Using a Lyapunov function to classify stability and sketching a phase portraitLyapunov stability question from Arnold's triviumNon linear phase portraitNonlinear phase portrait and linearizationSystem of differential equations, phase portraitDynamical Systems- Plotting Phase PortraitPhase portrait of ODE in polar coordinatesQuestions about stability in the sense of LyapunovLinearization method or Lyapunov function - examplestability using linearization instead of Lyapunov failsLyapunov function instead of linearization

How did Captain America manage to do this?

Do I have an "anti-research" personality?

What route did the Hindenburg take when traveling from Germany to the U.S.?

How to reduce LED flash rate (frequency)

Does holding a wand and speaking its command word count as V/S/M spell components?

a sore throat vs a strep throat vs strep throat

What's the polite way to say "I need to urinate"?

Which big number is bigger?

How exactly does Hawking radiation decrease the mass of black holes?

Who is the Umpire in this picture?

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

The Defining Moment

Does a semiconductor follow Ohm's law?

Don’t seats that recline flat defeat the purpose of having seatbelts?

How can the Zone of Truth spell be defeated without the caster knowing?

French for 'It must be my imagination'?

What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?

Was there a Viking Exchange as well as a Columbian one?

Is it possible to determine the symmetric encryption method used by output size?

Fizzy, soft, pop and still drinks

How to make a pipeline wait for end-of-file or stop after an error?

Unexpected email from Yorkshire Bank

How to verbalise code in Mathematica?

How to get a plain text file version of a CP/M .BAS (M-BASIC) program?



Using a Lyapunov function to classify stability and sketching a phase portrait


Lyapunov stability question from Arnold's triviumNon linear phase portraitNonlinear phase portrait and linearizationSystem of differential equations, phase portraitDynamical Systems- Plotting Phase PortraitPhase portrait of ODE in polar coordinatesQuestions about stability in the sense of LyapunovLinearization method or Lyapunov function - examplestability using linearization instead of Lyapunov failsLyapunov function instead of linearization













3












$begingroup$



Consider the system
$$x' = -x^3-xy^2k$$
$$y' = -y^3-x^2ky$$
Where $k$ is a given positive integer.



a.) Find and classify according to stability the equilibrium solutions.



$itHint:$ Let $V(x,y) = x^2 + y^2$



b.) Sketch a phase portrait when $k = 1$



$itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




a.)
Using $V$, we get $fracddtV=2xx'+2yy'$



Plugging in our system , we get:



$$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
$$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
$$y^2k=-x^2$$
Which only works for $x=y=0$



Therefore our system is asymptotically stable at the origin.



I am having trouble with b.), mostly because the hint is confusing me.



Let $y=ax$, then our system becomes
$$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
$$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$



    Consider the system
    $$x' = -x^3-xy^2k$$
    $$y' = -y^3-x^2ky$$
    Where $k$ is a given positive integer.



    a.) Find and classify according to stability the equilibrium solutions.



    $itHint:$ Let $V(x,y) = x^2 + y^2$



    b.) Sketch a phase portrait when $k = 1$



    $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




    a.)
    Using $V$, we get $fracddtV=2xx'+2yy'$



    Plugging in our system , we get:



    $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
    $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
    I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
    $$y^2k=-x^2$$
    Which only works for $x=y=0$



    Therefore our system is asymptotically stable at the origin.



    I am having trouble with b.), mostly because the hint is confusing me.



    Let $y=ax$, then our system becomes
    $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
    $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
    I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$



      Consider the system
      $$x' = -x^3-xy^2k$$
      $$y' = -y^3-x^2ky$$
      Where $k$ is a given positive integer.



      a.) Find and classify according to stability the equilibrium solutions.



      $itHint:$ Let $V(x,y) = x^2 + y^2$



      b.) Sketch a phase portrait when $k = 1$



      $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




      a.)
      Using $V$, we get $fracddtV=2xx'+2yy'$



      Plugging in our system , we get:



      $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
      $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
      I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
      $$y^2k=-x^2$$
      Which only works for $x=y=0$



      Therefore our system is asymptotically stable at the origin.



      I am having trouble with b.), mostly because the hint is confusing me.



      Let $y=ax$, then our system becomes
      $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
      $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
      I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.










      share|cite|improve this question











      $endgroup$





      Consider the system
      $$x' = -x^3-xy^2k$$
      $$y' = -y^3-x^2ky$$
      Where $k$ is a given positive integer.



      a.) Find and classify according to stability the equilibrium solutions.



      $itHint:$ Let $V(x,y) = x^2 + y^2$



      b.) Sketch a phase portrait when $k = 1$



      $itHint:$ What are $x'$ and $y'$ when $y=ax$ for some real number $a$?




      a.)
      Using $V$, we get $fracddtV=2xx'+2yy'$



      Plugging in our system , we get:



      $$fracddtV=2x(-x^3-xy^2k)+2y(-y^3-x^2ky)$$
      $$=-(x^4+y^4)-x^2y^2k-x^2ky^2<0$$
      I dropped the $2$ since it doesn't matter to determine stability. We see that our own equilibrium is $(0,0)$ since setting $x'=0$ we get
      $$y^2k=-x^2$$
      Which only works for $x=y=0$



      Therefore our system is asymptotically stable at the origin.



      I am having trouble with b.), mostly because the hint is confusing me.



      Let $y=ax$, then our system becomes
      $$x'=-x^3-a^2x^3=-x^3(1+a^2)$$
      $$y'=-a^3x^3-ax^3=-ax^3(1+a^2)$$
      I am not sure what to do with this. Using linearization doesn't work since the Jacobian will be the zero vector at the point of interest. I have never had a problem that asks to draw a phase portrait when linearization doesn't work, so I am hoping someone more clever than me can offer some advice.







      ordinary-differential-equations stability-in-odes lyapunov-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago







      hkj447

















      asked 3 hours ago









      hkj447hkj447

      978




      978




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



          So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Phase portraits - a partial offering



            Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



            $k = 1$



            The linear system is



            $$beginalign
            beginsplit
            dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
            doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
            endsplit
            endalign$$



            $$ dotr = fracx dotx + y dotyr = -r^3 $$



            The lone critical point is the origin.



            When $y = a x$, $ainmathbbR$, we have
            $$beginalign
            beginsplit
            dotx &= -x^3left( 1 + a^2 right) \
            doty &= -a y^3left( 1 + a^2 right)
            endsplit
            endalign$$



            k=1



            $k = 2$



            $$beginalign
            beginsplit
            dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
            doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
            endsplit
            endalign$$



            $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



            The bounding curves for $dotr$ are when $cos 4theta = 1$



            $$dotr = -r^3$$



            and when $cos 4theta = -1$



            $$dotr = -tfrac14 r^3 left(r^2+2right)$$



            The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



            k=2k=5






            share|cite|improve this answer











            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204990%2fusing-a-lyapunov-function-to-classify-stability-and-sketching-a-phase-portrait%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



              So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                  So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.






                  share|cite|improve this answer









                  $endgroup$



                  Although there are many ways to do this, I suspect what the problem is guiding you towards doing is to obtain the flow directly by evaluating over every line that intersects the origin in phase space.



                  So for a sketch, you would draw the line $y = 0.1 x$, and use the expression you found above for $a = 0.1$ to determine the magnitude and direction of the flow on that line. Then try it for a couple of other different lines, and use common sense to fill in the rest.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  aghostinthefiguresaghostinthefigures

                  1,4391318




                  1,4391318





















                      2












                      $begingroup$

                      Phase portraits - a partial offering



                      Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                      $k = 1$



                      The linear system is



                      $$beginalign
                      beginsplit
                      dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                      doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                      endsplit
                      endalign$$



                      $$ dotr = fracx dotx + y dotyr = -r^3 $$



                      The lone critical point is the origin.



                      When $y = a x$, $ainmathbbR$, we have
                      $$beginalign
                      beginsplit
                      dotx &= -x^3left( 1 + a^2 right) \
                      doty &= -a y^3left( 1 + a^2 right)
                      endsplit
                      endalign$$



                      k=1



                      $k = 2$



                      $$beginalign
                      beginsplit
                      dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                      doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                      endsplit
                      endalign$$



                      $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                      The bounding curves for $dotr$ are when $cos 4theta = 1$



                      $$dotr = -r^3$$



                      and when $cos 4theta = -1$



                      $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                      The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                      k=2k=5






                      share|cite|improve this answer











                      $endgroup$

















                        2












                        $begingroup$

                        Phase portraits - a partial offering



                        Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                        $k = 1$



                        The linear system is



                        $$beginalign
                        beginsplit
                        dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                        doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                        endsplit
                        endalign$$



                        $$ dotr = fracx dotx + y dotyr = -r^3 $$



                        The lone critical point is the origin.



                        When $y = a x$, $ainmathbbR$, we have
                        $$beginalign
                        beginsplit
                        dotx &= -x^3left( 1 + a^2 right) \
                        doty &= -a y^3left( 1 + a^2 right)
                        endsplit
                        endalign$$



                        k=1



                        $k = 2$



                        $$beginalign
                        beginsplit
                        dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                        doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                        endsplit
                        endalign$$



                        $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                        The bounding curves for $dotr$ are when $cos 4theta = 1$



                        $$dotr = -r^3$$



                        and when $cos 4theta = -1$



                        $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                        The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                        k=2k=5






                        share|cite|improve this answer











                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Phase portraits - a partial offering



                          Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                          $k = 1$



                          The linear system is



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                          doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = fracx dotx + y dotyr = -r^3 $$



                          The lone critical point is the origin.



                          When $y = a x$, $ainmathbbR$, we have
                          $$beginalign
                          beginsplit
                          dotx &= -x^3left( 1 + a^2 right) \
                          doty &= -a y^3left( 1 + a^2 right)
                          endsplit
                          endalign$$



                          k=1



                          $k = 2$



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                          doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                          The bounding curves for $dotr$ are when $cos 4theta = 1$



                          $$dotr = -r^3$$



                          and when $cos 4theta = -1$



                          $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                          The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                          k=2k=5






                          share|cite|improve this answer











                          $endgroup$



                          Phase portraits - a partial offering



                          Below are phase portraits for $k=1,2,5$. The red lines indicate the null clines where $doty=0$ and $doty=0$.



                          $k = 1$



                          The linear system is



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^2 = -x left( x^2 + y^2 right) \
                          doty &= -y^3 - x^2y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = fracx dotx + y dotyr = -r^3 $$



                          The lone critical point is the origin.



                          When $y = a x$, $ainmathbbR$, we have
                          $$beginalign
                          beginsplit
                          dotx &= -x^3left( 1 + a^2 right) \
                          doty &= -a y^3left( 1 + a^2 right)
                          endsplit
                          endalign$$



                          k=1



                          $k = 2$



                          $$beginalign
                          beginsplit
                          dotx &= -x^3 - xy^4 = -x left( x^2 + y^4 right) \
                          doty &= -y^3 - x^4y = -y left( x^2 + y^2 right)
                          endsplit
                          endalign$$



                          $$ dotr = tfrac18 r^3 left(left(r^2-2right) cos (4 theta )-r^2-6right) $$



                          The bounding curves for $dotr$ are when $cos 4theta = 1$



                          $$dotr = -r^3$$



                          and when $cos 4theta = -1$



                          $$dotr = -tfrac14 r^3 left(r^2+2right)$$



                          The bounding curves cross at $r=sqrt2$. At no point is $dotr$ ever positive.



                          k=2k=5







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 2 hours ago

























                          answered 3 hours ago









                          dantopadantopa

                          6,76442345




                          6,76442345



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204990%2fusing-a-lyapunov-function-to-classify-stability-and-sketching-a-phase-portrait%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

                              Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу