Basic transistor circuitTransistor / mosfet for PWM dimming of 30W RGB LEDSingle LED single transistor circuit not workingTransistor as switch dropping voltageEffect of a transistor on a voltage divider? (or vice versa)NPN Darlington circuit for 12V Diesel GlowplugLED with a transistor on each sideHow to light a bulb from an audio signal?How to detect AC signal and use as logic-level input to microcontrollerTransistor toggle by NPN and PNP - how is it build?What is the purpose of the transistor in the following circuit?

Backpacking with incontinence

Best Ergonomic Design for a handheld ranged weapon

How to compare files with diffrent extensions and delete extra files?

Why did the United States not resort to nuclear weapons in Vietnam?

Not taking Bereavement Leave

Should 2FA be enabled on service accounts?

How does one get a visa to go to Saudi Arabia?

Went to a big 4 but got fired for underperformance in a year recently - Now every one thinks I'm pro - How to balance expectations?

How is Sword Coast North governed?

Feedback diagram

Disease transmitted by postage stamps

Being told my "network" isn't PCI Complaint. I don't even have a server! Do I have to comply?

Were there any unmanned expeditions to the moon that returned to Earth prior to Apollo?

Security measures that could plausibly last 150+ years?

"Fewer errors means better products" or "Fewer errors mean better products"?

How do I respond appropriately to an overseas company that obtained a visa for me without hiring me?

Is Norway in the Single Market?

What is the significance of $(logname)?

A coworker mumbles to herself when working. How can I ask her to stop?

Should I put my name first or last in the team members list?

Why do we need a voltage divider when we get the same voltage at the output as the input?

How to derive trigonometric Cartesian equation from parametric

Reasons for using monsters as bioweapons

Can birds evolve without trees?



Basic transistor circuit


Transistor / mosfet for PWM dimming of 30W RGB LEDSingle LED single transistor circuit not workingTransistor as switch dropping voltageEffect of a transistor on a voltage divider? (or vice versa)NPN Darlington circuit for 12V Diesel GlowplugLED with a transistor on each sideHow to light a bulb from an audio signal?How to detect AC signal and use as logic-level input to microcontrollerTransistor toggle by NPN and PNP - how is it build?What is the purpose of the transistor in the following circuit?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


I'm playing around with a BD179 transistor, trying to get my LED bulb to light up but without luck. My mistake is probably something very simple but I'm learning so bear with me.



enter image description here










share|improve this question











$endgroup$









  • 2




    $begingroup$
    Please label the connections for the LM2596
    $endgroup$
    – DKNguyen
    8 hours ago






  • 2




    $begingroup$
    Your schematic is extremely difficult to understand as you're not following standard circuit conventions as: ground at the bottom, supply/battery at left or right etc. Have a look at how similar schematics are drawn and follow that. I agree with DKNguyen that you need to add the names of the pins of the DCDC module. Adding a text like you just did is not sufficient. We're here to help but we do expect that you make things as clear as possible.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    Also your LED is in series with the emitter of the NPN, that means the NPN will not work as a switch and you will not get the voltage you (probably) want across the LED. Also why step down to 3.4 V, that makes no sense. Yes you're learning, good. Here's a tip: go search how others switch on/off LEDs using a transistor. Then do the same. Trying to "figure it out on your own" is a recipe for disaster because: it will extremely likely not work and/or might also damage components.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    @Bimpelrekkie There, I hope it's better now. Essentially I'm trying to switch a higher load from a microcontroller, I'm simulating it here with this ~3V. It's an LED Bulb, not a simple LED.
    $endgroup$
    – php_nub_qq
    8 hours ago







  • 2




    $begingroup$
    @Bimpelrekkie problem is this is just a test setup. I'll be switching the transistor from a microcontroller which has only 3.3V, so I've either got the wrong transistor or I wired it incorrectly. I suppose it's likely the latter.
    $endgroup$
    – php_nub_qq
    8 hours ago

















3












$begingroup$


I'm playing around with a BD179 transistor, trying to get my LED bulb to light up but without luck. My mistake is probably something very simple but I'm learning so bear with me.



enter image description here










share|improve this question











$endgroup$









  • 2




    $begingroup$
    Please label the connections for the LM2596
    $endgroup$
    – DKNguyen
    8 hours ago






  • 2




    $begingroup$
    Your schematic is extremely difficult to understand as you're not following standard circuit conventions as: ground at the bottom, supply/battery at left or right etc. Have a look at how similar schematics are drawn and follow that. I agree with DKNguyen that you need to add the names of the pins of the DCDC module. Adding a text like you just did is not sufficient. We're here to help but we do expect that you make things as clear as possible.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    Also your LED is in series with the emitter of the NPN, that means the NPN will not work as a switch and you will not get the voltage you (probably) want across the LED. Also why step down to 3.4 V, that makes no sense. Yes you're learning, good. Here's a tip: go search how others switch on/off LEDs using a transistor. Then do the same. Trying to "figure it out on your own" is a recipe for disaster because: it will extremely likely not work and/or might also damage components.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    @Bimpelrekkie There, I hope it's better now. Essentially I'm trying to switch a higher load from a microcontroller, I'm simulating it here with this ~3V. It's an LED Bulb, not a simple LED.
    $endgroup$
    – php_nub_qq
    8 hours ago







  • 2




    $begingroup$
    @Bimpelrekkie problem is this is just a test setup. I'll be switching the transistor from a microcontroller which has only 3.3V, so I've either got the wrong transistor or I wired it incorrectly. I suppose it's likely the latter.
    $endgroup$
    – php_nub_qq
    8 hours ago













3












3








3





$begingroup$


I'm playing around with a BD179 transistor, trying to get my LED bulb to light up but without luck. My mistake is probably something very simple but I'm learning so bear with me.



enter image description here










share|improve this question











$endgroup$




I'm playing around with a BD179 transistor, trying to get my LED bulb to light up but without luck. My mistake is probably something very simple but I'm learning so bear with me.



enter image description here







transistors led npn






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 8 hours ago







php_nub_qq

















asked 8 hours ago









php_nub_qqphp_nub_qq

2091 silver badge8 bronze badges




2091 silver badge8 bronze badges










  • 2




    $begingroup$
    Please label the connections for the LM2596
    $endgroup$
    – DKNguyen
    8 hours ago






  • 2




    $begingroup$
    Your schematic is extremely difficult to understand as you're not following standard circuit conventions as: ground at the bottom, supply/battery at left or right etc. Have a look at how similar schematics are drawn and follow that. I agree with DKNguyen that you need to add the names of the pins of the DCDC module. Adding a text like you just did is not sufficient. We're here to help but we do expect that you make things as clear as possible.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    Also your LED is in series with the emitter of the NPN, that means the NPN will not work as a switch and you will not get the voltage you (probably) want across the LED. Also why step down to 3.4 V, that makes no sense. Yes you're learning, good. Here's a tip: go search how others switch on/off LEDs using a transistor. Then do the same. Trying to "figure it out on your own" is a recipe for disaster because: it will extremely likely not work and/or might also damage components.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    @Bimpelrekkie There, I hope it's better now. Essentially I'm trying to switch a higher load from a microcontroller, I'm simulating it here with this ~3V. It's an LED Bulb, not a simple LED.
    $endgroup$
    – php_nub_qq
    8 hours ago







  • 2




    $begingroup$
    @Bimpelrekkie problem is this is just a test setup. I'll be switching the transistor from a microcontroller which has only 3.3V, so I've either got the wrong transistor or I wired it incorrectly. I suppose it's likely the latter.
    $endgroup$
    – php_nub_qq
    8 hours ago












  • 2




    $begingroup$
    Please label the connections for the LM2596
    $endgroup$
    – DKNguyen
    8 hours ago






  • 2




    $begingroup$
    Your schematic is extremely difficult to understand as you're not following standard circuit conventions as: ground at the bottom, supply/battery at left or right etc. Have a look at how similar schematics are drawn and follow that. I agree with DKNguyen that you need to add the names of the pins of the DCDC module. Adding a text like you just did is not sufficient. We're here to help but we do expect that you make things as clear as possible.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    Also your LED is in series with the emitter of the NPN, that means the NPN will not work as a switch and you will not get the voltage you (probably) want across the LED. Also why step down to 3.4 V, that makes no sense. Yes you're learning, good. Here's a tip: go search how others switch on/off LEDs using a transistor. Then do the same. Trying to "figure it out on your own" is a recipe for disaster because: it will extremely likely not work and/or might also damage components.
    $endgroup$
    – Bimpelrekkie
    8 hours ago







  • 1




    $begingroup$
    @Bimpelrekkie There, I hope it's better now. Essentially I'm trying to switch a higher load from a microcontroller, I'm simulating it here with this ~3V. It's an LED Bulb, not a simple LED.
    $endgroup$
    – php_nub_qq
    8 hours ago







  • 2




    $begingroup$
    @Bimpelrekkie problem is this is just a test setup. I'll be switching the transistor from a microcontroller which has only 3.3V, so I've either got the wrong transistor or I wired it incorrectly. I suppose it's likely the latter.
    $endgroup$
    – php_nub_qq
    8 hours ago







2




2




$begingroup$
Please label the connections for the LM2596
$endgroup$
– DKNguyen
8 hours ago




$begingroup$
Please label the connections for the LM2596
$endgroup$
– DKNguyen
8 hours ago




2




2




$begingroup$
Your schematic is extremely difficult to understand as you're not following standard circuit conventions as: ground at the bottom, supply/battery at left or right etc. Have a look at how similar schematics are drawn and follow that. I agree with DKNguyen that you need to add the names of the pins of the DCDC module. Adding a text like you just did is not sufficient. We're here to help but we do expect that you make things as clear as possible.
$endgroup$
– Bimpelrekkie
8 hours ago





$begingroup$
Your schematic is extremely difficult to understand as you're not following standard circuit conventions as: ground at the bottom, supply/battery at left or right etc. Have a look at how similar schematics are drawn and follow that. I agree with DKNguyen that you need to add the names of the pins of the DCDC module. Adding a text like you just did is not sufficient. We're here to help but we do expect that you make things as clear as possible.
$endgroup$
– Bimpelrekkie
8 hours ago





1




1




$begingroup$
Also your LED is in series with the emitter of the NPN, that means the NPN will not work as a switch and you will not get the voltage you (probably) want across the LED. Also why step down to 3.4 V, that makes no sense. Yes you're learning, good. Here's a tip: go search how others switch on/off LEDs using a transistor. Then do the same. Trying to "figure it out on your own" is a recipe for disaster because: it will extremely likely not work and/or might also damage components.
$endgroup$
– Bimpelrekkie
8 hours ago





$begingroup$
Also your LED is in series with the emitter of the NPN, that means the NPN will not work as a switch and you will not get the voltage you (probably) want across the LED. Also why step down to 3.4 V, that makes no sense. Yes you're learning, good. Here's a tip: go search how others switch on/off LEDs using a transistor. Then do the same. Trying to "figure it out on your own" is a recipe for disaster because: it will extremely likely not work and/or might also damage components.
$endgroup$
– Bimpelrekkie
8 hours ago





1




1




$begingroup$
@Bimpelrekkie There, I hope it's better now. Essentially I'm trying to switch a higher load from a microcontroller, I'm simulating it here with this ~3V. It's an LED Bulb, not a simple LED.
$endgroup$
– php_nub_qq
8 hours ago





$begingroup$
@Bimpelrekkie There, I hope it's better now. Essentially I'm trying to switch a higher load from a microcontroller, I'm simulating it here with this ~3V. It's an LED Bulb, not a simple LED.
$endgroup$
– php_nub_qq
8 hours ago





2




2




$begingroup$
@Bimpelrekkie problem is this is just a test setup. I'll be switching the transistor from a microcontroller which has only 3.3V, so I've either got the wrong transistor or I wired it incorrectly. I suppose it's likely the latter.
$endgroup$
– php_nub_qq
8 hours ago




$begingroup$
@Bimpelrekkie problem is this is just a test setup. I'll be switching the transistor from a microcontroller which has only 3.3V, so I've either got the wrong transistor or I wired it incorrectly. I suppose it's likely the latter.
$endgroup$
– php_nub_qq
8 hours ago










2 Answers
2






active

oldest

votes


















5












$begingroup$

There are two potential problems in your circuit.



1. The 2kOhm base resistor is too high.



By applying 3.4V through a 2K resistor, and accounting for the base-emitter voltage drop of the BJT (in the datasheet) you get a base current of:



$ I_collector = fracV_supply - V_be R_base = frac3.4V - 1.3V 2kOhm = 1.05mA$



In the datasheet, the BJT's DC current gain ranges anywhere from 15 to 160 which means your collector current will be anywhere between 15 to 160 times the base current which is 16mA to 168mA.



But your bulb is a 12V, 6W bulb which means it runs at:
$ I = fracPV = frac6W12V = 500mA$



2. The LED should be on the collector side of the transistor.



Put simply, the current flowing between the base and emitter terminals of an BJT determine how much it turns on by. The BJT can ONLY see the voltage difference between its terminals. It does not and cannot know about voltages anywhere else.



Your power supply is applying to the base resistor relative to ground. But the voltage and current parameters that the BJT actually cares about are those between the base and emitter terminals. If your source pin is not connected to ground then what you BJT cares about is not the same as what the supply is providing. Things get distorted



As the transistor turns on and conducts current through your bulb, the voltage across the bulb rises pushing the source terminal voltage away from ground which reduces the base-emitter voltage difference (and the voltage across the base resistor which reduces the base current). This acts as negative feedback and fights the transistor turning on more.



This negative feedback has its uses, but not when using the transistor as a plain old switch. It's mostly for amplifiers and analog circuits.






share|improve this answer











$endgroup$














  • $begingroup$
    So if I understand this right, I need to move the bulb before the transistor on the 12V line and I need to increase the current on the base.
    $endgroup$
    – php_nub_qq
    8 hours ago










  • $begingroup$
    Yes. This is filler text.
    $endgroup$
    – DKNguyen
    8 hours ago










  • $begingroup$
    I'm sorry if it's a dumb question but why does it make a difference whether the load is before or after the transistor on the collector-emitter path?
    $endgroup$
    – php_nub_qq
    8 hours ago






  • 1




    $begingroup$
    @php_nub_qq Read the part about the transistor only being able to care about the base and source. Read it carefully. It's the most important thing in there.
    $endgroup$
    – DKNguyen
    8 hours ago










  • $begingroup$
    Huge gratitude for the time you took to explain this to me like to a complete moron. Little feedback - I just switched the bulb to the collector side and it immediately lit up. I then switched to a 370 ohm resistor since that's the lowest I have laying around and it seems to be as bright as if I connect it to the supply directly.
    $endgroup$
    – php_nub_qq
    7 hours ago



















4












$begingroup$

As designed, your circuit is an emitter follower. You're applying 3.4V to the base of an NPN, and taking power off of the emitter. The transistor will try to hold the emitter voltage at roughly $V_be - 0.7mathrmV$, or about 2.7V. That's not nearly enough for your LED.



You want something like the following.



You need to choose a transistor that can pass 500mA (because it's a 6W, 12V "bulb" -- that works out to half an amp). Then you need to choose a resistor that'll cause the transistor to turn on hard. If you used a 2N4401, you'd need about 50mA into the base -- that would require a resistance of $R_1 = mathrm(3.4V - 0.7V) / (50mA) = 54Omega$.



However, you have a problem, because you mentioned that you're driving this from a microcontroller, and there aren't any microcontrollers out there that can drive $50mathrmmA$. So you either need to use a Darlington (which has a higher collector-emitter drop than a plain BJT), or you need to search around for a "super beta" transistor (they're out there, and they're nice -- look for high $H_FE$ in saturation), or you need to use a logic-level FET that's rated for a gate voltage of 3.3V





schematic





simulate this circuit – Schematic created using CircuitLab






share|improve this answer









$endgroup$

















    Your Answer






    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f451376%2fbasic-transistor-circuit%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    There are two potential problems in your circuit.



    1. The 2kOhm base resistor is too high.



    By applying 3.4V through a 2K resistor, and accounting for the base-emitter voltage drop of the BJT (in the datasheet) you get a base current of:



    $ I_collector = fracV_supply - V_be R_base = frac3.4V - 1.3V 2kOhm = 1.05mA$



    In the datasheet, the BJT's DC current gain ranges anywhere from 15 to 160 which means your collector current will be anywhere between 15 to 160 times the base current which is 16mA to 168mA.



    But your bulb is a 12V, 6W bulb which means it runs at:
    $ I = fracPV = frac6W12V = 500mA$



    2. The LED should be on the collector side of the transistor.



    Put simply, the current flowing between the base and emitter terminals of an BJT determine how much it turns on by. The BJT can ONLY see the voltage difference between its terminals. It does not and cannot know about voltages anywhere else.



    Your power supply is applying to the base resistor relative to ground. But the voltage and current parameters that the BJT actually cares about are those between the base and emitter terminals. If your source pin is not connected to ground then what you BJT cares about is not the same as what the supply is providing. Things get distorted



    As the transistor turns on and conducts current through your bulb, the voltage across the bulb rises pushing the source terminal voltage away from ground which reduces the base-emitter voltage difference (and the voltage across the base resistor which reduces the base current). This acts as negative feedback and fights the transistor turning on more.



    This negative feedback has its uses, but not when using the transistor as a plain old switch. It's mostly for amplifiers and analog circuits.






    share|improve this answer











    $endgroup$














    • $begingroup$
      So if I understand this right, I need to move the bulb before the transistor on the 12V line and I need to increase the current on the base.
      $endgroup$
      – php_nub_qq
      8 hours ago










    • $begingroup$
      Yes. This is filler text.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      I'm sorry if it's a dumb question but why does it make a difference whether the load is before or after the transistor on the collector-emitter path?
      $endgroup$
      – php_nub_qq
      8 hours ago






    • 1




      $begingroup$
      @php_nub_qq Read the part about the transistor only being able to care about the base and source. Read it carefully. It's the most important thing in there.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      Huge gratitude for the time you took to explain this to me like to a complete moron. Little feedback - I just switched the bulb to the collector side and it immediately lit up. I then switched to a 370 ohm resistor since that's the lowest I have laying around and it seems to be as bright as if I connect it to the supply directly.
      $endgroup$
      – php_nub_qq
      7 hours ago
















    5












    $begingroup$

    There are two potential problems in your circuit.



    1. The 2kOhm base resistor is too high.



    By applying 3.4V through a 2K resistor, and accounting for the base-emitter voltage drop of the BJT (in the datasheet) you get a base current of:



    $ I_collector = fracV_supply - V_be R_base = frac3.4V - 1.3V 2kOhm = 1.05mA$



    In the datasheet, the BJT's DC current gain ranges anywhere from 15 to 160 which means your collector current will be anywhere between 15 to 160 times the base current which is 16mA to 168mA.



    But your bulb is a 12V, 6W bulb which means it runs at:
    $ I = fracPV = frac6W12V = 500mA$



    2. The LED should be on the collector side of the transistor.



    Put simply, the current flowing between the base and emitter terminals of an BJT determine how much it turns on by. The BJT can ONLY see the voltage difference between its terminals. It does not and cannot know about voltages anywhere else.



    Your power supply is applying to the base resistor relative to ground. But the voltage and current parameters that the BJT actually cares about are those between the base and emitter terminals. If your source pin is not connected to ground then what you BJT cares about is not the same as what the supply is providing. Things get distorted



    As the transistor turns on and conducts current through your bulb, the voltage across the bulb rises pushing the source terminal voltage away from ground which reduces the base-emitter voltage difference (and the voltage across the base resistor which reduces the base current). This acts as negative feedback and fights the transistor turning on more.



    This negative feedback has its uses, but not when using the transistor as a plain old switch. It's mostly for amplifiers and analog circuits.






    share|improve this answer











    $endgroup$














    • $begingroup$
      So if I understand this right, I need to move the bulb before the transistor on the 12V line and I need to increase the current on the base.
      $endgroup$
      – php_nub_qq
      8 hours ago










    • $begingroup$
      Yes. This is filler text.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      I'm sorry if it's a dumb question but why does it make a difference whether the load is before or after the transistor on the collector-emitter path?
      $endgroup$
      – php_nub_qq
      8 hours ago






    • 1




      $begingroup$
      @php_nub_qq Read the part about the transistor only being able to care about the base and source. Read it carefully. It's the most important thing in there.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      Huge gratitude for the time you took to explain this to me like to a complete moron. Little feedback - I just switched the bulb to the collector side and it immediately lit up. I then switched to a 370 ohm resistor since that's the lowest I have laying around and it seems to be as bright as if I connect it to the supply directly.
      $endgroup$
      – php_nub_qq
      7 hours ago














    5












    5








    5





    $begingroup$

    There are two potential problems in your circuit.



    1. The 2kOhm base resistor is too high.



    By applying 3.4V through a 2K resistor, and accounting for the base-emitter voltage drop of the BJT (in the datasheet) you get a base current of:



    $ I_collector = fracV_supply - V_be R_base = frac3.4V - 1.3V 2kOhm = 1.05mA$



    In the datasheet, the BJT's DC current gain ranges anywhere from 15 to 160 which means your collector current will be anywhere between 15 to 160 times the base current which is 16mA to 168mA.



    But your bulb is a 12V, 6W bulb which means it runs at:
    $ I = fracPV = frac6W12V = 500mA$



    2. The LED should be on the collector side of the transistor.



    Put simply, the current flowing between the base and emitter terminals of an BJT determine how much it turns on by. The BJT can ONLY see the voltage difference between its terminals. It does not and cannot know about voltages anywhere else.



    Your power supply is applying to the base resistor relative to ground. But the voltage and current parameters that the BJT actually cares about are those between the base and emitter terminals. If your source pin is not connected to ground then what you BJT cares about is not the same as what the supply is providing. Things get distorted



    As the transistor turns on and conducts current through your bulb, the voltage across the bulb rises pushing the source terminal voltage away from ground which reduces the base-emitter voltage difference (and the voltage across the base resistor which reduces the base current). This acts as negative feedback and fights the transistor turning on more.



    This negative feedback has its uses, but not when using the transistor as a plain old switch. It's mostly for amplifiers and analog circuits.






    share|improve this answer











    $endgroup$



    There are two potential problems in your circuit.



    1. The 2kOhm base resistor is too high.



    By applying 3.4V through a 2K resistor, and accounting for the base-emitter voltage drop of the BJT (in the datasheet) you get a base current of:



    $ I_collector = fracV_supply - V_be R_base = frac3.4V - 1.3V 2kOhm = 1.05mA$



    In the datasheet, the BJT's DC current gain ranges anywhere from 15 to 160 which means your collector current will be anywhere between 15 to 160 times the base current which is 16mA to 168mA.



    But your bulb is a 12V, 6W bulb which means it runs at:
    $ I = fracPV = frac6W12V = 500mA$



    2. The LED should be on the collector side of the transistor.



    Put simply, the current flowing between the base and emitter terminals of an BJT determine how much it turns on by. The BJT can ONLY see the voltage difference between its terminals. It does not and cannot know about voltages anywhere else.



    Your power supply is applying to the base resistor relative to ground. But the voltage and current parameters that the BJT actually cares about are those between the base and emitter terminals. If your source pin is not connected to ground then what you BJT cares about is not the same as what the supply is providing. Things get distorted



    As the transistor turns on and conducts current through your bulb, the voltage across the bulb rises pushing the source terminal voltage away from ground which reduces the base-emitter voltage difference (and the voltage across the base resistor which reduces the base current). This acts as negative feedback and fights the transistor turning on more.



    This negative feedback has its uses, but not when using the transistor as a plain old switch. It's mostly for amplifiers and analog circuits.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 7 hours ago

























    answered 8 hours ago









    DKNguyenDKNguyen

    5,1801 gold badge5 silver badges24 bronze badges




    5,1801 gold badge5 silver badges24 bronze badges














    • $begingroup$
      So if I understand this right, I need to move the bulb before the transistor on the 12V line and I need to increase the current on the base.
      $endgroup$
      – php_nub_qq
      8 hours ago










    • $begingroup$
      Yes. This is filler text.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      I'm sorry if it's a dumb question but why does it make a difference whether the load is before or after the transistor on the collector-emitter path?
      $endgroup$
      – php_nub_qq
      8 hours ago






    • 1




      $begingroup$
      @php_nub_qq Read the part about the transistor only being able to care about the base and source. Read it carefully. It's the most important thing in there.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      Huge gratitude for the time you took to explain this to me like to a complete moron. Little feedback - I just switched the bulb to the collector side and it immediately lit up. I then switched to a 370 ohm resistor since that's the lowest I have laying around and it seems to be as bright as if I connect it to the supply directly.
      $endgroup$
      – php_nub_qq
      7 hours ago

















    • $begingroup$
      So if I understand this right, I need to move the bulb before the transistor on the 12V line and I need to increase the current on the base.
      $endgroup$
      – php_nub_qq
      8 hours ago










    • $begingroup$
      Yes. This is filler text.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      I'm sorry if it's a dumb question but why does it make a difference whether the load is before or after the transistor on the collector-emitter path?
      $endgroup$
      – php_nub_qq
      8 hours ago






    • 1




      $begingroup$
      @php_nub_qq Read the part about the transistor only being able to care about the base and source. Read it carefully. It's the most important thing in there.
      $endgroup$
      – DKNguyen
      8 hours ago










    • $begingroup$
      Huge gratitude for the time you took to explain this to me like to a complete moron. Little feedback - I just switched the bulb to the collector side and it immediately lit up. I then switched to a 370 ohm resistor since that's the lowest I have laying around and it seems to be as bright as if I connect it to the supply directly.
      $endgroup$
      – php_nub_qq
      7 hours ago
















    $begingroup$
    So if I understand this right, I need to move the bulb before the transistor on the 12V line and I need to increase the current on the base.
    $endgroup$
    – php_nub_qq
    8 hours ago




    $begingroup$
    So if I understand this right, I need to move the bulb before the transistor on the 12V line and I need to increase the current on the base.
    $endgroup$
    – php_nub_qq
    8 hours ago












    $begingroup$
    Yes. This is filler text.
    $endgroup$
    – DKNguyen
    8 hours ago




    $begingroup$
    Yes. This is filler text.
    $endgroup$
    – DKNguyen
    8 hours ago












    $begingroup$
    I'm sorry if it's a dumb question but why does it make a difference whether the load is before or after the transistor on the collector-emitter path?
    $endgroup$
    – php_nub_qq
    8 hours ago




    $begingroup$
    I'm sorry if it's a dumb question but why does it make a difference whether the load is before or after the transistor on the collector-emitter path?
    $endgroup$
    – php_nub_qq
    8 hours ago




    1




    1




    $begingroup$
    @php_nub_qq Read the part about the transistor only being able to care about the base and source. Read it carefully. It's the most important thing in there.
    $endgroup$
    – DKNguyen
    8 hours ago




    $begingroup$
    @php_nub_qq Read the part about the transistor only being able to care about the base and source. Read it carefully. It's the most important thing in there.
    $endgroup$
    – DKNguyen
    8 hours ago












    $begingroup$
    Huge gratitude for the time you took to explain this to me like to a complete moron. Little feedback - I just switched the bulb to the collector side and it immediately lit up. I then switched to a 370 ohm resistor since that's the lowest I have laying around and it seems to be as bright as if I connect it to the supply directly.
    $endgroup$
    – php_nub_qq
    7 hours ago





    $begingroup$
    Huge gratitude for the time you took to explain this to me like to a complete moron. Little feedback - I just switched the bulb to the collector side and it immediately lit up. I then switched to a 370 ohm resistor since that's the lowest I have laying around and it seems to be as bright as if I connect it to the supply directly.
    $endgroup$
    – php_nub_qq
    7 hours ago














    4












    $begingroup$

    As designed, your circuit is an emitter follower. You're applying 3.4V to the base of an NPN, and taking power off of the emitter. The transistor will try to hold the emitter voltage at roughly $V_be - 0.7mathrmV$, or about 2.7V. That's not nearly enough for your LED.



    You want something like the following.



    You need to choose a transistor that can pass 500mA (because it's a 6W, 12V "bulb" -- that works out to half an amp). Then you need to choose a resistor that'll cause the transistor to turn on hard. If you used a 2N4401, you'd need about 50mA into the base -- that would require a resistance of $R_1 = mathrm(3.4V - 0.7V) / (50mA) = 54Omega$.



    However, you have a problem, because you mentioned that you're driving this from a microcontroller, and there aren't any microcontrollers out there that can drive $50mathrmmA$. So you either need to use a Darlington (which has a higher collector-emitter drop than a plain BJT), or you need to search around for a "super beta" transistor (they're out there, and they're nice -- look for high $H_FE$ in saturation), or you need to use a logic-level FET that's rated for a gate voltage of 3.3V





    schematic





    simulate this circuit – Schematic created using CircuitLab






    share|improve this answer









    $endgroup$



















      4












      $begingroup$

      As designed, your circuit is an emitter follower. You're applying 3.4V to the base of an NPN, and taking power off of the emitter. The transistor will try to hold the emitter voltage at roughly $V_be - 0.7mathrmV$, or about 2.7V. That's not nearly enough for your LED.



      You want something like the following.



      You need to choose a transistor that can pass 500mA (because it's a 6W, 12V "bulb" -- that works out to half an amp). Then you need to choose a resistor that'll cause the transistor to turn on hard. If you used a 2N4401, you'd need about 50mA into the base -- that would require a resistance of $R_1 = mathrm(3.4V - 0.7V) / (50mA) = 54Omega$.



      However, you have a problem, because you mentioned that you're driving this from a microcontroller, and there aren't any microcontrollers out there that can drive $50mathrmmA$. So you either need to use a Darlington (which has a higher collector-emitter drop than a plain BJT), or you need to search around for a "super beta" transistor (they're out there, and they're nice -- look for high $H_FE$ in saturation), or you need to use a logic-level FET that's rated for a gate voltage of 3.3V





      schematic





      simulate this circuit – Schematic created using CircuitLab






      share|improve this answer









      $endgroup$

















        4












        4








        4





        $begingroup$

        As designed, your circuit is an emitter follower. You're applying 3.4V to the base of an NPN, and taking power off of the emitter. The transistor will try to hold the emitter voltage at roughly $V_be - 0.7mathrmV$, or about 2.7V. That's not nearly enough for your LED.



        You want something like the following.



        You need to choose a transistor that can pass 500mA (because it's a 6W, 12V "bulb" -- that works out to half an amp). Then you need to choose a resistor that'll cause the transistor to turn on hard. If you used a 2N4401, you'd need about 50mA into the base -- that would require a resistance of $R_1 = mathrm(3.4V - 0.7V) / (50mA) = 54Omega$.



        However, you have a problem, because you mentioned that you're driving this from a microcontroller, and there aren't any microcontrollers out there that can drive $50mathrmmA$. So you either need to use a Darlington (which has a higher collector-emitter drop than a plain BJT), or you need to search around for a "super beta" transistor (they're out there, and they're nice -- look for high $H_FE$ in saturation), or you need to use a logic-level FET that's rated for a gate voltage of 3.3V





        schematic





        simulate this circuit – Schematic created using CircuitLab






        share|improve this answer









        $endgroup$



        As designed, your circuit is an emitter follower. You're applying 3.4V to the base of an NPN, and taking power off of the emitter. The transistor will try to hold the emitter voltage at roughly $V_be - 0.7mathrmV$, or about 2.7V. That's not nearly enough for your LED.



        You want something like the following.



        You need to choose a transistor that can pass 500mA (because it's a 6W, 12V "bulb" -- that works out to half an amp). Then you need to choose a resistor that'll cause the transistor to turn on hard. If you used a 2N4401, you'd need about 50mA into the base -- that would require a resistance of $R_1 = mathrm(3.4V - 0.7V) / (50mA) = 54Omega$.



        However, you have a problem, because you mentioned that you're driving this from a microcontroller, and there aren't any microcontrollers out there that can drive $50mathrmmA$. So you either need to use a Darlington (which has a higher collector-emitter drop than a plain BJT), or you need to search around for a "super beta" transistor (they're out there, and they're nice -- look for high $H_FE$ in saturation), or you need to use a logic-level FET that's rated for a gate voltage of 3.3V





        schematic





        simulate this circuit – Schematic created using CircuitLab







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 8 hours ago









        TimWescottTimWescott

        11.4k1 gold badge9 silver badges23 bronze badges




        11.4k1 gold badge9 silver badges23 bronze badges






























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f451376%2fbasic-transistor-circuit%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

            Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

            19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу