position at time $t$, and $mathbf r(t_0)$ is the initial position you are calculating the displacement with respect to. Hence the integral gives displacement since it is the difference between the final and initial position vectors.



                      Distance is a little different, but it is easy to understand. You can think of it as what the odometer in your car gives to you. It just tells you how far you have traveled without reference to some starting point. Going back to the example of going around a circle one time, your displacement was $0$, but the distance you traveled is equal to the circumference of the circle. Distance is a scalar value. You can determine it by integrating the speed over time:
                      $$D(t)=int_0^t|mathbf v(tau)|text dtau$$
                      Note that this integral is the same thing as the curve length of the path the particle moves along (i.e. the distance you have traveled).



                      These explanations should help you in your own problem.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 5 hours ago

























                      answered 8 hours ago









                      Aaron StevensAaron Stevens

                      18.7k4 gold badges30 silver badges69 bronze badges




                      18.7k4 gold badges30 silver badges69 bronze badges























                          2












                          $begingroup$


                          What is the difference between position, displacement, and distance
                          traveled?




                          Succinctly:



                          (1) the position of an object is a vector with tail at the origin of the coordinate system and head at the location of the object.



                          (2) the displacement of an object is the vector difference of the current position vector of the object and the position vector of the object at an earlier time. That is, the tail of this displacement vector is at the earlier position and the head is at the current position. The length of this vector is, generally, the shortest distance between the earlier and current positions.



                          (3) the distance traveled from the earlier position to the current position is not a vector but is, rather, a path length. There are an infinity of paths that an object may take from the earlier position to the current position and, in general, each has a different associated length.






                          share|cite|improve this answer









                          $endgroup$

















                            2












                            $begingroup$


                            What is the difference between position, displacement, and distance
                            traveled?




                            Succinctly:



                            (1) the position of an object is a vector with tail at the origin of the coordinate system and head at the location of the object.



                            (2) the displacement of an object is the vector difference of the current position vector of the object and the position vector of the object at an earlier time. That is, the tail of this displacement vector is at the earlier position and the head is at the current position. The length of this vector is, generally, the shortest distance between the earlier and current positions.



                            (3) the distance traveled from the earlier position to the current position is not a vector but is, rather, a path length. There are an infinity of paths that an object may take from the earlier position to the current position and, in general, each has a different associated length.






                            share|cite|improve this answer









                            $endgroup$















                              2












                              2








                              2





                              $begingroup$


                              What is the difference between position, displacement, and distance
                              traveled?




                              Succinctly:



                              (1) the position of an object is a vector with tail at the origin of the coordinate system and head at the location of the object.



                              (2) the displacement of an object is the vector difference of the current position vector of the object and the position vector of the object at an earlier time. That is, the tail of this displacement vector is at the earlier position and the head is at the current position. The length of this vector is, generally, the shortest distance between the earlier and current positions.



                              (3) the distance traveled from the earlier position to the current position is not a vector but is, rather, a path length. There are an infinity of paths that an object may take from the earlier position to the current position and, in general, each has a different associated length.






                              share|cite|improve this answer









                              $endgroup$




                              What is the difference between position, displacement, and distance
                              traveled?




                              Succinctly:



                              (1) the position of an object is a vector with tail at the origin of the coordinate system and head at the location of the object.



                              (2) the displacement of an object is the vector difference of the current position vector of the object and the position vector of the object at an earlier time. That is, the tail of this displacement vector is at the earlier position and the head is at the current position. The length of this vector is, generally, the shortest distance between the earlier and current positions.



                              (3) the distance traveled from the earlier position to the current position is not a vector but is, rather, a path length. There are an infinity of paths that an object may take from the earlier position to the current position and, in general, each has a different associated length.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 4 hours ago









                              Alfred CentauriAlfred Centauri

                              50k3 gold badges53 silver badges162 bronze badges




                              50k3 gold badges53 silver badges162 bronze badges





















                                  0












                                  $begingroup$

                                  If we go from point A to point B we undergo a displacement. This is the distance from A to B, together with its direction, and is the archetypal vector quantity.



                                  We can give the position of a point as a displacement from some agreed datum point or origin, O.



                                  In your question – which in my opinion is not nicely worded – the motion is presumably along a straight line. Saying that the position at time 0 is 2 m implies a displacement of +2 m from some origin. Your x is the position of the particle at time t, that is its displacement from the origin at time t.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    If we go from point A to point B we undergo a displacement. This is the distance from A to B, together with its direction, and is the archetypal vector quantity.



                                    We can give the position of a point as a displacement from some agreed datum point or origin, O.



                                    In your question – which in my opinion is not nicely worded – the motion is presumably along a straight line. Saying that the position at time 0 is 2 m implies a displacement of +2 m from some origin. Your x is the position of the particle at time t, that is its displacement from the origin at time t.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      If we go from point A to point B we undergo a displacement. This is the distance from A to B, together with its direction, and is the archetypal vector quantity.



                                      We can give the position of a point as a displacement from some agreed datum point or origin, O.



                                      In your question – which in my opinion is not nicely worded – the motion is presumably along a straight line. Saying that the position at time 0 is 2 m implies a displacement of +2 m from some origin. Your x is the position of the particle at time t, that is its displacement from the origin at time t.






                                      share|cite|improve this answer









                                      $endgroup$



                                      If we go from point A to point B we undergo a displacement. This is the distance from A to B, together with its direction, and is the archetypal vector quantity.



                                      We can give the position of a point as a displacement from some agreed datum point or origin, O.



                                      In your question – which in my opinion is not nicely worded – the motion is presumably along a straight line. Saying that the position at time 0 is 2 m implies a displacement of +2 m from some origin. Your x is the position of the particle at time t, that is its displacement from the origin at time t.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 8 hours ago









                                      Philip WoodPhilip Wood

                                      10.4k3 gold badges9 silver badges19 bronze badges




                                      10.4k3 gold badges9 silver badges19 bronze badges





















                                          0












                                          $begingroup$

                                          Position and displacement are different, but you will find people use them as synonyms. For school purposes, its important to learn exactly how your textbook and teacher handle these terms and to understand that they are different. When you get out into the real world, you will find context makes it much more obvious what people are talking about, and you can ask for clarification if you need.



                                          Positions are points in space. They are always defined within some coordinate system. Equations of motion are typically phrased in terms of position. There is always exactly one origin for a coordinate system like this, so we can unambiguously identify positions.



                                          In your example, you are calculating positions. They give you an initial position of x=2m, and you calculate the final position to be x=8m



                                          Displacement is a difference in position from some reference point. Most commonly this is the point at t=0, though that may not always be the case. In your example, the most reasonable assumption is that "displacement" means "displacement [from its initial position]." Since it starts at x=2m and ends at x=8m, the total displacement is 8m-2m=6m. If you want to make a displacement clear, the Delta ($Delta$) symbol is typically used. I might write $Delta x=6;text m$.



                                          Displacement is commonly used when some measurements are more meaningful or easy to describe than others. Consider the movement of a piston up and down. If I have one big coordinate system for the entire engine, the piston may be at y=208mm at "top dead center" and y=186mm at the bottom of its movement. It's much easier for me to say "At the bottom of the stroke, the piston has been displaced 22mm from its position at top dead center" than it is to measure it from some origin. This is especially true if there's variability. There may be 5mm of variability in how high the piston is installed in the engine, but only 1mm of variability in its stroke length. Talking about displacement makes it easy to discard variability you didn't need.



                                          Now comes the confusion. One can always talk about a position as a displacement from an origin. In fact, in some systems this is a far easier approach because it treats points and vectors as one and the same. Likewise, I can always define a reference frame centered on the initial position of an object, and then its position in that frame is the same as its displacement.



                                          This is why the two terms are easy to confuse. While they are different, we will often smoothly flow from one term to another. In the real world, ask questions. In the world of test taking, learn the language hints your textbooks use and pass your tests.



                                          Which brings us to distances. A distance is a length of a line in space. The distance between point A and point B is the length of a line between them. However, we can also talk about the length of arbitrary curves, not just straight lines. This is what your homework problem is trying to do. I believe it was supposed to read "distance traveled," which is the length of the curve tracing the path the object takes.



                                          In your case, the object travels in one direction from t=0 until t=2, when its velocity is zero, then it travels the other direction from t=2 to t=3. Thus the length of this curve is the length between where it was at t=0 and where it was at t=2, plus length between where it was a t=2 and t=3. At t=2, x=10, so the particle has traveld from x=2 to x=10, a distance of 8. Then it travels from x=10 at t=2 to x=8 at t=3, for an additional distance of 2. The total distance traveled will be 10m.






                                          share|cite|improve this answer









                                          $endgroup$

















                                            0












                                            $begingroup$

                                            Position and displacement are different, but you will find people use them as synonyms. For school purposes, its important to learn exactly how your textbook and teacher handle these terms and to understand that they are different. When you get out into the real world, you will find context makes it much more obvious what people are talking about, and you can ask for clarification if you need.



                                            Positions are points in space. They are always defined within some coordinate system. Equations of motion are typically phrased in terms of position. There is always exactly one origin for a coordinate system like this, so we can unambiguously identify positions.



                                            In your example, you are calculating positions. They give you an initial position of x=2m, and you calculate the final position to be x=8m



                                            Displacement is a difference in position from some reference point. Most commonly this is the point at t=0, though that may not always be the case. In your example, the most reasonable assumption is that "displacement" means "displacement [from its initial position]." Since it starts at x=2m and ends at x=8m, the total displacement is 8m-2m=6m. If you want to make a displacement clear, the Delta ($Delta$) symbol is typically used. I might write $Delta x=6;text m$.



                                            Displacement is commonly used when some measurements are more meaningful or easy to describe than others. Consider the movement of a piston up and down. If I have one big coordinate system for the entire engine, the piston may be at y=208mm at "top dead center" and y=186mm at the bottom of its movement. It's much easier for me to say "At the bottom of the stroke, the piston has been displaced 22mm from its position at top dead center" than it is to measure it from some origin. This is especially true if there's variability. There may be 5mm of variability in how high the piston is installed in the engine, but only 1mm of variability in its stroke length. Talking about displacement makes it easy to discard variability you didn't need.



                                            Now comes the confusion. One can always talk about a position as a displacement from an origin. In fact, in some systems this is a far easier approach because it treats points and vectors as one and the same. Likewise, I can always define a reference frame centered on the initial position of an object, and then its position in that frame is the same as its displacement.



                                            This is why the two terms are easy to confuse. While they are different, we will often smoothly flow from one term to another. In the real world, ask questions. In the world of test taking, learn the language hints your textbooks use and pass your tests.



                                            Which brings us to distances. A distance is a length of a line in space. The distance between point A and point B is the length of a line between them. However, we can also talk about the length of arbitrary curves, not just straight lines. This is what your homework problem is trying to do. I believe it was supposed to read "distance traveled," which is the length of the curve tracing the path the object takes.



                                            In your case, the object travels in one direction from t=0 until t=2, when its velocity is zero, then it travels the other direction from t=2 to t=3. Thus the length of this curve is the length between where it was at t=0 and where it was at t=2, plus length between where it was a t=2 and t=3. At t=2, x=10, so the particle has traveld from x=2 to x=10, a distance of 8. Then it travels from x=10 at t=2 to x=8 at t=3, for an additional distance of 2. The total distance traveled will be 10m.






                                            share|cite|improve this answer









                                            $endgroup$















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Position and displacement are different, but you will find people use them as synonyms. For school purposes, its important to learn exactly how your textbook and teacher handle these terms and to understand that they are different. When you get out into the real world, you will find context makes it much more obvious what people are talking about, and you can ask for clarification if you need.



                                              Positions are points in space. They are always defined within some coordinate system. Equations of motion are typically phrased in terms of position. There is always exactly one origin for a coordinate system like this, so we can unambiguously identify positions.



                                              In your example, you are calculating positions. They give you an initial position of x=2m, and you calculate the final position to be x=8m



                                              Displacement is a difference in position from some reference point. Most commonly this is the point at t=0, though that may not always be the case. In your example, the most reasonable assumption is that "displacement" means "displacement [from its initial position]." Since it starts at x=2m and ends at x=8m, the total displacement is 8m-2m=6m. If you want to make a displacement clear, the Delta ($Delta$) symbol is typically used. I might write $Delta x=6;text m$.



                                              Displacement is commonly used when some measurements are more meaningful or easy to describe than others. Consider the movement of a piston up and down. If I have one big coordinate system for the entire engine, the piston may be at y=208mm at "top dead center" and y=186mm at the bottom of its movement. It's much easier for me to say "At the bottom of the stroke, the piston has been displaced 22mm from its position at top dead center" than it is to measure it from some origin. This is especially true if there's variability. There may be 5mm of variability in how high the piston is installed in the engine, but only 1mm of variability in its stroke length. Talking about displacement makes it easy to discard variability you didn't need.



                                              Now comes the confusion. One can always talk about a position as a displacement from an origin. In fact, in some systems this is a far easier approach because it treats points and vectors as one and the same. Likewise, I can always define a reference frame centered on the initial position of an object, and then its position in that frame is the same as its displacement.



                                              This is why the two terms are easy to confuse. While they are different, we will often smoothly flow from one term to another. In the real world, ask questions. In the world of test taking, learn the language hints your textbooks use and pass your tests.



                                              Which brings us to distances. A distance is a length of a line in space. The distance between point A and point B is the length of a line between them. However, we can also talk about the length of arbitrary curves, not just straight lines. This is what your homework problem is trying to do. I believe it was supposed to read "distance traveled," which is the length of the curve tracing the path the object takes.



                                              In your case, the object travels in one direction from t=0 until t=2, when its velocity is zero, then it travels the other direction from t=2 to t=3. Thus the length of this curve is the length between where it was at t=0 and where it was at t=2, plus length between where it was a t=2 and t=3. At t=2, x=10, so the particle has traveld from x=2 to x=10, a distance of 8. Then it travels from x=10 at t=2 to x=8 at t=3, for an additional distance of 2. The total distance traveled will be 10m.






                                              share|cite|improve this answer









                                              $endgroup$



                                              Position and displacement are different, but you will find people use them as synonyms. For school purposes, its important to learn exactly how your textbook and teacher handle these terms and to understand that they are different. When you get out into the real world, you will find context makes it much more obvious what people are talking about, and you can ask for clarification if you need.



                                              Positions are points in space. They are always defined within some coordinate system. Equations of motion are typically phrased in terms of position. There is always exactly one origin for a coordinate system like this, so we can unambiguously identify positions.



                                              In your example, you are calculating positions. They give you an initial position of x=2m, and you calculate the final position to be x=8m



                                              Displacement is a difference in position from some reference point. Most commonly this is the point at t=0, though that may not always be the case. In your example, the most reasonable assumption is that "displacement" means "displacement [from its initial position]." Since it starts at x=2m and ends at x=8m, the total displacement is 8m-2m=6m. If you want to make a displacement clear, the Delta ($Delta$) symbol is typically used. I might write $Delta x=6;text m$.



                                              Displacement is commonly used when some measurements are more meaningful or easy to describe than others. Consider the movement of a piston up and down. If I have one big coordinate system for the entire engine, the piston may be at y=208mm at "top dead center" and y=186mm at the bottom of its movement. It's much easier for me to say "At the bottom of the stroke, the piston has been displaced 22mm from its position at top dead center" than it is to measure it from some origin. This is especially true if there's variability. There may be 5mm of variability in how high the piston is installed in the engine, but only 1mm of variability in its stroke length. Talking about displacement makes it easy to discard variability you didn't need.



                                              Now comes the confusion. One can always talk about a position as a displacement from an origin. In fact, in some systems this is a far easier approach because it treats points and vectors as one and the same. Likewise, I can always define a reference frame centered on the initial position of an object, and then its position in that frame is the same as its displacement.



                                              This is why the two terms are easy to confuse. While they are different, we will often smoothly flow from one term to another. In the real world, ask questions. In the world of test taking, learn the language hints your textbooks use and pass your tests.



                                              Which brings us to distances. A distance is a length of a line in space. The distance between point A and point B is the length of a line between them. However, we can also talk about the length of arbitrary curves, not just straight lines. This is what your homework problem is trying to do. I believe it was supposed to read "distance traveled," which is the length of the curve tracing the path the object takes.



                                              In your case, the object travels in one direction from t=0 until t=2, when its velocity is zero, then it travels the other direction from t=2 to t=3. Thus the length of this curve is the length between where it was at t=0 and where it was at t=2, plus length between where it was a t=2 and t=3. At t=2, x=10, so the particle has traveld from x=2 to x=10, a distance of 8. Then it travels from x=10 at t=2 to x=8 at t=3, for an additional distance of 2. The total distance traveled will be 10m.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 7 hours ago









                                              Cort AmmonCort Ammon

                                              26.9k4 gold badges58 silver badges91 bronze badges




                                              26.9k4 gold badges58 silver badges91 bronze badges





















                                                  0












                                                  $begingroup$


                                                  So the 8m is displacement or distance?




                                                  The 8m is the position of the particle. The displacement is 6 m.



                                                  When you integrated the velocity function to get position you included a constant of integration (2 m) to account for the initial position of the particle, that is, its position at time t=0, which is given as 2 meters. If you omitted the constant of integration then you would be calculating the change in position, i.e. the displacement, and not the position. In this case the displacement would be 6 m.



                                                  Position can be considered as a point in a coordinate system relative to the origin of the coordinate system. The diagram below shows the position $s$ of the particle in a one dimensional coordinate system, relative to the origin of the system, s=0. In effect, when the particle's position is 2 m the timer is started, i.e. t=0. Displacement is then distance between two positions of the coordinate system as a function of elapsed time (3 s), which in this case 6 m.



                                                  Hope this helps.



                                                  enter image description here






                                                  share|cite|improve this answer











                                                  $endgroup$












                                                  • $begingroup$
                                                    Small note, the OP is interested in 3 seconds, but your content is good :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    7 hours ago










                                                  • $begingroup$
                                                    @AaronStevens Oops! I'll correct. What would I do without you (keeping me honest!)
                                                    $endgroup$
                                                    – Bob D
                                                    6 hours ago










                                                  • $begingroup$
                                                    I think we just tend to be interested in the same questions :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    6 hours ago















                                                  0












                                                  $begingroup$


                                                  So the 8m is displacement or distance?




                                                  The 8m is the position of the particle. The displacement is 6 m.



                                                  When you integrated the velocity function to get position you included a constant of integration (2 m) to account for the initial position of the particle, that is, its position at time t=0, which is given as 2 meters. If you omitted the constant of integration then you would be calculating the change in position, i.e. the displacement, and not the position. In this case the displacement would be 6 m.



                                                  Position can be considered as a point in a coordinate system relative to the origin of the coordinate system. The diagram below shows the position $s$ of the particle in a one dimensional coordinate system, relative to the origin of the system, s=0. In effect, when the particle's position is 2 m the timer is started, i.e. t=0. Displacement is then distance between two positions of the coordinate system as a function of elapsed time (3 s), which in this case 6 m.



                                                  Hope this helps.



                                                  enter image description here






                                                  share|cite|improve this answer











                                                  $endgroup$












                                                  • $begingroup$
                                                    Small note, the OP is interested in 3 seconds, but your content is good :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    7 hours ago










                                                  • $begingroup$
                                                    @AaronStevens Oops! I'll correct. What would I do without you (keeping me honest!)
                                                    $endgroup$
                                                    – Bob D
                                                    6 hours ago










                                                  • $begingroup$
                                                    I think we just tend to be interested in the same questions :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    6 hours ago













                                                  0












                                                  0








                                                  0





                                                  $begingroup$


                                                  So the 8m is displacement or distance?




                                                  The 8m is the position of the particle. The displacement is 6 m.



                                                  When you integrated the velocity function to get position you included a constant of integration (2 m) to account for the initial position of the particle, that is, its position at time t=0, which is given as 2 meters. If you omitted the constant of integration then you would be calculating the change in position, i.e. the displacement, and not the position. In this case the displacement would be 6 m.



                                                  Position can be considered as a point in a coordinate system relative to the origin of the coordinate system. The diagram below shows the position $s$ of the particle in a one dimensional coordinate system, relative to the origin of the system, s=0. In effect, when the particle's position is 2 m the timer is started, i.e. t=0. Displacement is then distance between two positions of the coordinate system as a function of elapsed time (3 s), which in this case 6 m.



                                                  Hope this helps.



                                                  enter image description here






                                                  share|cite|improve this answer











                                                  $endgroup$




                                                  So the 8m is displacement or distance?




                                                  The 8m is the position of the particle. The displacement is 6 m.



                                                  When you integrated the velocity function to get position you included a constant of integration (2 m) to account for the initial position of the particle, that is, its position at time t=0, which is given as 2 meters. If you omitted the constant of integration then you would be calculating the change in position, i.e. the displacement, and not the position. In this case the displacement would be 6 m.



                                                  Position can be considered as a point in a coordinate system relative to the origin of the coordinate system. The diagram below shows the position $s$ of the particle in a one dimensional coordinate system, relative to the origin of the system, s=0. In effect, when the particle's position is 2 m the timer is started, i.e. t=0. Displacement is then distance between two positions of the coordinate system as a function of elapsed time (3 s), which in this case 6 m.



                                                  Hope this helps.



                                                  enter image description here







                                                  share|cite|improve this answer














                                                  share|cite|improve this answer



                                                  share|cite|improve this answer








                                                  edited 6 hours ago

























                                                  answered 7 hours ago









                                                  Bob DBob D

                                                  10.9k3 gold badges9 silver badges35 bronze badges




                                                  10.9k3 gold badges9 silver badges35 bronze badges











                                                  • $begingroup$
                                                    Small note, the OP is interested in 3 seconds, but your content is good :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    7 hours ago










                                                  • $begingroup$
                                                    @AaronStevens Oops! I'll correct. What would I do without you (keeping me honest!)
                                                    $endgroup$
                                                    – Bob D
                                                    6 hours ago










                                                  • $begingroup$
                                                    I think we just tend to be interested in the same questions :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    6 hours ago
















                                                  • $begingroup$
                                                    Small note, the OP is interested in 3 seconds, but your content is good :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    7 hours ago










                                                  • $begingroup$
                                                    @AaronStevens Oops! I'll correct. What would I do without you (keeping me honest!)
                                                    $endgroup$
                                                    – Bob D
                                                    6 hours ago










                                                  • $begingroup$
                                                    I think we just tend to be interested in the same questions :)
                                                    $endgroup$
                                                    – Aaron Stevens
                                                    6 hours ago















                                                  $begingroup$
                                                  Small note, the OP is interested in 3 seconds, but your content is good :)
                                                  $endgroup$
                                                  – Aaron Stevens
                                                  7 hours ago




                                                  $begingroup$
                                                  Small note, the OP is interested in 3 seconds, but your content is good :)
                                                  $endgroup$
                                                  – Aaron Stevens
                                                  7 hours ago












                                                  $begingroup$
                                                  @AaronStevens Oops! I'll correct. What would I do without you (keeping me honest!)
                                                  $endgroup$
                                                  – Bob D
                                                  6 hours ago




                                                  $begingroup$
                                                  @AaronStevens Oops! I'll correct. What would I do without you (keeping me honest!)
                                                  $endgroup$
                                                  – Bob D
                                                  6 hours ago












                                                  $begingroup$
                                                  I think we just tend to be interested in the same questions :)
                                                  $endgroup$
                                                  – Aaron Stevens
                                                  6 hours ago




                                                  $begingroup$
                                                  I think we just tend to be interested in the same questions :)
                                                  $endgroup$
                                                  – Aaron Stevens
                                                  6 hours ago










                                                  Neville is a new contributor. Be nice, and check out our Code of Conduct.









                                                  draft saved

                                                  draft discarded


















                                                  Neville is a new contributor. Be nice, and check out our Code of Conduct.












                                                  Neville is a new contributor. Be nice, and check out our Code of Conduct.











                                                  Neville is a new contributor. Be nice, and check out our Code of Conduct.














                                                  Thanks for contributing an answer to Physics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f494096%2fwhat-is-the-difference-between-position-displacement-and-distance-traveled%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                                  Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                                  Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)