Using a Lyapunov function to classify stability and sketching a phase portraitLyapunov stability question from Arnold's triviumNon linear phase portraitNonlinear phase portrait and linearizationSystem of differential equations, phase portraitDynamical Systems- Plotting Phase PortraitPhase portrait of ODE in polar coordinatesQuestions about stability in the sense of LyapunovLinearization method or Lyapunov function - examplestability using linearization instead of Lyapunov failsLyapunov function instead of linearization

How did Captain America manage to do this?

Do I have an "anti-research" personality?

What route did the Hindenburg take when traveling from Germany to the U.S.?

How to reduce LED flash rate (frequency)

Does holding a wand and speaking its command word count as V/S/M spell components?

a sore throat vs a strep throat vs strep throat

What's the polite way to say "I need to urinate"?

Which big number is bigger?

How exactly does Hawking radiation decrease the mass of black holes?

Who is the Umpire in this picture?

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

The Defining Moment

Does a semiconductor follow Ohm's law?

Don’t seats that recline flat defeat the purpose of having seatbelts?

How can the Zone of Truth spell be defeated without the caster knowing?

French for 'It must be my imagination'?

What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?

Was there a Viking Exchange as well as a Columbian one?

Is it possible to determine the symmetric encryption method used by output size?

Fizzy, soft, pop and still drinks

How to make a pipeline wait for end-of-file or stop after an error?

Unexpected email from Yorkshire Bank

How to verbalise code in Mathematica?

How to get a plain text file version of a CP/M .BAS (M-BASIC) program?



Using a Lyapunov function to classify stability and sketching a phase portrait


Lyapunov stability question from Arnold's triviumNon linear phase portraitNonlinear phase portrait and linearizationSystem of differential equations, phase portraitDynamical Systems- Plotting Phase PortraitPhase portrait of ODE in polar coordinatesQuestions about stability in the sense of LyapunovLinearization method or Lyapunov function - examplestability using linearization instead of Lyapunov failsLyapunov function instead of linearization













3












$begingroup$



Consider the system
$$x' = -x^3-xy^2k$$
$$y' = -y^3-x^2ky$$
Where $k$ is a given positive integer.



a.) Find and classify according to stability the equilibrium solutions.



$itHint:$ Let $V(x,y) = x^2 + y^2$



b.) Sketch a phase portrait when $k = 1$



$itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




a.)
Using $V$, we get $fracddtV=2xx'+2yy'$



Plugging in our system , we get:



$$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
$$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
$$y^2k=-x^2$$
Which only works for $x=y=0$



Therefore our system is asymptotically stable at the origin.



I am having trouble with b.), mostly because the hint is confusing me.



Let $y=ax$, then our system becomes
$$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
$$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$



    Consider the system
    $$x' = -x^3-xy^2k$$
    $$y' = -y^3-x^2ky$$
    Where $k$ is a given positive integer.



    a.) Find and classify according to stability the equilibrium solutions.



    $itHint:$ Let $V(x,y) = x^2 + y^2$



    b.) Sketch a phase portrait when $k = 1$



    $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




    a.)
    Using $V$, we get $fracddtV=2xx'+2yy'$



    Plugging in our system , we get:



    $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
    $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
    I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
    $$y^2k=-x^2$$
    Which only works for $x=y=0$



    Therefore our system is asymptotically stable at the origin.



    I am having trouble with b.), mostly because the hint is confusing me.



    Let $y=ax$, then our system becomes
    $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
    $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
    I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$



      Consider the system
      $$x' = -x^3-xy^2k$$
      $$y' = -y^3-x^2ky$$
      Where $k$ is a given positive integer.



      a.) Find and classify according to stability the equilibrium solutions.



      $itHint:$ Let $V(x,y) = x^2 + y^2$



      b.) Sketch a phase portrait when $k = 1$



      $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




      a.)
      Using $V$, we get $fracddtV=2xx'+2yy'$



      Plugging in our system , we get:



      $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
      $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
      I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
      $$y^2k=-x^2$$
      Which only works for $x=y=0$



      Therefore our system is asymptotically stable at the origin.



      I am having trouble with b.), mostly because the hint is confusing me.



      Let $y=ax$, then our system becomes
      $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
      $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
      I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










      share|cite|improve this question











      $endgroup$





      Consider the system
      $$x' = -x^3-xy^2k$$
      $$y' = -y^3-x^2ky$$
      Where $k$ is a given positive integer.



      a.) Find and classify according to stability the equilibrium solutions.



      $itHint:$ Let $V(x,y) = x^2 + y^2$



      b.) Sketch a phase portrait when $k = 1$



      $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




      a.)
      Using $V$, we get $fracddtV=2xx'+2yy'$



      Plugging in our system , we get:



      $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
      $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
      I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
      $$y^2k=-x^2$$
      Which only works for $x=y=0$



      Therefore our system is asymptotically stable at the origin.



      I am having trouble with b.), mostly because the hint is confusing me.



      Let $y=ax$, then our system becomes
      $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
      $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
      I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.







      ordinary-differential-equations stability-in-odes lyapunov-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago







      hkj447

















      asked 3 hours ago









      hkj447hkj447

      978




      978




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



          So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Phase portraits - a partial offering



            Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



            $k = 1$



            The linear system is



            $$beginalign
            beginsplit
            dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
            doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
            endsplit
            endalign$$



            $$ dotr = fracx dotx + y dotyr = -r^3 $$



            The lone critical point is the origin.



            When $y = a x$, $ainmathbbR$, we have
            $$beginalign
            beginsplit
            dotx &= -x^3left( 1 + a^2 right) \
            doty &= -a y^3left( 1 + a^2 right)
            endsplit
            endalign$$



            k=1



            $k = 2$



            $$beginalign
            beginsplit
            dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
            doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
            endsplit
            endalign$$



            $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



            The bounding curves for $dotr$ are when $cos 4theta = 1$



            $$dotr = -r^3$$



            and when $cos 4theta = -1$



            $$dotr = -tfrac14 r^3 left(r^2+2right)$$



            The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



            k=2k=5






            share|cite|improve this answer











            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204990%2fusing-a-lyapunov-function-to-classify-stability-and-sketching-a-phase-portrait%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



              So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                  So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






                  share|cite|improve this answer









                  $endgroup$



                  Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                  So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  aghostinthefiguresaghostinthefigures

                  1,4391318




                  1,4391318





















                      2












                      $begingroup$

                      Phase portraits - a partial offering



                      Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                      $k = 1$



                      The linear system is



                      $$beginalign
                      beginsplit
                      dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                      doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                      endsplit
                      endalign$$



                      $$ dotr = fracx dotx + y dotyr = -r^3 $$



                      The lone critical point is the origin.



                      When $y = a x$, $ainmathbbR$, we have
                      $$beginalign
                      beginsplit
                      dotx &= -x^3left( 1 + a^2 right) \
                      doty &= -a y^3left( 1 + a^2 right)
                      endsplit
                      endalign$$



                      k=1



                      $k = 2$



                      $$beginalign
                      beginsplit
                      dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                      doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                      endsplit
                      endalign$$



                      $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                      The bounding curves for $dotr$ are when $cos 4theta = 1$



                      $$dotr = -r^3$$



                      and when $cos 4theta = -1$



                      $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                      The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                      k=2k=5






                      share|cite|improve this answer











                      $endgroup$

















                        2












                        $begingroup$

                        Phase portraits - a partial offering



                        Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                        $k = 1$



                        The linear system is



                        $$beginalign
                        beginsplit
                        dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                        doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                        endsplit
                        endalign$$



                        $$ dotr = fracx dotx + y dotyr = -r^3 $$



                        The lone critical point is the origin.



                        When $y = a x$, $ainmathbbR$, we have
                        $$beginalign
                        beginsplit
                        dotx &= -x^3left( 1 + a^2 right) \
                        doty &= -a y^3left( 1 + a^2 right)
                        endsplit
                        endalign$$



                        k=1



                        $k = 2$



                        $$beginalign
                        beginsplit
                        dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                        doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                        endsplit
                        endalign$$



                        $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                        The bounding curves for $dotr$ are when $cos 4theta = 1$



                        $$dotr = -r^3$$



                        and when $cos 4theta = -1$



                        $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                        The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                        k=2k=5






                        share|cite|improve this answer











                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Phase portraits - a partial offering



                          Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                          $k = 1$



                          The linear system is



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                          doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = fracx dotx + y dotyr = -r^3 $$



                          The lone critical point is the origin.



                          When $y = a x$, $ainmathbbR$, we have
                          $$beginalign
                          beginsplit
                          dotx &= -x^3left( 1 + a^2 right) \
                          doty &= -a y^3left( 1 + a^2 right)
                          endsplit
                          endalign$$



                          k=1



                          $k = 2$



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                          doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                          The bounding curves for $dotr$ are when $cos 4theta = 1$



                          $$dotr = -r^3$$



                          and when $cos 4theta = -1$



                          $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                          The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                          k=2k=5






                          share|cite|improve this answer











                          $endgroup$



                          Phase portraits - a partial offering



                          Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                          $k = 1$



                          The linear system is



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                          doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = fracx dotx + y dotyr = -r^3 $$



                          The lone critical point is the origin.



                          When $y = a x$, $ainmathbbR$, we have
                          $$beginalign
                          beginsplit
                          dotx &= -x^3left( 1 + a^2 right) \
                          doty &= -a y^3left( 1 + a^2 right)
                          endsplit
                          endalign$$



                          k=1



                          $k = 2$



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                          doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                          The bounding curves for $dotr$ are when $cos 4theta = 1$



                          $$dotr = -r^3$$



                          and when $cos 4theta = -1$



                          $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                          The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                          k=2k=5







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 2 hours ago

























                          answered 3 hours ago









                          dantopadantopa

                          6,76442345




                          6,76442345



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204990%2fusing-a-lyapunov-function-to-classify-stability-and-sketching-a-phase-portrait%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                              Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                              Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거