Uniformly continuous derivative implies existence of limitHow to show that a uniformly continuous function is bounded?Simple Construction of a Uniformly Continuous Real Valued Function With No Derivative Anywhere In The Domain?Bounded derivative implies uniform continuity- does the domain need to be an open interval?Prove $f$ is uniformly continuous iff $ lim_xto inftyf(x)=0$The product of uniformly continuous functions is not necessarily uniformly continuousIs $f$ uniformly continuous?Continuous function goes to zero at $pm infty$, show it is uniformly continuousDifficult limit problem involving sine and tangent$f$ is uniformly continuous if and only if the limits exist in $mathbbR$Relationship with uniformly continuous function and its derivative.

how to sum variables from file in bash

A ​Note ​on ​N!

Do I have an "anti-research" personality?

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

How to have a sharp product image?

Don’t seats that recline flat defeat the purpose of having seatbelts?

A Strange Latex Symbol

Phrase for the opposite of "foolproof"

How did Captain America manage to do this?

What is the difference between `command a[bc]d` and `command `ab,cd`

Examples of subgroups where it's nontrivial to show closure under multiplication?

Is the 5 MB static resource size limit 5,242,880 bytes or 5,000,000 bytes?

How come there are so many candidates for the 2020 Democratic party presidential nomination?

French for 'It must be my imagination'?

How to make a pipeline wait for end-of-file or stop after an error?

Why does nature favour the Laplacian?

Pulling the rope with one hand is as heavy as with two hands?

How to pronounce 'C++' in Spanish

What is the most expensive material in the world that could be used to create Pun-Pun's lute?

How can I change the color of a part of a line?

Why does processed meat contain preservatives, while canned fish needs not?

Apply MapThread to all but one variable

If a warlock with the Repelling Blast invocation casts Eldritch Blast and hits, must the targets always be pushed back?

How do I use proper grammar in the negation of "have not" for the following sentence translation?



Uniformly continuous derivative implies existence of limit


How to show that a uniformly continuous function is bounded?Simple Construction of a Uniformly Continuous Real Valued Function With No Derivative Anywhere In The Domain?Bounded derivative implies uniform continuity- does the domain need to be an open interval?Prove $f$ is uniformly continuous iff $ lim_xto inftyf(x)=0$The product of uniformly continuous functions is not necessarily uniformly continuousIs $f$ uniformly continuous?Continuous function goes to zero at $pm infty$, show it is uniformly continuousDifficult limit problem involving sine and tangent$f$ is uniformly continuous if and only if the limits exist in $mathbbR$Relationship with uniformly continuous function and its derivative.













2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$











  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago















2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$











  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago













2












2








2


1



$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$





Let $f in C^1([0, +infty))$. Suppose that $lim_x rightarrow +infty f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_x rightarrow +infty f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frace^xf(x)e^x$ since $fracddxe^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=fracsin(x^2)x$ whose derivative is $f'(x)=2cos(x^2)-fracsin(x^2)x^2$ since $lim_x rightarrow +infty f'(x)$ doesn't exist.



Any ideas? Thanks in advance.







real-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









lzralbulzralbu

697512




697512











  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago
















  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago















$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago




$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    58 mins ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    28 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    14 mins ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    58 mins ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    28 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    14 mins ago















3












$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    58 mins ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    28 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    14 mins ago













3












3








3





$begingroup$

We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$



We have $lim_x to infty f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_x to inftyf(x) - f(0) = L - f(0) quad (textconvergent)$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_x to inftyf'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_x to infty f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_x_n - delta^x_n + delta f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 1 hour ago









RRLRRL

54.1k52675




54.1k52675











  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    58 mins ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    28 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    14 mins ago
















  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    58 mins ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    28 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    14 mins ago















$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago




$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago












$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago




$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago












$begingroup$
I shall do so...
$endgroup$
– RRL
58 mins ago




$begingroup$
I shall do so...
$endgroup$
– RRL
58 mins ago












$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
28 mins ago




$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
28 mins ago












$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
14 mins ago




$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
14 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу