Can two people see the same photon? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) 2019 Moderator Election Q&A - Question CollectionHow far back can you trace a photon?Photon absorption and SightWhere did all the photon energy go?Same photon or different photon?How are we MEASURING (not computing) the energy of a single photon?Clarification on the Properties of a PhotonCan a photon cross the event horizon from the perspective of an outside observer?Why can't the light from a candle light the whole of a dark room?Dark room lightsDo Photons Ever Form Just Two Lines In Slit Experiments?

White walkers, cemeteries and wights

Was Kant an Intuitionist about mathematical objects?

"klopfte jemand" or "jemand klopfte"?

Why is it faster to reheat something than it is to cook it?

Co-worker has annoying ringtone

What does 丫 mean? 丫是什么意思?

Why are vacuum tubes still used in amateur radios?

Can you force honesty by using the Speak with Dead and Zone of Truth spells together?

How many time has Arya actually used Needle?

Flight departed from the gate 5 min before scheduled departure time. Refund options

The test team as an enemy of development? And how can this be avoided?

Why not send Voyager 3 and 4 following up the paths taken by Voyager 1 and 2 to re-transmit signals of later as they fly away from Earth?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

I can't produce songs

A proverb that is used to imply that you have unexpectedly faced a big problem

New Order #6: Easter Egg

AppleTVs create a chatty alternate WiFi network

Would color changing eyes affect vision?

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Why is a lens darker than other ones when applying the same settings?

What does Turing mean by this statement?

A term for a woman complaining about things/begging in a cute/childish way

RSA find public exponent

How to write capital alpha?



Can two people see the same photon?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
2019 Moderator Election Q&A - Question CollectionHow far back can you trace a photon?Photon absorption and SightWhere did all the photon energy go?Same photon or different photon?How are we MEASURING (not computing) the energy of a single photon?Clarification on the Properties of a PhotonCan a photon cross the event horizon from the perspective of an outside observer?Why can't the light from a candle light the whole of a dark room?Dark room lightsDo Photons Ever Form Just Two Lines In Slit Experiments?










6












$begingroup$


In a dark room there are two people and a very faint candle. Then the candle emits one photon. Is it true that only one person can see the photon? Why? And are there any experiments?










share|cite|improve this question











$endgroup$











  • $begingroup$
    You should specify your question: are you asking from a purely physical point of view e.g. are you interested to know whether a single photon (forget about a candle and only a single photon!) can be detected by two different "sensors", which eyes in principle are, or rather on the full world realistic question including the energy needed to trigger something in our brain?
    $endgroup$
    – Mayou36
    6 hours ago















6












$begingroup$


In a dark room there are two people and a very faint candle. Then the candle emits one photon. Is it true that only one person can see the photon? Why? And are there any experiments?










share|cite|improve this question











$endgroup$











  • $begingroup$
    You should specify your question: are you asking from a purely physical point of view e.g. are you interested to know whether a single photon (forget about a candle and only a single photon!) can be detected by two different "sensors", which eyes in principle are, or rather on the full world realistic question including the energy needed to trigger something in our brain?
    $endgroup$
    – Mayou36
    6 hours ago













6












6








6


1



$begingroup$


In a dark room there are two people and a very faint candle. Then the candle emits one photon. Is it true that only one person can see the photon? Why? And are there any experiments?










share|cite|improve this question











$endgroup$




In a dark room there are two people and a very faint candle. Then the candle emits one photon. Is it true that only one person can see the photon? Why? And are there any experiments?







photons elementary-particles






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 50 mins ago









Andrew Morton

1055




1055










asked 15 hours ago









fangzhang mnmfangzhang mnm

451




451











  • $begingroup$
    You should specify your question: are you asking from a purely physical point of view e.g. are you interested to know whether a single photon (forget about a candle and only a single photon!) can be detected by two different "sensors", which eyes in principle are, or rather on the full world realistic question including the energy needed to trigger something in our brain?
    $endgroup$
    – Mayou36
    6 hours ago
















  • $begingroup$
    You should specify your question: are you asking from a purely physical point of view e.g. are you interested to know whether a single photon (forget about a candle and only a single photon!) can be detected by two different "sensors", which eyes in principle are, or rather on the full world realistic question including the energy needed to trigger something in our brain?
    $endgroup$
    – Mayou36
    6 hours ago















$begingroup$
You should specify your question: are you asking from a purely physical point of view e.g. are you interested to know whether a single photon (forget about a candle and only a single photon!) can be detected by two different "sensors", which eyes in principle are, or rather on the full world realistic question including the energy needed to trigger something in our brain?
$endgroup$
– Mayou36
6 hours ago




$begingroup$
You should specify your question: are you asking from a purely physical point of view e.g. are you interested to know whether a single photon (forget about a candle and only a single photon!) can be detected by two different "sensors", which eyes in principle are, or rather on the full world realistic question including the energy needed to trigger something in our brain?
$endgroup$
– Mayou36
6 hours ago










6 Answers
6






active

oldest

votes


















12












$begingroup$

Seeing = detecting photons that happen to interact with your retina.



You can't see photons when they are just travelling nearby. Take lasers for example. When someone is using laser pointer, the only reason you see the beam is that photons collide with dust and air particles and therefore their direction is changed. For example into your eye. Otherwise you wouldn't see anything.



It isn't possible for two people to see the same photon.






share|cite|improve this answer











$endgroup$








  • 3




    $begingroup$
    Actually the human eye can detect a single photon. nature.com/news/people-can-sense-single-photons-1.20282
    $endgroup$
    – Michael Angelo
    11 hours ago







  • 1




    $begingroup$
    @MichaelAngelo i remember that paper. Result is like 10% above 50-50 discrimination :-) But yes, human eye is very sensitive. Last (paragraph) is factually incorrect
    $endgroup$
    – aaaaaa
    10 hours ago







  • 1




    $begingroup$
    Interesting. I stand corrected.
    $endgroup$
    – Andrej
    10 hours ago


















4












$begingroup$

In theory, in the most perversely contrieved case, and if you are willing to cheat a bit, it would be possible. In any half-reasonable, realistic setting, the answer is a clear, definite "No". Indeed, people cannot even see single photons at all (contrary to urban myths).



How does seeing a photon work? The photon has to hit your eye, specifically one of the billion rhodopsin molecules in one of the several-million retinal cells, then something-something, and then a nerve impulse maybe, if some conditions hold goes through the roughly-one-million ganglion network in the retina, and maybe makes it to the brain. Maybe. And maybe the visual cortex makes something of it.

The "maybe" part and the fact that a single cell has billions of G-proteins going active and inactive every second, and that there's a continuous flow of cGMP up and down is the reason why you cannot really see a single photon. That just isn't reasonably possible, if anything it's placebo effect or mere suggestion.



So what's that something-something mentioned previously? The photon flips the cis-bond at position 11 in retinal to trans. Which, well, takes energy, and absorbs the photon.
This triggers a typical G-protein cascade, with alpha subunit going off and blah blah, resulting in production of cGMP at the end. If the cGMP concentration goes above some threshold, and if the cell isn't currently refractive, then the cell fires an AP. That's a big "maybe". Then comes something-something ganglion cells, which is the other big "maybe" part above.



The photon is "gone" after that. No second person could possibly see it.



Now of course, no absorption is perfect, there's an absorption maximum for each type of rhodopsin, and even at that it isn't 100%. Outside the maximum, the absorption is far from 100%. Which means that the photon is emitted again, and it could, in theory, in the most improbable case, hit another person's eye, why not. But of course we have to cheat a bit here because it strictly isn't the same photon.

Unless we are willing to cheat, the answer must therefore be "not possible".






share|cite|improve this answer









$endgroup$








  • 3




    $begingroup$
    Re "the photon is emitted again", is the emitted photon in any sense the SAME photon? I don't think so: the original photon is gone, and a new one is created.
    $endgroup$
    – jamesqf
    8 hours ago










  • $begingroup$
    The photon is absorbed or not, so these absorption maxima are irrelevant here - even at 100% absorption you still have re-emission. @jamesqf Assuming same energy, I would consider it to be the same. Is the original photon also gone after its polarization changes? Or after it gets reflected/refracted? Or even after it travels in free space?
    $endgroup$
    – Zizy Archer
    3 hours ago


















2












$begingroup$

Somehow the exchange of energy between all objects must take place. It was found that this process takes place through the emission and absorption of photons (initially called energy quanta).



Photons are indivisible particles, they do not loose or gain inner energy during their life. The detection of a photon is possible only through the absorption of this photon.



Theoretically, it is possible to obtain information about an absorbed photon by observing secondary emitted photons with lower energy (and longer wavelength).



If you think of a laser beam that you have seen from the side, dust particles in the air are responsible. They reflect the laser light and you can see the beam. Of course, the photons reflected from the dust into the eyes do not arrive at the laser target.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Candles do not give off single photons. Preparing light sources that can emit single photons is tricky.



    The photon contains "one photon" (some small quantity of electronvolts) of energy. The energy in a photon is directly propotional to its frequency, so two photons of the same "color" have the same energy. The process of absorbing a photon transduces "one photon" of energy from the electromagnetic field to the detector. Consequently, if either human detects the photon, there is no energy left to be detected by the other human.



    In "Direct detection of a single photon by humans", J.N. Tinsley et al. directly measure the event of conscious detection of single photons. Subjects in that experiment



    • did (barely) better than chance (51.6% (p=0.0545)) correctly identifying photon present and photon absent events) when observer confidence in event was excluded and

    • did better than chance (60.0% (p=0.001)) when confidence was included.

    Interestingly, "the probability of correctly reporting a single photon is highly enhanced by the presence of an earlier photon within ∼5 s time interval. Averaging across all trials that had a preceding detection within a 10-s time window, the probability of correct response was found to be 0.56±0.03 (P=0.02)."



    Of course, not every photon that strikes the retina is transduced. "Based on the efficiency of the signal arm and the visual system, we estimate that in ∼6% of all post-selected events an actual light-induced signal was generated ..." So we expect to see improvements over random chance in the neighborhood of 6%, and all numbers reported above are in that neighborhood.






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      Candles emit huge numbers of photons per second, and humans can't reliably detect single photons, so let's simplify your experiment to the bare essentials.



      In the middle, we have an atom that we can excite (by firing a photon at it). Shortly after we excite this atom, it emits a single photon with a spherically symmetric radiation pattern, that is, there's an equal probability of detecting the photon in any direction. This is a standard example of an atom scattering a photon.



      Now we place several identical photon detectors around our emitter atom, in various directions. After the photon is emitted, one of our detectors may detect it. Or the photon may miss all of our detectors and collide with something else.



      We can model this as a spherical bubble centred on the emitter atom, expanding at the speed of light. When the bubble reaches a detector atom, that atom may detect the photon. When that happens, the bubble disappears, like a pin bursting a soap bubble. No other detector can detect the same photon (not even another detector at the exact same distance), all of the photon's energy was absorbed by the detector that was activated.






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        I've read Gibbs 1996 article claiming that humans cannot see single photons. I've also read Tinsley et al.'s 2016 Direct detection of a single photon by humans where single photon stimulation is measured to result in better than chance conscious observation of single photons. I tend to believe the measurement over the "reasonable story".
        $endgroup$
        – Eric Towers
        11 hours ago






      • 2




        $begingroup$
        "Candles don't work like that" is condescending non-helpful. You understood the sentiment but wanted to show off, and this doesn't add anything to the better answers already posted.
        $endgroup$
        – Andy Ray
        7 hours ago










      • $begingroup$
        @Andy I had no intention to be condescending when I wrote my answer. I'm not trying to belittle the OP, I'm simply stating facts, and providing a model (the bubble), which they might find helpful.
        $endgroup$
        – PM 2Ring
        3 hours ago


















      0












      $begingroup$

      To see a photon, it must be absorbed by a molecule in the retina [1]. The photon then no longer exists, so it is not available to be seen by another person.



      [1] Mammalia retinas can respond to single photons






      share|cite|improve this answer








      New contributor




      Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "151"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f473932%2fcan-two-people-see-the-same-photon%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        6 Answers
        6






        active

        oldest

        votes








        6 Answers
        6






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        12












        $begingroup$

        Seeing = detecting photons that happen to interact with your retina.



        You can't see photons when they are just travelling nearby. Take lasers for example. When someone is using laser pointer, the only reason you see the beam is that photons collide with dust and air particles and therefore their direction is changed. For example into your eye. Otherwise you wouldn't see anything.



        It isn't possible for two people to see the same photon.






        share|cite|improve this answer











        $endgroup$








        • 3




          $begingroup$
          Actually the human eye can detect a single photon. nature.com/news/people-can-sense-single-photons-1.20282
          $endgroup$
          – Michael Angelo
          11 hours ago







        • 1




          $begingroup$
          @MichaelAngelo i remember that paper. Result is like 10% above 50-50 discrimination :-) But yes, human eye is very sensitive. Last (paragraph) is factually incorrect
          $endgroup$
          – aaaaaa
          10 hours ago







        • 1




          $begingroup$
          Interesting. I stand corrected.
          $endgroup$
          – Andrej
          10 hours ago















        12












        $begingroup$

        Seeing = detecting photons that happen to interact with your retina.



        You can't see photons when they are just travelling nearby. Take lasers for example. When someone is using laser pointer, the only reason you see the beam is that photons collide with dust and air particles and therefore their direction is changed. For example into your eye. Otherwise you wouldn't see anything.



        It isn't possible for two people to see the same photon.






        share|cite|improve this answer











        $endgroup$








        • 3




          $begingroup$
          Actually the human eye can detect a single photon. nature.com/news/people-can-sense-single-photons-1.20282
          $endgroup$
          – Michael Angelo
          11 hours ago







        • 1




          $begingroup$
          @MichaelAngelo i remember that paper. Result is like 10% above 50-50 discrimination :-) But yes, human eye is very sensitive. Last (paragraph) is factually incorrect
          $endgroup$
          – aaaaaa
          10 hours ago







        • 1




          $begingroup$
          Interesting. I stand corrected.
          $endgroup$
          – Andrej
          10 hours ago













        12












        12








        12





        $begingroup$

        Seeing = detecting photons that happen to interact with your retina.



        You can't see photons when they are just travelling nearby. Take lasers for example. When someone is using laser pointer, the only reason you see the beam is that photons collide with dust and air particles and therefore their direction is changed. For example into your eye. Otherwise you wouldn't see anything.



        It isn't possible for two people to see the same photon.






        share|cite|improve this answer











        $endgroup$



        Seeing = detecting photons that happen to interact with your retina.



        You can't see photons when they are just travelling nearby. Take lasers for example. When someone is using laser pointer, the only reason you see the beam is that photons collide with dust and air particles and therefore their direction is changed. For example into your eye. Otherwise you wouldn't see anything.



        It isn't possible for two people to see the same photon.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 10 hours ago

























        answered 12 hours ago









        AndrejAndrej

        1507




        1507







        • 3




          $begingroup$
          Actually the human eye can detect a single photon. nature.com/news/people-can-sense-single-photons-1.20282
          $endgroup$
          – Michael Angelo
          11 hours ago







        • 1




          $begingroup$
          @MichaelAngelo i remember that paper. Result is like 10% above 50-50 discrimination :-) But yes, human eye is very sensitive. Last (paragraph) is factually incorrect
          $endgroup$
          – aaaaaa
          10 hours ago







        • 1




          $begingroup$
          Interesting. I stand corrected.
          $endgroup$
          – Andrej
          10 hours ago












        • 3




          $begingroup$
          Actually the human eye can detect a single photon. nature.com/news/people-can-sense-single-photons-1.20282
          $endgroup$
          – Michael Angelo
          11 hours ago







        • 1




          $begingroup$
          @MichaelAngelo i remember that paper. Result is like 10% above 50-50 discrimination :-) But yes, human eye is very sensitive. Last (paragraph) is factually incorrect
          $endgroup$
          – aaaaaa
          10 hours ago







        • 1




          $begingroup$
          Interesting. I stand corrected.
          $endgroup$
          – Andrej
          10 hours ago







        3




        3




        $begingroup$
        Actually the human eye can detect a single photon. nature.com/news/people-can-sense-single-photons-1.20282
        $endgroup$
        – Michael Angelo
        11 hours ago





        $begingroup$
        Actually the human eye can detect a single photon. nature.com/news/people-can-sense-single-photons-1.20282
        $endgroup$
        – Michael Angelo
        11 hours ago





        1




        1




        $begingroup$
        @MichaelAngelo i remember that paper. Result is like 10% above 50-50 discrimination :-) But yes, human eye is very sensitive. Last (paragraph) is factually incorrect
        $endgroup$
        – aaaaaa
        10 hours ago





        $begingroup$
        @MichaelAngelo i remember that paper. Result is like 10% above 50-50 discrimination :-) But yes, human eye is very sensitive. Last (paragraph) is factually incorrect
        $endgroup$
        – aaaaaa
        10 hours ago





        1




        1




        $begingroup$
        Interesting. I stand corrected.
        $endgroup$
        – Andrej
        10 hours ago




        $begingroup$
        Interesting. I stand corrected.
        $endgroup$
        – Andrej
        10 hours ago











        4












        $begingroup$

        In theory, in the most perversely contrieved case, and if you are willing to cheat a bit, it would be possible. In any half-reasonable, realistic setting, the answer is a clear, definite "No". Indeed, people cannot even see single photons at all (contrary to urban myths).



        How does seeing a photon work? The photon has to hit your eye, specifically one of the billion rhodopsin molecules in one of the several-million retinal cells, then something-something, and then a nerve impulse maybe, if some conditions hold goes through the roughly-one-million ganglion network in the retina, and maybe makes it to the brain. Maybe. And maybe the visual cortex makes something of it.

        The "maybe" part and the fact that a single cell has billions of G-proteins going active and inactive every second, and that there's a continuous flow of cGMP up and down is the reason why you cannot really see a single photon. That just isn't reasonably possible, if anything it's placebo effect or mere suggestion.



        So what's that something-something mentioned previously? The photon flips the cis-bond at position 11 in retinal to trans. Which, well, takes energy, and absorbs the photon.
        This triggers a typical G-protein cascade, with alpha subunit going off and blah blah, resulting in production of cGMP at the end. If the cGMP concentration goes above some threshold, and if the cell isn't currently refractive, then the cell fires an AP. That's a big "maybe". Then comes something-something ganglion cells, which is the other big "maybe" part above.



        The photon is "gone" after that. No second person could possibly see it.



        Now of course, no absorption is perfect, there's an absorption maximum for each type of rhodopsin, and even at that it isn't 100%. Outside the maximum, the absorption is far from 100%. Which means that the photon is emitted again, and it could, in theory, in the most improbable case, hit another person's eye, why not. But of course we have to cheat a bit here because it strictly isn't the same photon.

        Unless we are willing to cheat, the answer must therefore be "not possible".






        share|cite|improve this answer









        $endgroup$








        • 3




          $begingroup$
          Re "the photon is emitted again", is the emitted photon in any sense the SAME photon? I don't think so: the original photon is gone, and a new one is created.
          $endgroup$
          – jamesqf
          8 hours ago










        • $begingroup$
          The photon is absorbed or not, so these absorption maxima are irrelevant here - even at 100% absorption you still have re-emission. @jamesqf Assuming same energy, I would consider it to be the same. Is the original photon also gone after its polarization changes? Or after it gets reflected/refracted? Or even after it travels in free space?
          $endgroup$
          – Zizy Archer
          3 hours ago















        4












        $begingroup$

        In theory, in the most perversely contrieved case, and if you are willing to cheat a bit, it would be possible. In any half-reasonable, realistic setting, the answer is a clear, definite "No". Indeed, people cannot even see single photons at all (contrary to urban myths).



        How does seeing a photon work? The photon has to hit your eye, specifically one of the billion rhodopsin molecules in one of the several-million retinal cells, then something-something, and then a nerve impulse maybe, if some conditions hold goes through the roughly-one-million ganglion network in the retina, and maybe makes it to the brain. Maybe. And maybe the visual cortex makes something of it.

        The "maybe" part and the fact that a single cell has billions of G-proteins going active and inactive every second, and that there's a continuous flow of cGMP up and down is the reason why you cannot really see a single photon. That just isn't reasonably possible, if anything it's placebo effect or mere suggestion.



        So what's that something-something mentioned previously? The photon flips the cis-bond at position 11 in retinal to trans. Which, well, takes energy, and absorbs the photon.
        This triggers a typical G-protein cascade, with alpha subunit going off and blah blah, resulting in production of cGMP at the end. If the cGMP concentration goes above some threshold, and if the cell isn't currently refractive, then the cell fires an AP. That's a big "maybe". Then comes something-something ganglion cells, which is the other big "maybe" part above.



        The photon is "gone" after that. No second person could possibly see it.



        Now of course, no absorption is perfect, there's an absorption maximum for each type of rhodopsin, and even at that it isn't 100%. Outside the maximum, the absorption is far from 100%. Which means that the photon is emitted again, and it could, in theory, in the most improbable case, hit another person's eye, why not. But of course we have to cheat a bit here because it strictly isn't the same photon.

        Unless we are willing to cheat, the answer must therefore be "not possible".






        share|cite|improve this answer









        $endgroup$








        • 3




          $begingroup$
          Re "the photon is emitted again", is the emitted photon in any sense the SAME photon? I don't think so: the original photon is gone, and a new one is created.
          $endgroup$
          – jamesqf
          8 hours ago










        • $begingroup$
          The photon is absorbed or not, so these absorption maxima are irrelevant here - even at 100% absorption you still have re-emission. @jamesqf Assuming same energy, I would consider it to be the same. Is the original photon also gone after its polarization changes? Or after it gets reflected/refracted? Or even after it travels in free space?
          $endgroup$
          – Zizy Archer
          3 hours ago













        4












        4








        4





        $begingroup$

        In theory, in the most perversely contrieved case, and if you are willing to cheat a bit, it would be possible. In any half-reasonable, realistic setting, the answer is a clear, definite "No". Indeed, people cannot even see single photons at all (contrary to urban myths).



        How does seeing a photon work? The photon has to hit your eye, specifically one of the billion rhodopsin molecules in one of the several-million retinal cells, then something-something, and then a nerve impulse maybe, if some conditions hold goes through the roughly-one-million ganglion network in the retina, and maybe makes it to the brain. Maybe. And maybe the visual cortex makes something of it.

        The "maybe" part and the fact that a single cell has billions of G-proteins going active and inactive every second, and that there's a continuous flow of cGMP up and down is the reason why you cannot really see a single photon. That just isn't reasonably possible, if anything it's placebo effect or mere suggestion.



        So what's that something-something mentioned previously? The photon flips the cis-bond at position 11 in retinal to trans. Which, well, takes energy, and absorbs the photon.
        This triggers a typical G-protein cascade, with alpha subunit going off and blah blah, resulting in production of cGMP at the end. If the cGMP concentration goes above some threshold, and if the cell isn't currently refractive, then the cell fires an AP. That's a big "maybe". Then comes something-something ganglion cells, which is the other big "maybe" part above.



        The photon is "gone" after that. No second person could possibly see it.



        Now of course, no absorption is perfect, there's an absorption maximum for each type of rhodopsin, and even at that it isn't 100%. Outside the maximum, the absorption is far from 100%. Which means that the photon is emitted again, and it could, in theory, in the most improbable case, hit another person's eye, why not. But of course we have to cheat a bit here because it strictly isn't the same photon.

        Unless we are willing to cheat, the answer must therefore be "not possible".






        share|cite|improve this answer









        $endgroup$



        In theory, in the most perversely contrieved case, and if you are willing to cheat a bit, it would be possible. In any half-reasonable, realistic setting, the answer is a clear, definite "No". Indeed, people cannot even see single photons at all (contrary to urban myths).



        How does seeing a photon work? The photon has to hit your eye, specifically one of the billion rhodopsin molecules in one of the several-million retinal cells, then something-something, and then a nerve impulse maybe, if some conditions hold goes through the roughly-one-million ganglion network in the retina, and maybe makes it to the brain. Maybe. And maybe the visual cortex makes something of it.

        The "maybe" part and the fact that a single cell has billions of G-proteins going active and inactive every second, and that there's a continuous flow of cGMP up and down is the reason why you cannot really see a single photon. That just isn't reasonably possible, if anything it's placebo effect or mere suggestion.



        So what's that something-something mentioned previously? The photon flips the cis-bond at position 11 in retinal to trans. Which, well, takes energy, and absorbs the photon.
        This triggers a typical G-protein cascade, with alpha subunit going off and blah blah, resulting in production of cGMP at the end. If the cGMP concentration goes above some threshold, and if the cell isn't currently refractive, then the cell fires an AP. That's a big "maybe". Then comes something-something ganglion cells, which is the other big "maybe" part above.



        The photon is "gone" after that. No second person could possibly see it.



        Now of course, no absorption is perfect, there's an absorption maximum for each type of rhodopsin, and even at that it isn't 100%. Outside the maximum, the absorption is far from 100%. Which means that the photon is emitted again, and it could, in theory, in the most improbable case, hit another person's eye, why not. But of course we have to cheat a bit here because it strictly isn't the same photon.

        Unless we are willing to cheat, the answer must therefore be "not possible".







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 11 hours ago









        DamonDamon

        24315




        24315







        • 3




          $begingroup$
          Re "the photon is emitted again", is the emitted photon in any sense the SAME photon? I don't think so: the original photon is gone, and a new one is created.
          $endgroup$
          – jamesqf
          8 hours ago










        • $begingroup$
          The photon is absorbed or not, so these absorption maxima are irrelevant here - even at 100% absorption you still have re-emission. @jamesqf Assuming same energy, I would consider it to be the same. Is the original photon also gone after its polarization changes? Or after it gets reflected/refracted? Or even after it travels in free space?
          $endgroup$
          – Zizy Archer
          3 hours ago












        • 3




          $begingroup$
          Re "the photon is emitted again", is the emitted photon in any sense the SAME photon? I don't think so: the original photon is gone, and a new one is created.
          $endgroup$
          – jamesqf
          8 hours ago










        • $begingroup$
          The photon is absorbed or not, so these absorption maxima are irrelevant here - even at 100% absorption you still have re-emission. @jamesqf Assuming same energy, I would consider it to be the same. Is the original photon also gone after its polarization changes? Or after it gets reflected/refracted? Or even after it travels in free space?
          $endgroup$
          – Zizy Archer
          3 hours ago







        3




        3




        $begingroup$
        Re "the photon is emitted again", is the emitted photon in any sense the SAME photon? I don't think so: the original photon is gone, and a new one is created.
        $endgroup$
        – jamesqf
        8 hours ago




        $begingroup$
        Re "the photon is emitted again", is the emitted photon in any sense the SAME photon? I don't think so: the original photon is gone, and a new one is created.
        $endgroup$
        – jamesqf
        8 hours ago












        $begingroup$
        The photon is absorbed or not, so these absorption maxima are irrelevant here - even at 100% absorption you still have re-emission. @jamesqf Assuming same energy, I would consider it to be the same. Is the original photon also gone after its polarization changes? Or after it gets reflected/refracted? Or even after it travels in free space?
        $endgroup$
        – Zizy Archer
        3 hours ago




        $begingroup$
        The photon is absorbed or not, so these absorption maxima are irrelevant here - even at 100% absorption you still have re-emission. @jamesqf Assuming same energy, I would consider it to be the same. Is the original photon also gone after its polarization changes? Or after it gets reflected/refracted? Or even after it travels in free space?
        $endgroup$
        – Zizy Archer
        3 hours ago











        2












        $begingroup$

        Somehow the exchange of energy between all objects must take place. It was found that this process takes place through the emission and absorption of photons (initially called energy quanta).



        Photons are indivisible particles, they do not loose or gain inner energy during their life. The detection of a photon is possible only through the absorption of this photon.



        Theoretically, it is possible to obtain information about an absorbed photon by observing secondary emitted photons with lower energy (and longer wavelength).



        If you think of a laser beam that you have seen from the side, dust particles in the air are responsible. They reflect the laser light and you can see the beam. Of course, the photons reflected from the dust into the eyes do not arrive at the laser target.






        share|cite|improve this answer









        $endgroup$

















          2












          $begingroup$

          Somehow the exchange of energy between all objects must take place. It was found that this process takes place through the emission and absorption of photons (initially called energy quanta).



          Photons are indivisible particles, they do not loose or gain inner energy during their life. The detection of a photon is possible only through the absorption of this photon.



          Theoretically, it is possible to obtain information about an absorbed photon by observing secondary emitted photons with lower energy (and longer wavelength).



          If you think of a laser beam that you have seen from the side, dust particles in the air are responsible. They reflect the laser light and you can see the beam. Of course, the photons reflected from the dust into the eyes do not arrive at the laser target.






          share|cite|improve this answer









          $endgroup$















            2












            2








            2





            $begingroup$

            Somehow the exchange of energy between all objects must take place. It was found that this process takes place through the emission and absorption of photons (initially called energy quanta).



            Photons are indivisible particles, they do not loose or gain inner energy during their life. The detection of a photon is possible only through the absorption of this photon.



            Theoretically, it is possible to obtain information about an absorbed photon by observing secondary emitted photons with lower energy (and longer wavelength).



            If you think of a laser beam that you have seen from the side, dust particles in the air are responsible. They reflect the laser light and you can see the beam. Of course, the photons reflected from the dust into the eyes do not arrive at the laser target.






            share|cite|improve this answer









            $endgroup$



            Somehow the exchange of energy between all objects must take place. It was found that this process takes place through the emission and absorption of photons (initially called energy quanta).



            Photons are indivisible particles, they do not loose or gain inner energy during their life. The detection of a photon is possible only through the absorption of this photon.



            Theoretically, it is possible to obtain information about an absorbed photon by observing secondary emitted photons with lower energy (and longer wavelength).



            If you think of a laser beam that you have seen from the side, dust particles in the air are responsible. They reflect the laser light and you can see the beam. Of course, the photons reflected from the dust into the eyes do not arrive at the laser target.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 12 hours ago









            HolgerFiedlerHolgerFiedler

            4,44531238




            4,44531238





















                2












                $begingroup$

                Candles do not give off single photons. Preparing light sources that can emit single photons is tricky.



                The photon contains "one photon" (some small quantity of electronvolts) of energy. The energy in a photon is directly propotional to its frequency, so two photons of the same "color" have the same energy. The process of absorbing a photon transduces "one photon" of energy from the electromagnetic field to the detector. Consequently, if either human detects the photon, there is no energy left to be detected by the other human.



                In "Direct detection of a single photon by humans", J.N. Tinsley et al. directly measure the event of conscious detection of single photons. Subjects in that experiment



                • did (barely) better than chance (51.6% (p=0.0545)) correctly identifying photon present and photon absent events) when observer confidence in event was excluded and

                • did better than chance (60.0% (p=0.001)) when confidence was included.

                Interestingly, "the probability of correctly reporting a single photon is highly enhanced by the presence of an earlier photon within ∼5 s time interval. Averaging across all trials that had a preceding detection within a 10-s time window, the probability of correct response was found to be 0.56±0.03 (P=0.02)."



                Of course, not every photon that strikes the retina is transduced. "Based on the efficiency of the signal arm and the visual system, we estimate that in ∼6% of all post-selected events an actual light-induced signal was generated ..." So we expect to see improvements over random chance in the neighborhood of 6%, and all numbers reported above are in that neighborhood.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Candles do not give off single photons. Preparing light sources that can emit single photons is tricky.



                  The photon contains "one photon" (some small quantity of electronvolts) of energy. The energy in a photon is directly propotional to its frequency, so two photons of the same "color" have the same energy. The process of absorbing a photon transduces "one photon" of energy from the electromagnetic field to the detector. Consequently, if either human detects the photon, there is no energy left to be detected by the other human.



                  In "Direct detection of a single photon by humans", J.N. Tinsley et al. directly measure the event of conscious detection of single photons. Subjects in that experiment



                  • did (barely) better than chance (51.6% (p=0.0545)) correctly identifying photon present and photon absent events) when observer confidence in event was excluded and

                  • did better than chance (60.0% (p=0.001)) when confidence was included.

                  Interestingly, "the probability of correctly reporting a single photon is highly enhanced by the presence of an earlier photon within ∼5 s time interval. Averaging across all trials that had a preceding detection within a 10-s time window, the probability of correct response was found to be 0.56±0.03 (P=0.02)."



                  Of course, not every photon that strikes the retina is transduced. "Based on the efficiency of the signal arm and the visual system, we estimate that in ∼6% of all post-selected events an actual light-induced signal was generated ..." So we expect to see improvements over random chance in the neighborhood of 6%, and all numbers reported above are in that neighborhood.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Candles do not give off single photons. Preparing light sources that can emit single photons is tricky.



                    The photon contains "one photon" (some small quantity of electronvolts) of energy. The energy in a photon is directly propotional to its frequency, so two photons of the same "color" have the same energy. The process of absorbing a photon transduces "one photon" of energy from the electromagnetic field to the detector. Consequently, if either human detects the photon, there is no energy left to be detected by the other human.



                    In "Direct detection of a single photon by humans", J.N. Tinsley et al. directly measure the event of conscious detection of single photons. Subjects in that experiment



                    • did (barely) better than chance (51.6% (p=0.0545)) correctly identifying photon present and photon absent events) when observer confidence in event was excluded and

                    • did better than chance (60.0% (p=0.001)) when confidence was included.

                    Interestingly, "the probability of correctly reporting a single photon is highly enhanced by the presence of an earlier photon within ∼5 s time interval. Averaging across all trials that had a preceding detection within a 10-s time window, the probability of correct response was found to be 0.56±0.03 (P=0.02)."



                    Of course, not every photon that strikes the retina is transduced. "Based on the efficiency of the signal arm and the visual system, we estimate that in ∼6% of all post-selected events an actual light-induced signal was generated ..." So we expect to see improvements over random chance in the neighborhood of 6%, and all numbers reported above are in that neighborhood.






                    share|cite|improve this answer









                    $endgroup$



                    Candles do not give off single photons. Preparing light sources that can emit single photons is tricky.



                    The photon contains "one photon" (some small quantity of electronvolts) of energy. The energy in a photon is directly propotional to its frequency, so two photons of the same "color" have the same energy. The process of absorbing a photon transduces "one photon" of energy from the electromagnetic field to the detector. Consequently, if either human detects the photon, there is no energy left to be detected by the other human.



                    In "Direct detection of a single photon by humans", J.N. Tinsley et al. directly measure the event of conscious detection of single photons. Subjects in that experiment



                    • did (barely) better than chance (51.6% (p=0.0545)) correctly identifying photon present and photon absent events) when observer confidence in event was excluded and

                    • did better than chance (60.0% (p=0.001)) when confidence was included.

                    Interestingly, "the probability of correctly reporting a single photon is highly enhanced by the presence of an earlier photon within ∼5 s time interval. Averaging across all trials that had a preceding detection within a 10-s time window, the probability of correct response was found to be 0.56±0.03 (P=0.02)."



                    Of course, not every photon that strikes the retina is transduced. "Based on the efficiency of the signal arm and the visual system, we estimate that in ∼6% of all post-selected events an actual light-induced signal was generated ..." So we expect to see improvements over random chance in the neighborhood of 6%, and all numbers reported above are in that neighborhood.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 11 hours ago









                    Eric TowersEric Towers

                    1,14958




                    1,14958





















                        2












                        $begingroup$

                        Candles emit huge numbers of photons per second, and humans can't reliably detect single photons, so let's simplify your experiment to the bare essentials.



                        In the middle, we have an atom that we can excite (by firing a photon at it). Shortly after we excite this atom, it emits a single photon with a spherically symmetric radiation pattern, that is, there's an equal probability of detecting the photon in any direction. This is a standard example of an atom scattering a photon.



                        Now we place several identical photon detectors around our emitter atom, in various directions. After the photon is emitted, one of our detectors may detect it. Or the photon may miss all of our detectors and collide with something else.



                        We can model this as a spherical bubble centred on the emitter atom, expanding at the speed of light. When the bubble reaches a detector atom, that atom may detect the photon. When that happens, the bubble disappears, like a pin bursting a soap bubble. No other detector can detect the same photon (not even another detector at the exact same distance), all of the photon's energy was absorbed by the detector that was activated.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          I've read Gibbs 1996 article claiming that humans cannot see single photons. I've also read Tinsley et al.'s 2016 Direct detection of a single photon by humans where single photon stimulation is measured to result in better than chance conscious observation of single photons. I tend to believe the measurement over the "reasonable story".
                          $endgroup$
                          – Eric Towers
                          11 hours ago






                        • 2




                          $begingroup$
                          "Candles don't work like that" is condescending non-helpful. You understood the sentiment but wanted to show off, and this doesn't add anything to the better answers already posted.
                          $endgroup$
                          – Andy Ray
                          7 hours ago










                        • $begingroup$
                          @Andy I had no intention to be condescending when I wrote my answer. I'm not trying to belittle the OP, I'm simply stating facts, and providing a model (the bubble), which they might find helpful.
                          $endgroup$
                          – PM 2Ring
                          3 hours ago















                        2












                        $begingroup$

                        Candles emit huge numbers of photons per second, and humans can't reliably detect single photons, so let's simplify your experiment to the bare essentials.



                        In the middle, we have an atom that we can excite (by firing a photon at it). Shortly after we excite this atom, it emits a single photon with a spherically symmetric radiation pattern, that is, there's an equal probability of detecting the photon in any direction. This is a standard example of an atom scattering a photon.



                        Now we place several identical photon detectors around our emitter atom, in various directions. After the photon is emitted, one of our detectors may detect it. Or the photon may miss all of our detectors and collide with something else.



                        We can model this as a spherical bubble centred on the emitter atom, expanding at the speed of light. When the bubble reaches a detector atom, that atom may detect the photon. When that happens, the bubble disappears, like a pin bursting a soap bubble. No other detector can detect the same photon (not even another detector at the exact same distance), all of the photon's energy was absorbed by the detector that was activated.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          I've read Gibbs 1996 article claiming that humans cannot see single photons. I've also read Tinsley et al.'s 2016 Direct detection of a single photon by humans where single photon stimulation is measured to result in better than chance conscious observation of single photons. I tend to believe the measurement over the "reasonable story".
                          $endgroup$
                          – Eric Towers
                          11 hours ago






                        • 2




                          $begingroup$
                          "Candles don't work like that" is condescending non-helpful. You understood the sentiment but wanted to show off, and this doesn't add anything to the better answers already posted.
                          $endgroup$
                          – Andy Ray
                          7 hours ago










                        • $begingroup$
                          @Andy I had no intention to be condescending when I wrote my answer. I'm not trying to belittle the OP, I'm simply stating facts, and providing a model (the bubble), which they might find helpful.
                          $endgroup$
                          – PM 2Ring
                          3 hours ago













                        2












                        2








                        2





                        $begingroup$

                        Candles emit huge numbers of photons per second, and humans can't reliably detect single photons, so let's simplify your experiment to the bare essentials.



                        In the middle, we have an atom that we can excite (by firing a photon at it). Shortly after we excite this atom, it emits a single photon with a spherically symmetric radiation pattern, that is, there's an equal probability of detecting the photon in any direction. This is a standard example of an atom scattering a photon.



                        Now we place several identical photon detectors around our emitter atom, in various directions. After the photon is emitted, one of our detectors may detect it. Or the photon may miss all of our detectors and collide with something else.



                        We can model this as a spherical bubble centred on the emitter atom, expanding at the speed of light. When the bubble reaches a detector atom, that atom may detect the photon. When that happens, the bubble disappears, like a pin bursting a soap bubble. No other detector can detect the same photon (not even another detector at the exact same distance), all of the photon's energy was absorbed by the detector that was activated.






                        share|cite|improve this answer











                        $endgroup$



                        Candles emit huge numbers of photons per second, and humans can't reliably detect single photons, so let's simplify your experiment to the bare essentials.



                        In the middle, we have an atom that we can excite (by firing a photon at it). Shortly after we excite this atom, it emits a single photon with a spherically symmetric radiation pattern, that is, there's an equal probability of detecting the photon in any direction. This is a standard example of an atom scattering a photon.



                        Now we place several identical photon detectors around our emitter atom, in various directions. After the photon is emitted, one of our detectors may detect it. Or the photon may miss all of our detectors and collide with something else.



                        We can model this as a spherical bubble centred on the emitter atom, expanding at the speed of light. When the bubble reaches a detector atom, that atom may detect the photon. When that happens, the bubble disappears, like a pin bursting a soap bubble. No other detector can detect the same photon (not even another detector at the exact same distance), all of the photon's energy was absorbed by the detector that was activated.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited 3 hours ago

























                        answered 11 hours ago









                        PM 2RingPM 2Ring

                        3,70121123




                        3,70121123











                        • $begingroup$
                          I've read Gibbs 1996 article claiming that humans cannot see single photons. I've also read Tinsley et al.'s 2016 Direct detection of a single photon by humans where single photon stimulation is measured to result in better than chance conscious observation of single photons. I tend to believe the measurement over the "reasonable story".
                          $endgroup$
                          – Eric Towers
                          11 hours ago






                        • 2




                          $begingroup$
                          "Candles don't work like that" is condescending non-helpful. You understood the sentiment but wanted to show off, and this doesn't add anything to the better answers already posted.
                          $endgroup$
                          – Andy Ray
                          7 hours ago










                        • $begingroup$
                          @Andy I had no intention to be condescending when I wrote my answer. I'm not trying to belittle the OP, I'm simply stating facts, and providing a model (the bubble), which they might find helpful.
                          $endgroup$
                          – PM 2Ring
                          3 hours ago
















                        • $begingroup$
                          I've read Gibbs 1996 article claiming that humans cannot see single photons. I've also read Tinsley et al.'s 2016 Direct detection of a single photon by humans where single photon stimulation is measured to result in better than chance conscious observation of single photons. I tend to believe the measurement over the "reasonable story".
                          $endgroup$
                          – Eric Towers
                          11 hours ago






                        • 2




                          $begingroup$
                          "Candles don't work like that" is condescending non-helpful. You understood the sentiment but wanted to show off, and this doesn't add anything to the better answers already posted.
                          $endgroup$
                          – Andy Ray
                          7 hours ago










                        • $begingroup$
                          @Andy I had no intention to be condescending when I wrote my answer. I'm not trying to belittle the OP, I'm simply stating facts, and providing a model (the bubble), which they might find helpful.
                          $endgroup$
                          – PM 2Ring
                          3 hours ago















                        $begingroup$
                        I've read Gibbs 1996 article claiming that humans cannot see single photons. I've also read Tinsley et al.'s 2016 Direct detection of a single photon by humans where single photon stimulation is measured to result in better than chance conscious observation of single photons. I tend to believe the measurement over the "reasonable story".
                        $endgroup$
                        – Eric Towers
                        11 hours ago




                        $begingroup$
                        I've read Gibbs 1996 article claiming that humans cannot see single photons. I've also read Tinsley et al.'s 2016 Direct detection of a single photon by humans where single photon stimulation is measured to result in better than chance conscious observation of single photons. I tend to believe the measurement over the "reasonable story".
                        $endgroup$
                        – Eric Towers
                        11 hours ago




                        2




                        2




                        $begingroup$
                        "Candles don't work like that" is condescending non-helpful. You understood the sentiment but wanted to show off, and this doesn't add anything to the better answers already posted.
                        $endgroup$
                        – Andy Ray
                        7 hours ago




                        $begingroup$
                        "Candles don't work like that" is condescending non-helpful. You understood the sentiment but wanted to show off, and this doesn't add anything to the better answers already posted.
                        $endgroup$
                        – Andy Ray
                        7 hours ago












                        $begingroup$
                        @Andy I had no intention to be condescending when I wrote my answer. I'm not trying to belittle the OP, I'm simply stating facts, and providing a model (the bubble), which they might find helpful.
                        $endgroup$
                        – PM 2Ring
                        3 hours ago




                        $begingroup$
                        @Andy I had no intention to be condescending when I wrote my answer. I'm not trying to belittle the OP, I'm simply stating facts, and providing a model (the bubble), which they might find helpful.
                        $endgroup$
                        – PM 2Ring
                        3 hours ago











                        0












                        $begingroup$

                        To see a photon, it must be absorbed by a molecule in the retina [1]. The photon then no longer exists, so it is not available to be seen by another person.



                        [1] Mammalia retinas can respond to single photons






                        share|cite|improve this answer








                        New contributor




                        Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$

















                          0












                          $begingroup$

                          To see a photon, it must be absorbed by a molecule in the retina [1]. The photon then no longer exists, so it is not available to be seen by another person.



                          [1] Mammalia retinas can respond to single photons






                          share|cite|improve this answer








                          New contributor




                          Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            To see a photon, it must be absorbed by a molecule in the retina [1]. The photon then no longer exists, so it is not available to be seen by another person.



                            [1] Mammalia retinas can respond to single photons






                            share|cite|improve this answer








                            New contributor




                            Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            $endgroup$



                            To see a photon, it must be absorbed by a molecule in the retina [1]. The photon then no longer exists, so it is not available to be seen by another person.



                            [1] Mammalia retinas can respond to single photons







                            share|cite|improve this answer








                            New contributor




                            Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            share|cite|improve this answer



                            share|cite|improve this answer






                            New contributor




                            Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            answered 3 hours ago









                            Andrew MortonAndrew Morton

                            1055




                            1055




                            New contributor




                            Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





                            New contributor





                            Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            Andrew Morton is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f473932%2fcan-two-people-see-the-same-photon%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거