Solve limit without using L'Hopital (first year problem for first year solution, not graduate level)Zero to the zero power – is $0^0=1$?Solve the limit $limlimits_xto 0left(frac e^xx-frac 1arctanxright)$ without using L'Hopital (with my attempts)Trigonometric limit: $(1-sqrtcos x)/x^2$ as $xto 0$, without using L'HopitalSolving a limit without l'HopitalDetermine the limit without using l'hopital.Euler Limit of $fracx^x-x1-x+ln(x)$ Without L'HopitalLimit of integral without analytical solutionI need help solving a limit, without using l'hôpital's rule.Explain how to solve this trigonometric limit without L'Hôpital's rule?Elementary way to evaluate $lim_xto0fracsqrt[n]a+x - sqrt[n]a-xx$Limit without L'Hopital $lim_xto0fracpi - 4arctan1over 1+xx$Evaluate the Limit Without L'Hopital Rule

How do I tell my girlfriend she's been buying me books by the wrong author for the last nine months?

Five 5-cent coins touching each other

What happens if a caster is surprised while casting a spell with a long casting time?

Why didn't Caesar move against Sextus Pompey immediately after Munda?

Why didn't Avengers simply jump 5 years back?

How to track mail undetectably?

Is it possible to alias a column based on the result of a select+where?

Why was Pan Am Flight 103 flying over Lockerbie?

How to remove system locales

ATMEGA328P-U vs ATMEGA328-PU

Why am I getting an electric shock from the water in my hot tub?

What is the meaning of "it" in "as luck would have it"?

What verb goes with "coup"?

Basic calculations in PGF/TikZ for loop

Why are examinees often not allowed to leave during the start and end of an exam?

Active wildlife outside the window- Good or Bad for Cat psychology?

Basis and cardinality

Does a lens with a bigger max. aperture focus faster than a lens with a smaller max. aperture?

Why are symbols not written in words?

Having to constantly redo everything because I don't know how to do it

Processes in a session in an interactive shell vs in a script

My mom helped me cosign a car and now she wants to take it

A quine of sorts

Is it advisable to inform the CEO about his brother accessing his office?



Solve limit without using L'Hopital (first year problem for first year solution, not graduate level)


Zero to the zero power – is $0^0=1$?Solve the limit $limlimits_xto 0left(frac e^xx-frac 1arctanxright)$ without using L'Hopital (with my attempts)Trigonometric limit: $(1-sqrtcos x)/x^2$ as $xto 0$, without using L'HopitalSolving a limit without l'HopitalDetermine the limit without using l'hopital.Euler Limit of $fracx^x-x1-x+ln(x)$ Without L'HopitalLimit of integral without analytical solutionI need help solving a limit, without using l'hôpital's rule.Explain how to solve this trigonometric limit without L'Hôpital's rule?Elementary way to evaluate $lim_xto0fracsqrt[n]a+x - sqrt[n]a-xx$Limit without L'Hopital $lim_xto0fracpi - 4arctan1over 1+xx$Evaluate the Limit Without L'Hopital Rule













4












$begingroup$


I need to solve $$ lim_xto 0 (sqrt 2x+1 - sqrt[3]1-3x)^x$$ Please note that I'm first year student and that this can be solved much simpler than in the answers. I tried doing $$lim_xto 0 e^x cdot lnBigl(sqrt2x+1-1-left(sqrt[3]1-3x-1right)Bigr)$$ then going with the limit inside the function like this



$$expleftlim_xto0x cdot
lnleft[lim_x to 0Bigl(sqrt2x+1-1Bigr) cdot
lim_x to 0 left(1-
frac sqrt[3]1-3x-1over x sqrt2x+1-1 over x right)right] right$$



But problem is that although I can solve third limit this way, I get that second limit is 0, which makes that 0 is inside of $ln$ and thus is incorrect attempt. Please help, I'm new here, I wan't to contribute back and this is from my university math exam.










share|cite|improve this question









New contributor



dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 1




    $begingroup$
    By the way, the reason your attempt does not work is that you are allowed to push the operator $lim_x to x_0$ inside the argument of a function $f$ only when $f$ is continuous $x_0$. In this case, the function $ln$ is not continuous at $x_0 = 0$ because it is not even defined there.
    $endgroup$
    – giobrach
    10 hours ago










  • $begingroup$
    Thanks, I appreciate it.
    $endgroup$
    – dzaralica69
    9 hours ago















4












$begingroup$


I need to solve $$ lim_xto 0 (sqrt 2x+1 - sqrt[3]1-3x)^x$$ Please note that I'm first year student and that this can be solved much simpler than in the answers. I tried doing $$lim_xto 0 e^x cdot lnBigl(sqrt2x+1-1-left(sqrt[3]1-3x-1right)Bigr)$$ then going with the limit inside the function like this



$$expleftlim_xto0x cdot
lnleft[lim_x to 0Bigl(sqrt2x+1-1Bigr) cdot
lim_x to 0 left(1-
frac sqrt[3]1-3x-1over x sqrt2x+1-1 over x right)right] right$$



But problem is that although I can solve third limit this way, I get that second limit is 0, which makes that 0 is inside of $ln$ and thus is incorrect attempt. Please help, I'm new here, I wan't to contribute back and this is from my university math exam.










share|cite|improve this question









New contributor



dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 1




    $begingroup$
    By the way, the reason your attempt does not work is that you are allowed to push the operator $lim_x to x_0$ inside the argument of a function $f$ only when $f$ is continuous $x_0$. In this case, the function $ln$ is not continuous at $x_0 = 0$ because it is not even defined there.
    $endgroup$
    – giobrach
    10 hours ago










  • $begingroup$
    Thanks, I appreciate it.
    $endgroup$
    – dzaralica69
    9 hours ago













4












4








4





$begingroup$


I need to solve $$ lim_xto 0 (sqrt 2x+1 - sqrt[3]1-3x)^x$$ Please note that I'm first year student and that this can be solved much simpler than in the answers. I tried doing $$lim_xto 0 e^x cdot lnBigl(sqrt2x+1-1-left(sqrt[3]1-3x-1right)Bigr)$$ then going with the limit inside the function like this



$$expleftlim_xto0x cdot
lnleft[lim_x to 0Bigl(sqrt2x+1-1Bigr) cdot
lim_x to 0 left(1-
frac sqrt[3]1-3x-1over x sqrt2x+1-1 over x right)right] right$$



But problem is that although I can solve third limit this way, I get that second limit is 0, which makes that 0 is inside of $ln$ and thus is incorrect attempt. Please help, I'm new here, I wan't to contribute back and this is from my university math exam.










share|cite|improve this question









New contributor



dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




I need to solve $$ lim_xto 0 (sqrt 2x+1 - sqrt[3]1-3x)^x$$ Please note that I'm first year student and that this can be solved much simpler than in the answers. I tried doing $$lim_xto 0 e^x cdot lnBigl(sqrt2x+1-1-left(sqrt[3]1-3x-1right)Bigr)$$ then going with the limit inside the function like this



$$expleftlim_xto0x cdot
lnleft[lim_x to 0Bigl(sqrt2x+1-1Bigr) cdot
lim_x to 0 left(1-
frac sqrt[3]1-3x-1over x sqrt2x+1-1 over x right)right] right$$



But problem is that although I can solve third limit this way, I get that second limit is 0, which makes that 0 is inside of $ln$ and thus is incorrect attempt. Please help, I'm new here, I wan't to contribute back and this is from my university math exam.







limits limits-without-lhopital






share|cite|improve this question









New contributor



dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|cite|improve this question









New contributor



dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|cite|improve this question




share|cite|improve this question








edited 9 hours ago









Chase Ryan Taylor

4,6383 gold badges16 silver badges32 bronze badges




4,6383 gold badges16 silver badges32 bronze badges






New contributor



dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 10 hours ago









dzaralica69dzaralica69

305 bronze badges




305 bronze badges




New contributor



dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




dzaralica69 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









  • 1




    $begingroup$
    By the way, the reason your attempt does not work is that you are allowed to push the operator $lim_x to x_0$ inside the argument of a function $f$ only when $f$ is continuous $x_0$. In this case, the function $ln$ is not continuous at $x_0 = 0$ because it is not even defined there.
    $endgroup$
    – giobrach
    10 hours ago










  • $begingroup$
    Thanks, I appreciate it.
    $endgroup$
    – dzaralica69
    9 hours ago












  • 1




    $begingroup$
    By the way, the reason your attempt does not work is that you are allowed to push the operator $lim_x to x_0$ inside the argument of a function $f$ only when $f$ is continuous $x_0$. In this case, the function $ln$ is not continuous at $x_0 = 0$ because it is not even defined there.
    $endgroup$
    – giobrach
    10 hours ago










  • $begingroup$
    Thanks, I appreciate it.
    $endgroup$
    – dzaralica69
    9 hours ago







1




1




$begingroup$
By the way, the reason your attempt does not work is that you are allowed to push the operator $lim_x to x_0$ inside the argument of a function $f$ only when $f$ is continuous $x_0$. In this case, the function $ln$ is not continuous at $x_0 = 0$ because it is not even defined there.
$endgroup$
– giobrach
10 hours ago




$begingroup$
By the way, the reason your attempt does not work is that you are allowed to push the operator $lim_x to x_0$ inside the argument of a function $f$ only when $f$ is continuous $x_0$. In this case, the function $ln$ is not continuous at $x_0 = 0$ because it is not even defined there.
$endgroup$
– giobrach
10 hours ago












$begingroup$
Thanks, I appreciate it.
$endgroup$
– dzaralica69
9 hours ago




$begingroup$
Thanks, I appreciate it.
$endgroup$
– dzaralica69
9 hours ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

We shall only try to find $lim_xto 0^+$ because for negative $x$ near $0$, the power is not defined (for reasons given below).



Working without little-o stuff:



Note that $$(1+x)^2=1+2x+x^2ge 1+2x$$ for all $x$
and of course $1<1+2x$ for all $x>0$.
We conclude that
$$1 <sqrt1+2xle 1+xqquadtextfor x>0.$$



Similarly,
$$ (1-x)^3=1-3x+3x^2-x^3>1-3xqquad textfor x<3$$
and
$$(1-2x)^3=1-6x+12x^2-8x^3<1-3x-3x(1-4x)<1-3x qquad textfor 0<x<frac14,$$
hence
$$1-2x<sqrt[3]1-3x<1-xqquadtextfor 0<x<frac14 $$
and so
$$ x<sqrt1+2x-sqrt[3]1-3x<4xqquadtextfor 0<x<frac14.$$
(One can find similar bounds for negative $x$, showing that $sqrt1+2x-sqrt[3]1-3xsim x<0$, and therefore $(sqrt1+2x-sqrt[3]1-3x)^x$ is undefined for negative $x$ near $0$)



If we already know that $lim_xto 0^+x^x=1$, it follows that $(sqrt1+2x-sqrt[3]1-3x)^x$ is squeezed between $x^x$ and $4^xcdot x^x$ and, as $lim_xto 0^+4^x=1$, therefore also
$$ lim_xto0^+(sqrt1+2x-sqrt[3]1-3x)^x=lim_xto0^+x^x=1.$$




Why is $lim_xto 0^+x^x=1$?



Perhaps the most important inequality about the exponential is
$$ e^tge 1+tqquad textfor all tinBbb R.$$
Therefore, for $t>0$,
$$ e^t=(e^t/2)^2ge(1+tfrac t2)^2=1+t+frac14t^2>frac14t^2.$$
It follows that
$$0le lim_tto +inftyfracte^tle lim_tto +inftyfractfrac14t^2=0.$$
With $x=e^-t$ (i.e., $t=-ln x$), this becomes
$$lim_xto 0^+ xln x=0$$
and therefore
$$lim_xto0^+ x^x=lim_xto 0^+ e^xln x=e^lim_xto 0^+ xln x =e^0=1.$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Applause, thank you for simple solution
    $endgroup$
    – dzaralica69
    7 hours ago


















2












$begingroup$

Use equivalence:
$$bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^xln(sqrt 2x+1 - sqrt[3]1-3x). $$
Now by the binomial expansion at order $1$:
$$(1+x)^alpha=1+alpha x+o(x),$$
one obtains, with $alpha=frac12$ and $alpha=frac13$,
$$sqrt 2x+1 -sqrt[3]1-3x=(1+x+o(x))-(1-x+o(x))=2x+o(x),$$
so that $ ;sqrt 2x+1 - sqrt[3]1-3xsim_0 2x$, and ultimately
$$xln(sqrt 2x+1 - sqrt[3]1-3x)sim_0 xln (2x)=xln 2+xln x,$$
which tends to $0$ when $x$ tends to $0$, so that
$$lim_xto 0bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^0=1.$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Can this be solved with just witty thinking, and not some big o notation and graduate level solutions?
    $endgroup$
    – dzaralica69
    9 hours ago






  • 1




    $begingroup$
    I used little o, and, for me this is only a first year college solution.
    $endgroup$
    – Bernard
    9 hours ago


















0












$begingroup$

$$left(sqrt1+2x-sqrt[3]1-3xright)^x=(1+x+o(x)-1+x+o(x))^x=2^xx^x(1+o(1))^x.$$



$2^xx^x rightarrow 1$, $(1+o(1))^x=e^xo(1)=e^o(1)=1+o(1)$, thus the limit is $1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I have no idea what you just wrote, please elaborate, what is $o(x)$ ?
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    en.m.wikipedia.org/wiki/Big_O_notation
    $endgroup$
    – Mindlack
    10 hours ago










  • $begingroup$
    I don't want to bother you again, since you helped me, and answer is answer, but can you solve it without using big o notation function, I'm first year electrical engineering student. Pretty please?
    $endgroup$
    – dzaralica69
    10 hours ago


















0












$begingroup$

Hint:



As lcm$(2,3)=6$



We have $$dfraclim_xto0((1+2x)^3-(1-3x)^2)^xlim_...(sum_r=0^5((1-2x)^r/2(1-3x)^(6-r)/3)^x$$



The denominator tends to $1$



The numerator $$=lim_...(12x+3x^2+8x^3)^x=lim_..(12x)^x(1+x/4+2x^2/3)^x=1$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I't square root and cube root, not power of two and three respectively.
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    @dzaralica69, I have used $$a^6-b^6=(a-b)(?)$$
    $endgroup$
    – lab bhattacharjee
    9 hours ago










  • $begingroup$
    But $(12x)^x$ is $0^0$ ?
    $endgroup$
    – dzaralica69
    9 hours ago










  • $begingroup$
    @dzaralica69, math.stackexchange.com/questions/11150/…
    $endgroup$
    – lab bhattacharjee
    9 hours ago













Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






dzaralica69 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3278072%2fsolve-limit-without-using-lhopital-first-year-problem-for-first-year-solution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























4 Answers
4






active

oldest

votes








4 Answers
4






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

We shall only try to find $lim_xto 0^+$ because for negative $x$ near $0$, the power is not defined (for reasons given below).



Working without little-o stuff:



Note that $$(1+x)^2=1+2x+x^2ge 1+2x$$ for all $x$
and of course $1<1+2x$ for all $x>0$.
We conclude that
$$1 <sqrt1+2xle 1+xqquadtextfor x>0.$$



Similarly,
$$ (1-x)^3=1-3x+3x^2-x^3>1-3xqquad textfor x<3$$
and
$$(1-2x)^3=1-6x+12x^2-8x^3<1-3x-3x(1-4x)<1-3x qquad textfor 0<x<frac14,$$
hence
$$1-2x<sqrt[3]1-3x<1-xqquadtextfor 0<x<frac14 $$
and so
$$ x<sqrt1+2x-sqrt[3]1-3x<4xqquadtextfor 0<x<frac14.$$
(One can find similar bounds for negative $x$, showing that $sqrt1+2x-sqrt[3]1-3xsim x<0$, and therefore $(sqrt1+2x-sqrt[3]1-3x)^x$ is undefined for negative $x$ near $0$)



If we already know that $lim_xto 0^+x^x=1$, it follows that $(sqrt1+2x-sqrt[3]1-3x)^x$ is squeezed between $x^x$ and $4^xcdot x^x$ and, as $lim_xto 0^+4^x=1$, therefore also
$$ lim_xto0^+(sqrt1+2x-sqrt[3]1-3x)^x=lim_xto0^+x^x=1.$$




Why is $lim_xto 0^+x^x=1$?



Perhaps the most important inequality about the exponential is
$$ e^tge 1+tqquad textfor all tinBbb R.$$
Therefore, for $t>0$,
$$ e^t=(e^t/2)^2ge(1+tfrac t2)^2=1+t+frac14t^2>frac14t^2.$$
It follows that
$$0le lim_tto +inftyfracte^tle lim_tto +inftyfractfrac14t^2=0.$$
With $x=e^-t$ (i.e., $t=-ln x$), this becomes
$$lim_xto 0^+ xln x=0$$
and therefore
$$lim_xto0^+ x^x=lim_xto 0^+ e^xln x=e^lim_xto 0^+ xln x =e^0=1.$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Applause, thank you for simple solution
    $endgroup$
    – dzaralica69
    7 hours ago















2












$begingroup$

We shall only try to find $lim_xto 0^+$ because for negative $x$ near $0$, the power is not defined (for reasons given below).



Working without little-o stuff:



Note that $$(1+x)^2=1+2x+x^2ge 1+2x$$ for all $x$
and of course $1<1+2x$ for all $x>0$.
We conclude that
$$1 <sqrt1+2xle 1+xqquadtextfor x>0.$$



Similarly,
$$ (1-x)^3=1-3x+3x^2-x^3>1-3xqquad textfor x<3$$
and
$$(1-2x)^3=1-6x+12x^2-8x^3<1-3x-3x(1-4x)<1-3x qquad textfor 0<x<frac14,$$
hence
$$1-2x<sqrt[3]1-3x<1-xqquadtextfor 0<x<frac14 $$
and so
$$ x<sqrt1+2x-sqrt[3]1-3x<4xqquadtextfor 0<x<frac14.$$
(One can find similar bounds for negative $x$, showing that $sqrt1+2x-sqrt[3]1-3xsim x<0$, and therefore $(sqrt1+2x-sqrt[3]1-3x)^x$ is undefined for negative $x$ near $0$)



If we already know that $lim_xto 0^+x^x=1$, it follows that $(sqrt1+2x-sqrt[3]1-3x)^x$ is squeezed between $x^x$ and $4^xcdot x^x$ and, as $lim_xto 0^+4^x=1$, therefore also
$$ lim_xto0^+(sqrt1+2x-sqrt[3]1-3x)^x=lim_xto0^+x^x=1.$$




Why is $lim_xto 0^+x^x=1$?



Perhaps the most important inequality about the exponential is
$$ e^tge 1+tqquad textfor all tinBbb R.$$
Therefore, for $t>0$,
$$ e^t=(e^t/2)^2ge(1+tfrac t2)^2=1+t+frac14t^2>frac14t^2.$$
It follows that
$$0le lim_tto +inftyfracte^tle lim_tto +inftyfractfrac14t^2=0.$$
With $x=e^-t$ (i.e., $t=-ln x$), this becomes
$$lim_xto 0^+ xln x=0$$
and therefore
$$lim_xto0^+ x^x=lim_xto 0^+ e^xln x=e^lim_xto 0^+ xln x =e^0=1.$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Applause, thank you for simple solution
    $endgroup$
    – dzaralica69
    7 hours ago













2












2








2





$begingroup$

We shall only try to find $lim_xto 0^+$ because for negative $x$ near $0$, the power is not defined (for reasons given below).



Working without little-o stuff:



Note that $$(1+x)^2=1+2x+x^2ge 1+2x$$ for all $x$
and of course $1<1+2x$ for all $x>0$.
We conclude that
$$1 <sqrt1+2xle 1+xqquadtextfor x>0.$$



Similarly,
$$ (1-x)^3=1-3x+3x^2-x^3>1-3xqquad textfor x<3$$
and
$$(1-2x)^3=1-6x+12x^2-8x^3<1-3x-3x(1-4x)<1-3x qquad textfor 0<x<frac14,$$
hence
$$1-2x<sqrt[3]1-3x<1-xqquadtextfor 0<x<frac14 $$
and so
$$ x<sqrt1+2x-sqrt[3]1-3x<4xqquadtextfor 0<x<frac14.$$
(One can find similar bounds for negative $x$, showing that $sqrt1+2x-sqrt[3]1-3xsim x<0$, and therefore $(sqrt1+2x-sqrt[3]1-3x)^x$ is undefined for negative $x$ near $0$)



If we already know that $lim_xto 0^+x^x=1$, it follows that $(sqrt1+2x-sqrt[3]1-3x)^x$ is squeezed between $x^x$ and $4^xcdot x^x$ and, as $lim_xto 0^+4^x=1$, therefore also
$$ lim_xto0^+(sqrt1+2x-sqrt[3]1-3x)^x=lim_xto0^+x^x=1.$$




Why is $lim_xto 0^+x^x=1$?



Perhaps the most important inequality about the exponential is
$$ e^tge 1+tqquad textfor all tinBbb R.$$
Therefore, for $t>0$,
$$ e^t=(e^t/2)^2ge(1+tfrac t2)^2=1+t+frac14t^2>frac14t^2.$$
It follows that
$$0le lim_tto +inftyfracte^tle lim_tto +inftyfractfrac14t^2=0.$$
With $x=e^-t$ (i.e., $t=-ln x$), this becomes
$$lim_xto 0^+ xln x=0$$
and therefore
$$lim_xto0^+ x^x=lim_xto 0^+ e^xln x=e^lim_xto 0^+ xln x =e^0=1.$$






share|cite|improve this answer









$endgroup$



We shall only try to find $lim_xto 0^+$ because for negative $x$ near $0$, the power is not defined (for reasons given below).



Working without little-o stuff:



Note that $$(1+x)^2=1+2x+x^2ge 1+2x$$ for all $x$
and of course $1<1+2x$ for all $x>0$.
We conclude that
$$1 <sqrt1+2xle 1+xqquadtextfor x>0.$$



Similarly,
$$ (1-x)^3=1-3x+3x^2-x^3>1-3xqquad textfor x<3$$
and
$$(1-2x)^3=1-6x+12x^2-8x^3<1-3x-3x(1-4x)<1-3x qquad textfor 0<x<frac14,$$
hence
$$1-2x<sqrt[3]1-3x<1-xqquadtextfor 0<x<frac14 $$
and so
$$ x<sqrt1+2x-sqrt[3]1-3x<4xqquadtextfor 0<x<frac14.$$
(One can find similar bounds for negative $x$, showing that $sqrt1+2x-sqrt[3]1-3xsim x<0$, and therefore $(sqrt1+2x-sqrt[3]1-3x)^x$ is undefined for negative $x$ near $0$)



If we already know that $lim_xto 0^+x^x=1$, it follows that $(sqrt1+2x-sqrt[3]1-3x)^x$ is squeezed between $x^x$ and $4^xcdot x^x$ and, as $lim_xto 0^+4^x=1$, therefore also
$$ lim_xto0^+(sqrt1+2x-sqrt[3]1-3x)^x=lim_xto0^+x^x=1.$$




Why is $lim_xto 0^+x^x=1$?



Perhaps the most important inequality about the exponential is
$$ e^tge 1+tqquad textfor all tinBbb R.$$
Therefore, for $t>0$,
$$ e^t=(e^t/2)^2ge(1+tfrac t2)^2=1+t+frac14t^2>frac14t^2.$$
It follows that
$$0le lim_tto +inftyfracte^tle lim_tto +inftyfractfrac14t^2=0.$$
With $x=e^-t$ (i.e., $t=-ln x$), this becomes
$$lim_xto 0^+ xln x=0$$
and therefore
$$lim_xto0^+ x^x=lim_xto 0^+ e^xln x=e^lim_xto 0^+ xln x =e^0=1.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 8 hours ago









Hagen von EitzenHagen von Eitzen

291k23 gold badges279 silver badges514 bronze badges




291k23 gold badges279 silver badges514 bronze badges











  • $begingroup$
    Applause, thank you for simple solution
    $endgroup$
    – dzaralica69
    7 hours ago
















  • $begingroup$
    Applause, thank you for simple solution
    $endgroup$
    – dzaralica69
    7 hours ago















$begingroup$
Applause, thank you for simple solution
$endgroup$
– dzaralica69
7 hours ago




$begingroup$
Applause, thank you for simple solution
$endgroup$
– dzaralica69
7 hours ago











2












$begingroup$

Use equivalence:
$$bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^xln(sqrt 2x+1 - sqrt[3]1-3x). $$
Now by the binomial expansion at order $1$:
$$(1+x)^alpha=1+alpha x+o(x),$$
one obtains, with $alpha=frac12$ and $alpha=frac13$,
$$sqrt 2x+1 -sqrt[3]1-3x=(1+x+o(x))-(1-x+o(x))=2x+o(x),$$
so that $ ;sqrt 2x+1 - sqrt[3]1-3xsim_0 2x$, and ultimately
$$xln(sqrt 2x+1 - sqrt[3]1-3x)sim_0 xln (2x)=xln 2+xln x,$$
which tends to $0$ when $x$ tends to $0$, so that
$$lim_xto 0bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^0=1.$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Can this be solved with just witty thinking, and not some big o notation and graduate level solutions?
    $endgroup$
    – dzaralica69
    9 hours ago






  • 1




    $begingroup$
    I used little o, and, for me this is only a first year college solution.
    $endgroup$
    – Bernard
    9 hours ago















2












$begingroup$

Use equivalence:
$$bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^xln(sqrt 2x+1 - sqrt[3]1-3x). $$
Now by the binomial expansion at order $1$:
$$(1+x)^alpha=1+alpha x+o(x),$$
one obtains, with $alpha=frac12$ and $alpha=frac13$,
$$sqrt 2x+1 -sqrt[3]1-3x=(1+x+o(x))-(1-x+o(x))=2x+o(x),$$
so that $ ;sqrt 2x+1 - sqrt[3]1-3xsim_0 2x$, and ultimately
$$xln(sqrt 2x+1 - sqrt[3]1-3x)sim_0 xln (2x)=xln 2+xln x,$$
which tends to $0$ when $x$ tends to $0$, so that
$$lim_xto 0bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^0=1.$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Can this be solved with just witty thinking, and not some big o notation and graduate level solutions?
    $endgroup$
    – dzaralica69
    9 hours ago






  • 1




    $begingroup$
    I used little o, and, for me this is only a first year college solution.
    $endgroup$
    – Bernard
    9 hours ago













2












2








2





$begingroup$

Use equivalence:
$$bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^xln(sqrt 2x+1 - sqrt[3]1-3x). $$
Now by the binomial expansion at order $1$:
$$(1+x)^alpha=1+alpha x+o(x),$$
one obtains, with $alpha=frac12$ and $alpha=frac13$,
$$sqrt 2x+1 -sqrt[3]1-3x=(1+x+o(x))-(1-x+o(x))=2x+o(x),$$
so that $ ;sqrt 2x+1 - sqrt[3]1-3xsim_0 2x$, and ultimately
$$xln(sqrt 2x+1 - sqrt[3]1-3x)sim_0 xln (2x)=xln 2+xln x,$$
which tends to $0$ when $x$ tends to $0$, so that
$$lim_xto 0bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^0=1.$$






share|cite|improve this answer











$endgroup$



Use equivalence:
$$bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^xln(sqrt 2x+1 - sqrt[3]1-3x). $$
Now by the binomial expansion at order $1$:
$$(1+x)^alpha=1+alpha x+o(x),$$
one obtains, with $alpha=frac12$ and $alpha=frac13$,
$$sqrt 2x+1 -sqrt[3]1-3x=(1+x+o(x))-(1-x+o(x))=2x+o(x),$$
so that $ ;sqrt 2x+1 - sqrt[3]1-3xsim_0 2x$, and ultimately
$$xln(sqrt 2x+1 - sqrt[3]1-3x)sim_0 xln (2x)=xln 2+xln x,$$
which tends to $0$ when $x$ tends to $0$, so that
$$lim_xto 0bigl(sqrt 2x+1 -sqrt[3]1-3xbigr)^x=mathrm e^0=1.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 9 hours ago

























answered 9 hours ago









BernardBernard

128k7 gold badges43 silver badges122 bronze badges




128k7 gold badges43 silver badges122 bronze badges











  • $begingroup$
    Can this be solved with just witty thinking, and not some big o notation and graduate level solutions?
    $endgroup$
    – dzaralica69
    9 hours ago






  • 1




    $begingroup$
    I used little o, and, for me this is only a first year college solution.
    $endgroup$
    – Bernard
    9 hours ago
















  • $begingroup$
    Can this be solved with just witty thinking, and not some big o notation and graduate level solutions?
    $endgroup$
    – dzaralica69
    9 hours ago






  • 1




    $begingroup$
    I used little o, and, for me this is only a first year college solution.
    $endgroup$
    – Bernard
    9 hours ago















$begingroup$
Can this be solved with just witty thinking, and not some big o notation and graduate level solutions?
$endgroup$
– dzaralica69
9 hours ago




$begingroup$
Can this be solved with just witty thinking, and not some big o notation and graduate level solutions?
$endgroup$
– dzaralica69
9 hours ago




1




1




$begingroup$
I used little o, and, for me this is only a first year college solution.
$endgroup$
– Bernard
9 hours ago




$begingroup$
I used little o, and, for me this is only a first year college solution.
$endgroup$
– Bernard
9 hours ago











0












$begingroup$

$$left(sqrt1+2x-sqrt[3]1-3xright)^x=(1+x+o(x)-1+x+o(x))^x=2^xx^x(1+o(1))^x.$$



$2^xx^x rightarrow 1$, $(1+o(1))^x=e^xo(1)=e^o(1)=1+o(1)$, thus the limit is $1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I have no idea what you just wrote, please elaborate, what is $o(x)$ ?
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    en.m.wikipedia.org/wiki/Big_O_notation
    $endgroup$
    – Mindlack
    10 hours ago










  • $begingroup$
    I don't want to bother you again, since you helped me, and answer is answer, but can you solve it without using big o notation function, I'm first year electrical engineering student. Pretty please?
    $endgroup$
    – dzaralica69
    10 hours ago















0












$begingroup$

$$left(sqrt1+2x-sqrt[3]1-3xright)^x=(1+x+o(x)-1+x+o(x))^x=2^xx^x(1+o(1))^x.$$



$2^xx^x rightarrow 1$, $(1+o(1))^x=e^xo(1)=e^o(1)=1+o(1)$, thus the limit is $1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I have no idea what you just wrote, please elaborate, what is $o(x)$ ?
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    en.m.wikipedia.org/wiki/Big_O_notation
    $endgroup$
    – Mindlack
    10 hours ago










  • $begingroup$
    I don't want to bother you again, since you helped me, and answer is answer, but can you solve it without using big o notation function, I'm first year electrical engineering student. Pretty please?
    $endgroup$
    – dzaralica69
    10 hours ago













0












0








0





$begingroup$

$$left(sqrt1+2x-sqrt[3]1-3xright)^x=(1+x+o(x)-1+x+o(x))^x=2^xx^x(1+o(1))^x.$$



$2^xx^x rightarrow 1$, $(1+o(1))^x=e^xo(1)=e^o(1)=1+o(1)$, thus the limit is $1$.






share|cite|improve this answer









$endgroup$



$$left(sqrt1+2x-sqrt[3]1-3xright)^x=(1+x+o(x)-1+x+o(x))^x=2^xx^x(1+o(1))^x.$$



$2^xx^x rightarrow 1$, $(1+o(1))^x=e^xo(1)=e^o(1)=1+o(1)$, thus the limit is $1$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 10 hours ago









MindlackMindlack

5,7834 silver badges13 bronze badges




5,7834 silver badges13 bronze badges











  • $begingroup$
    I have no idea what you just wrote, please elaborate, what is $o(x)$ ?
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    en.m.wikipedia.org/wiki/Big_O_notation
    $endgroup$
    – Mindlack
    10 hours ago










  • $begingroup$
    I don't want to bother you again, since you helped me, and answer is answer, but can you solve it without using big o notation function, I'm first year electrical engineering student. Pretty please?
    $endgroup$
    – dzaralica69
    10 hours ago
















  • $begingroup$
    I have no idea what you just wrote, please elaborate, what is $o(x)$ ?
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    en.m.wikipedia.org/wiki/Big_O_notation
    $endgroup$
    – Mindlack
    10 hours ago










  • $begingroup$
    I don't want to bother you again, since you helped me, and answer is answer, but can you solve it without using big o notation function, I'm first year electrical engineering student. Pretty please?
    $endgroup$
    – dzaralica69
    10 hours ago















$begingroup$
I have no idea what you just wrote, please elaborate, what is $o(x)$ ?
$endgroup$
– dzaralica69
10 hours ago




$begingroup$
I have no idea what you just wrote, please elaborate, what is $o(x)$ ?
$endgroup$
– dzaralica69
10 hours ago












$begingroup$
en.m.wikipedia.org/wiki/Big_O_notation
$endgroup$
– Mindlack
10 hours ago




$begingroup$
en.m.wikipedia.org/wiki/Big_O_notation
$endgroup$
– Mindlack
10 hours ago












$begingroup$
I don't want to bother you again, since you helped me, and answer is answer, but can you solve it without using big o notation function, I'm first year electrical engineering student. Pretty please?
$endgroup$
– dzaralica69
10 hours ago




$begingroup$
I don't want to bother you again, since you helped me, and answer is answer, but can you solve it without using big o notation function, I'm first year electrical engineering student. Pretty please?
$endgroup$
– dzaralica69
10 hours ago











0












$begingroup$

Hint:



As lcm$(2,3)=6$



We have $$dfraclim_xto0((1+2x)^3-(1-3x)^2)^xlim_...(sum_r=0^5((1-2x)^r/2(1-3x)^(6-r)/3)^x$$



The denominator tends to $1$



The numerator $$=lim_...(12x+3x^2+8x^3)^x=lim_..(12x)^x(1+x/4+2x^2/3)^x=1$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I't square root and cube root, not power of two and three respectively.
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    @dzaralica69, I have used $$a^6-b^6=(a-b)(?)$$
    $endgroup$
    – lab bhattacharjee
    9 hours ago










  • $begingroup$
    But $(12x)^x$ is $0^0$ ?
    $endgroup$
    – dzaralica69
    9 hours ago










  • $begingroup$
    @dzaralica69, math.stackexchange.com/questions/11150/…
    $endgroup$
    – lab bhattacharjee
    9 hours ago















0












$begingroup$

Hint:



As lcm$(2,3)=6$



We have $$dfraclim_xto0((1+2x)^3-(1-3x)^2)^xlim_...(sum_r=0^5((1-2x)^r/2(1-3x)^(6-r)/3)^x$$



The denominator tends to $1$



The numerator $$=lim_...(12x+3x^2+8x^3)^x=lim_..(12x)^x(1+x/4+2x^2/3)^x=1$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I't square root and cube root, not power of two and three respectively.
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    @dzaralica69, I have used $$a^6-b^6=(a-b)(?)$$
    $endgroup$
    – lab bhattacharjee
    9 hours ago










  • $begingroup$
    But $(12x)^x$ is $0^0$ ?
    $endgroup$
    – dzaralica69
    9 hours ago










  • $begingroup$
    @dzaralica69, math.stackexchange.com/questions/11150/…
    $endgroup$
    – lab bhattacharjee
    9 hours ago













0












0








0





$begingroup$

Hint:



As lcm$(2,3)=6$



We have $$dfraclim_xto0((1+2x)^3-(1-3x)^2)^xlim_...(sum_r=0^5((1-2x)^r/2(1-3x)^(6-r)/3)^x$$



The denominator tends to $1$



The numerator $$=lim_...(12x+3x^2+8x^3)^x=lim_..(12x)^x(1+x/4+2x^2/3)^x=1$$






share|cite|improve this answer









$endgroup$



Hint:



As lcm$(2,3)=6$



We have $$dfraclim_xto0((1+2x)^3-(1-3x)^2)^xlim_...(sum_r=0^5((1-2x)^r/2(1-3x)^(6-r)/3)^x$$



The denominator tends to $1$



The numerator $$=lim_...(12x+3x^2+8x^3)^x=lim_..(12x)^x(1+x/4+2x^2/3)^x=1$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 10 hours ago









lab bhattacharjeelab bhattacharjee

233k15 gold badges165 silver badges285 bronze badges




233k15 gold badges165 silver badges285 bronze badges











  • $begingroup$
    I't square root and cube root, not power of two and three respectively.
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    @dzaralica69, I have used $$a^6-b^6=(a-b)(?)$$
    $endgroup$
    – lab bhattacharjee
    9 hours ago










  • $begingroup$
    But $(12x)^x$ is $0^0$ ?
    $endgroup$
    – dzaralica69
    9 hours ago










  • $begingroup$
    @dzaralica69, math.stackexchange.com/questions/11150/…
    $endgroup$
    – lab bhattacharjee
    9 hours ago
















  • $begingroup$
    I't square root and cube root, not power of two and three respectively.
    $endgroup$
    – dzaralica69
    10 hours ago










  • $begingroup$
    @dzaralica69, I have used $$a^6-b^6=(a-b)(?)$$
    $endgroup$
    – lab bhattacharjee
    9 hours ago










  • $begingroup$
    But $(12x)^x$ is $0^0$ ?
    $endgroup$
    – dzaralica69
    9 hours ago










  • $begingroup$
    @dzaralica69, math.stackexchange.com/questions/11150/…
    $endgroup$
    – lab bhattacharjee
    9 hours ago















$begingroup$
I't square root and cube root, not power of two and three respectively.
$endgroup$
– dzaralica69
10 hours ago




$begingroup$
I't square root and cube root, not power of two and three respectively.
$endgroup$
– dzaralica69
10 hours ago












$begingroup$
@dzaralica69, I have used $$a^6-b^6=(a-b)(?)$$
$endgroup$
– lab bhattacharjee
9 hours ago




$begingroup$
@dzaralica69, I have used $$a^6-b^6=(a-b)(?)$$
$endgroup$
– lab bhattacharjee
9 hours ago












$begingroup$
But $(12x)^x$ is $0^0$ ?
$endgroup$
– dzaralica69
9 hours ago




$begingroup$
But $(12x)^x$ is $0^0$ ?
$endgroup$
– dzaralica69
9 hours ago












$begingroup$
@dzaralica69, math.stackexchange.com/questions/11150/…
$endgroup$
– lab bhattacharjee
9 hours ago




$begingroup$
@dzaralica69, math.stackexchange.com/questions/11150/…
$endgroup$
– lab bhattacharjee
9 hours ago










dzaralica69 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















dzaralica69 is a new contributor. Be nice, and check out our Code of Conduct.












dzaralica69 is a new contributor. Be nice, and check out our Code of Conduct.











dzaralica69 is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3278072%2fsolve-limit-without-using-lhopital-first-year-problem-for-first-year-solution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)