Were tables of square roots ever in use?Division of the circle and compass constructionsWhat is so mysterious about Archimedes' approximation of $sqrt 3$?Where did Mathematics establish its roots?When did it become understood that irrational numbers have non-repeating decimal representations?Who first introduced the longhand square-rooting method into European mathematics?F. Schoblik's announced ''ausführliche Darstellung": a lost wrong proof of the Four Color Theorem?What evidence is there that the Babylonians used the Babylonain method of estimating square roots?Earliest Instances of a Slope/Direction Field for a First-Order ODEWhy was the 'differential entropy' from information theory so named?Who first defined polynomials as sequences?

Does the new finding on "reversing a quantum jump mid-flight" rule out any interpretations of QM?

What is the logic behind charging tax _in the form of money_ for owning property when the property does not produce money?

Why did Intel abandon unified CPU cache?

Varying the size of dots in a plot according to information contained in list

Is using 'echo' to display attacker-controlled data on the terminal dangerous?

Is there a set of positive integers of density 1 which contains no infinite arithmetic progression?

Separate SPI data

Grep Match and extract

How can I remove material from this wood beam?

The usage of kelvin in formulas

I've been given a project I can't complete, what should I do?

Is it safe to change the harddrive power feature so that it never turns off?

2019 gold coins to share

Should I refuse to be named as co-author of a low quality paper?

How creative should the DM let an artificer be in terms of what they can build?

Java Servlet & JSP simple login

Increase speed altering column on large table to NON NULL

What does the pair of vertical lines in empirical entropy formula mean?

Please figure out this Pan digital Prince

Does the Nuka-Cola bottler actually generate nuka cola?

A map of non-pathological topology?

Russian word for a male zebra

CircuiTikZ: How to draw contactor coil?

Is there a DSLR/mirorless camera with minimal options like a classic, simple SLR?



Were tables of square roots ever in use?


Division of the circle and compass constructionsWhat is so mysterious about Archimedes' approximation of $sqrt 3$?Where did Mathematics establish its roots?When did it become understood that irrational numbers have non-repeating decimal representations?Who first introduced the longhand square-rooting method into European mathematics?F. Schoblik's announced ''ausführliche Darstellung": a lost wrong proof of the Four Color Theorem?What evidence is there that the Babylonians used the Babylonain method of estimating square roots?Earliest Instances of a Slope/Direction Field for a First-Order ODEWhy was the 'differential entropy' from information theory so named?Who first defined polynomials as sequences?













1












$begingroup$


Before the advent of calculators they had useful ready made tables for the main functions:sines,cosines logs etc..., do you know if tables of square roots were ever produced or in use?



I never heard of it, yet, it would be very easy to produce, since it is enough to find the roots of numbers from 1 to 100.










share|improve this question









$endgroup$
















    1












    $begingroup$


    Before the advent of calculators they had useful ready made tables for the main functions:sines,cosines logs etc..., do you know if tables of square roots were ever produced or in use?



    I never heard of it, yet, it would be very easy to produce, since it is enough to find the roots of numbers from 1 to 100.










    share|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      Before the advent of calculators they had useful ready made tables for the main functions:sines,cosines logs etc..., do you know if tables of square roots were ever produced or in use?



      I never heard of it, yet, it would be very easy to produce, since it is enough to find the roots of numbers from 1 to 100.










      share|improve this question









      $endgroup$




      Before the advent of calculators they had useful ready made tables for the main functions:sines,cosines logs etc..., do you know if tables of square roots were ever produced or in use?



      I never heard of it, yet, it would be very easy to produce, since it is enough to find the roots of numbers from 1 to 100.







      mathematics






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 18 hours ago









      user157860user157860

      976




      976




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Pretty much every mathematics textbook (school or college) before the early 1980s (and many even up to the late 1980s), at the algebra level or above, as well as many (most?) chemistry and physics and engineering textbooks, had such a table at the back of the book (as an appendix or something, where "selected answers" and "index" and "glossary" would appear). Often the entries would be for both $sqrtn$ and $sqrt10n,$ which was enough to allow you to easily get approximations for any magnitude-size numbers. For example, to find an approximation for $sqrt3880,$ use $n=3.88$ and look in the $sqrt10n$ entries, since



          $$ sqrt3880 ; =; sqrt1000times 3.88 ; = ; 10sqrt10 times 3.88. $$



          There were stand-alone (i.e. as separate books) tables also, such as the following, where square roots from $1.00$ to $9.99$ by increments of $0.01$ are on pp. 16-17 and square roots from $10.0$ to $99.9$ by increments of $0.1$ are on pp. 18-19:



          Mathematical Tables for Class-Room Use by Mansfield Merriman (1915)
          https://archive.org/details/mathematicaltabl00merrrich



          When I was in high school I owned (purchased in 1974) and used the 20th edition (1973) of the CRC Standard Mathematical Tables. On pp. 71-90 you'll find a table having column entries for $n^2$ and $sqrtn$ and $sqrt10n$ and $n^3$ and $sqrt[3]n$ and $sqrt[3]10n$ and $sqrt[3]100n$ from $n=1$ to $n=1000$ by increments of $1.$ In high school I also owned (I no longer seem to have it, however) Logarithmic and Trigonometric Tables to Five Places by Kaj L. Nelson (in the well known Barnes and Noble College Outline Series of books), and other people I knew (in college) had the Schaum's Outline Series of Mathematical Handbook of Formulas and Tables by Murray R. Spiegel (1968), which I didn't have a copy of back then but a few years ago I saw and purchased a copy of a later printing (the 1990 printing) at a local used bookstore (square roots are on pp. 238-239). However, in looking at the Schaum's book now, it's more of a handbook of formulas (algebraic, trigonometric, calculus, series, special functions, etc.) than a table of numerical values for computational use.



          For other such books, try this search and similar searches. For tables at the back of textbooks, simple archive.org and google-books searches will give you hundreds (if not thousands) of examples where you'll find square root tables at the back of the book.






          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            When I was in high school (the early 70's), the CRC book was too expensive for me. I used (and still have) the Schaum Mathematical Handbook, but I mostly used a smaller book that was just tables. It was similar to your Logarithmic and Trigonometric Tables book but the cover was different. That was the book I used the most--so much that it fell apart on me a couple of years ago so I had to throw it away. And yes, I did use the table of square roots. +1 from me--thanks for the memories.
            $endgroup$
            – Rory Daulton
            15 hours ago







          • 1




            $begingroup$
            +1 ... I, too, have the CRC book (a prize for a mathematical contest). But now I am considered to be "history" I guess.
            $endgroup$
            – Gerald Edgar
            13 hours ago










          • $begingroup$
            @Roy Daulton: I was taking our 4th year math course (essentially trigonometry in the fall, and precalculus math including conics and logarithms and matrices and probability and math induction in the spring) during 1974-1975 (my sophomore HS year), and our teacher was able, I think, to get a special discount for us, so maybe 6 to 8 of us (out of around 30 total in the two 4th year classes) wound up getting a copy in fall 1974. For what it's worth, about 2 years ago, for prosperity purposes, I made a .pdf scan copy of my notes for that class (213 pages).
            $endgroup$
            – Dave L Renfro
            13 hours ago







          • 1




            $begingroup$
            @Roy Daulton (and Edgar): For more memories, see my answer to Using log table to solve a division problem.
            $endgroup$
            – Dave L Renfro
            13 hours ago










          • $begingroup$
            thanks, do you have any idea when such tables were first produced?
            $endgroup$
            – user157860
            12 hours ago


















          1












          $begingroup$

          The Babylonian clay tablet from around 1700 BC known as YBC7289, since it's one of many in the Yale Babylonian Collection has a diagram of a square with one side marked as having length 1/2. They took this length, multiplied it by the square root of 2, and got the length of the diagonal.



          Given that square roots were in use then, it would have made sense to create a table of such, rather than repeating the labour in calculating the result.






          share|improve this answer









          $endgroup$












          • $begingroup$
            After seeing all these antiquities it seems that humans were quite intelligent thousands of years ago. From Mesopotamia to the building of huge pyramids---mysteries are spread everywhere.
            $endgroup$
            – M. Farooq
            9 hours ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "587"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fhsm.stackexchange.com%2fquestions%2f9711%2fwere-tables-of-square-roots-ever-in-use%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Pretty much every mathematics textbook (school or college) before the early 1980s (and many even up to the late 1980s), at the algebra level or above, as well as many (most?) chemistry and physics and engineering textbooks, had such a table at the back of the book (as an appendix or something, where "selected answers" and "index" and "glossary" would appear). Often the entries would be for both $sqrtn$ and $sqrt10n,$ which was enough to allow you to easily get approximations for any magnitude-size numbers. For example, to find an approximation for $sqrt3880,$ use $n=3.88$ and look in the $sqrt10n$ entries, since



          $$ sqrt3880 ; =; sqrt1000times 3.88 ; = ; 10sqrt10 times 3.88. $$



          There were stand-alone (i.e. as separate books) tables also, such as the following, where square roots from $1.00$ to $9.99$ by increments of $0.01$ are on pp. 16-17 and square roots from $10.0$ to $99.9$ by increments of $0.1$ are on pp. 18-19:



          Mathematical Tables for Class-Room Use by Mansfield Merriman (1915)
          https://archive.org/details/mathematicaltabl00merrrich



          When I was in high school I owned (purchased in 1974) and used the 20th edition (1973) of the CRC Standard Mathematical Tables. On pp. 71-90 you'll find a table having column entries for $n^2$ and $sqrtn$ and $sqrt10n$ and $n^3$ and $sqrt[3]n$ and $sqrt[3]10n$ and $sqrt[3]100n$ from $n=1$ to $n=1000$ by increments of $1.$ In high school I also owned (I no longer seem to have it, however) Logarithmic and Trigonometric Tables to Five Places by Kaj L. Nelson (in the well known Barnes and Noble College Outline Series of books), and other people I knew (in college) had the Schaum's Outline Series of Mathematical Handbook of Formulas and Tables by Murray R. Spiegel (1968), which I didn't have a copy of back then but a few years ago I saw and purchased a copy of a later printing (the 1990 printing) at a local used bookstore (square roots are on pp. 238-239). However, in looking at the Schaum's book now, it's more of a handbook of formulas (algebraic, trigonometric, calculus, series, special functions, etc.) than a table of numerical values for computational use.



          For other such books, try this search and similar searches. For tables at the back of textbooks, simple archive.org and google-books searches will give you hundreds (if not thousands) of examples where you'll find square root tables at the back of the book.






          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            When I was in high school (the early 70's), the CRC book was too expensive for me. I used (and still have) the Schaum Mathematical Handbook, but I mostly used a smaller book that was just tables. It was similar to your Logarithmic and Trigonometric Tables book but the cover was different. That was the book I used the most--so much that it fell apart on me a couple of years ago so I had to throw it away. And yes, I did use the table of square roots. +1 from me--thanks for the memories.
            $endgroup$
            – Rory Daulton
            15 hours ago







          • 1




            $begingroup$
            +1 ... I, too, have the CRC book (a prize for a mathematical contest). But now I am considered to be "history" I guess.
            $endgroup$
            – Gerald Edgar
            13 hours ago










          • $begingroup$
            @Roy Daulton: I was taking our 4th year math course (essentially trigonometry in the fall, and precalculus math including conics and logarithms and matrices and probability and math induction in the spring) during 1974-1975 (my sophomore HS year), and our teacher was able, I think, to get a special discount for us, so maybe 6 to 8 of us (out of around 30 total in the two 4th year classes) wound up getting a copy in fall 1974. For what it's worth, about 2 years ago, for prosperity purposes, I made a .pdf scan copy of my notes for that class (213 pages).
            $endgroup$
            – Dave L Renfro
            13 hours ago







          • 1




            $begingroup$
            @Roy Daulton (and Edgar): For more memories, see my answer to Using log table to solve a division problem.
            $endgroup$
            – Dave L Renfro
            13 hours ago










          • $begingroup$
            thanks, do you have any idea when such tables were first produced?
            $endgroup$
            – user157860
            12 hours ago















          4












          $begingroup$

          Pretty much every mathematics textbook (school or college) before the early 1980s (and many even up to the late 1980s), at the algebra level or above, as well as many (most?) chemistry and physics and engineering textbooks, had such a table at the back of the book (as an appendix or something, where "selected answers" and "index" and "glossary" would appear). Often the entries would be for both $sqrtn$ and $sqrt10n,$ which was enough to allow you to easily get approximations for any magnitude-size numbers. For example, to find an approximation for $sqrt3880,$ use $n=3.88$ and look in the $sqrt10n$ entries, since



          $$ sqrt3880 ; =; sqrt1000times 3.88 ; = ; 10sqrt10 times 3.88. $$



          There were stand-alone (i.e. as separate books) tables also, such as the following, where square roots from $1.00$ to $9.99$ by increments of $0.01$ are on pp. 16-17 and square roots from $10.0$ to $99.9$ by increments of $0.1$ are on pp. 18-19:



          Mathematical Tables for Class-Room Use by Mansfield Merriman (1915)
          https://archive.org/details/mathematicaltabl00merrrich



          When I was in high school I owned (purchased in 1974) and used the 20th edition (1973) of the CRC Standard Mathematical Tables. On pp. 71-90 you'll find a table having column entries for $n^2$ and $sqrtn$ and $sqrt10n$ and $n^3$ and $sqrt[3]n$ and $sqrt[3]10n$ and $sqrt[3]100n$ from $n=1$ to $n=1000$ by increments of $1.$ In high school I also owned (I no longer seem to have it, however) Logarithmic and Trigonometric Tables to Five Places by Kaj L. Nelson (in the well known Barnes and Noble College Outline Series of books), and other people I knew (in college) had the Schaum's Outline Series of Mathematical Handbook of Formulas and Tables by Murray R. Spiegel (1968), which I didn't have a copy of back then but a few years ago I saw and purchased a copy of a later printing (the 1990 printing) at a local used bookstore (square roots are on pp. 238-239). However, in looking at the Schaum's book now, it's more of a handbook of formulas (algebraic, trigonometric, calculus, series, special functions, etc.) than a table of numerical values for computational use.



          For other such books, try this search and similar searches. For tables at the back of textbooks, simple archive.org and google-books searches will give you hundreds (if not thousands) of examples where you'll find square root tables at the back of the book.






          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            When I was in high school (the early 70's), the CRC book was too expensive for me. I used (and still have) the Schaum Mathematical Handbook, but I mostly used a smaller book that was just tables. It was similar to your Logarithmic and Trigonometric Tables book but the cover was different. That was the book I used the most--so much that it fell apart on me a couple of years ago so I had to throw it away. And yes, I did use the table of square roots. +1 from me--thanks for the memories.
            $endgroup$
            – Rory Daulton
            15 hours ago







          • 1




            $begingroup$
            +1 ... I, too, have the CRC book (a prize for a mathematical contest). But now I am considered to be "history" I guess.
            $endgroup$
            – Gerald Edgar
            13 hours ago










          • $begingroup$
            @Roy Daulton: I was taking our 4th year math course (essentially trigonometry in the fall, and precalculus math including conics and logarithms and matrices and probability and math induction in the spring) during 1974-1975 (my sophomore HS year), and our teacher was able, I think, to get a special discount for us, so maybe 6 to 8 of us (out of around 30 total in the two 4th year classes) wound up getting a copy in fall 1974. For what it's worth, about 2 years ago, for prosperity purposes, I made a .pdf scan copy of my notes for that class (213 pages).
            $endgroup$
            – Dave L Renfro
            13 hours ago







          • 1




            $begingroup$
            @Roy Daulton (and Edgar): For more memories, see my answer to Using log table to solve a division problem.
            $endgroup$
            – Dave L Renfro
            13 hours ago










          • $begingroup$
            thanks, do you have any idea when such tables were first produced?
            $endgroup$
            – user157860
            12 hours ago













          4












          4








          4





          $begingroup$

          Pretty much every mathematics textbook (school or college) before the early 1980s (and many even up to the late 1980s), at the algebra level or above, as well as many (most?) chemistry and physics and engineering textbooks, had such a table at the back of the book (as an appendix or something, where "selected answers" and "index" and "glossary" would appear). Often the entries would be for both $sqrtn$ and $sqrt10n,$ which was enough to allow you to easily get approximations for any magnitude-size numbers. For example, to find an approximation for $sqrt3880,$ use $n=3.88$ and look in the $sqrt10n$ entries, since



          $$ sqrt3880 ; =; sqrt1000times 3.88 ; = ; 10sqrt10 times 3.88. $$



          There were stand-alone (i.e. as separate books) tables also, such as the following, where square roots from $1.00$ to $9.99$ by increments of $0.01$ are on pp. 16-17 and square roots from $10.0$ to $99.9$ by increments of $0.1$ are on pp. 18-19:



          Mathematical Tables for Class-Room Use by Mansfield Merriman (1915)
          https://archive.org/details/mathematicaltabl00merrrich



          When I was in high school I owned (purchased in 1974) and used the 20th edition (1973) of the CRC Standard Mathematical Tables. On pp. 71-90 you'll find a table having column entries for $n^2$ and $sqrtn$ and $sqrt10n$ and $n^3$ and $sqrt[3]n$ and $sqrt[3]10n$ and $sqrt[3]100n$ from $n=1$ to $n=1000$ by increments of $1.$ In high school I also owned (I no longer seem to have it, however) Logarithmic and Trigonometric Tables to Five Places by Kaj L. Nelson (in the well known Barnes and Noble College Outline Series of books), and other people I knew (in college) had the Schaum's Outline Series of Mathematical Handbook of Formulas and Tables by Murray R. Spiegel (1968), which I didn't have a copy of back then but a few years ago I saw and purchased a copy of a later printing (the 1990 printing) at a local used bookstore (square roots are on pp. 238-239). However, in looking at the Schaum's book now, it's more of a handbook of formulas (algebraic, trigonometric, calculus, series, special functions, etc.) than a table of numerical values for computational use.



          For other such books, try this search and similar searches. For tables at the back of textbooks, simple archive.org and google-books searches will give you hundreds (if not thousands) of examples where you'll find square root tables at the back of the book.






          share|improve this answer









          $endgroup$



          Pretty much every mathematics textbook (school or college) before the early 1980s (and many even up to the late 1980s), at the algebra level or above, as well as many (most?) chemistry and physics and engineering textbooks, had such a table at the back of the book (as an appendix or something, where "selected answers" and "index" and "glossary" would appear). Often the entries would be for both $sqrtn$ and $sqrt10n,$ which was enough to allow you to easily get approximations for any magnitude-size numbers. For example, to find an approximation for $sqrt3880,$ use $n=3.88$ and look in the $sqrt10n$ entries, since



          $$ sqrt3880 ; =; sqrt1000times 3.88 ; = ; 10sqrt10 times 3.88. $$



          There were stand-alone (i.e. as separate books) tables also, such as the following, where square roots from $1.00$ to $9.99$ by increments of $0.01$ are on pp. 16-17 and square roots from $10.0$ to $99.9$ by increments of $0.1$ are on pp. 18-19:



          Mathematical Tables for Class-Room Use by Mansfield Merriman (1915)
          https://archive.org/details/mathematicaltabl00merrrich



          When I was in high school I owned (purchased in 1974) and used the 20th edition (1973) of the CRC Standard Mathematical Tables. On pp. 71-90 you'll find a table having column entries for $n^2$ and $sqrtn$ and $sqrt10n$ and $n^3$ and $sqrt[3]n$ and $sqrt[3]10n$ and $sqrt[3]100n$ from $n=1$ to $n=1000$ by increments of $1.$ In high school I also owned (I no longer seem to have it, however) Logarithmic and Trigonometric Tables to Five Places by Kaj L. Nelson (in the well known Barnes and Noble College Outline Series of books), and other people I knew (in college) had the Schaum's Outline Series of Mathematical Handbook of Formulas and Tables by Murray R. Spiegel (1968), which I didn't have a copy of back then but a few years ago I saw and purchased a copy of a later printing (the 1990 printing) at a local used bookstore (square roots are on pp. 238-239). However, in looking at the Schaum's book now, it's more of a handbook of formulas (algebraic, trigonometric, calculus, series, special functions, etc.) than a table of numerical values for computational use.



          For other such books, try this search and similar searches. For tables at the back of textbooks, simple archive.org and google-books searches will give you hundreds (if not thousands) of examples where you'll find square root tables at the back of the book.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 16 hours ago









          Dave L RenfroDave L Renfro

          1,496713




          1,496713







          • 1




            $begingroup$
            When I was in high school (the early 70's), the CRC book was too expensive for me. I used (and still have) the Schaum Mathematical Handbook, but I mostly used a smaller book that was just tables. It was similar to your Logarithmic and Trigonometric Tables book but the cover was different. That was the book I used the most--so much that it fell apart on me a couple of years ago so I had to throw it away. And yes, I did use the table of square roots. +1 from me--thanks for the memories.
            $endgroup$
            – Rory Daulton
            15 hours ago







          • 1




            $begingroup$
            +1 ... I, too, have the CRC book (a prize for a mathematical contest). But now I am considered to be "history" I guess.
            $endgroup$
            – Gerald Edgar
            13 hours ago










          • $begingroup$
            @Roy Daulton: I was taking our 4th year math course (essentially trigonometry in the fall, and precalculus math including conics and logarithms and matrices and probability and math induction in the spring) during 1974-1975 (my sophomore HS year), and our teacher was able, I think, to get a special discount for us, so maybe 6 to 8 of us (out of around 30 total in the two 4th year classes) wound up getting a copy in fall 1974. For what it's worth, about 2 years ago, for prosperity purposes, I made a .pdf scan copy of my notes for that class (213 pages).
            $endgroup$
            – Dave L Renfro
            13 hours ago







          • 1




            $begingroup$
            @Roy Daulton (and Edgar): For more memories, see my answer to Using log table to solve a division problem.
            $endgroup$
            – Dave L Renfro
            13 hours ago










          • $begingroup$
            thanks, do you have any idea when such tables were first produced?
            $endgroup$
            – user157860
            12 hours ago












          • 1




            $begingroup$
            When I was in high school (the early 70's), the CRC book was too expensive for me. I used (and still have) the Schaum Mathematical Handbook, but I mostly used a smaller book that was just tables. It was similar to your Logarithmic and Trigonometric Tables book but the cover was different. That was the book I used the most--so much that it fell apart on me a couple of years ago so I had to throw it away. And yes, I did use the table of square roots. +1 from me--thanks for the memories.
            $endgroup$
            – Rory Daulton
            15 hours ago







          • 1




            $begingroup$
            +1 ... I, too, have the CRC book (a prize for a mathematical contest). But now I am considered to be "history" I guess.
            $endgroup$
            – Gerald Edgar
            13 hours ago










          • $begingroup$
            @Roy Daulton: I was taking our 4th year math course (essentially trigonometry in the fall, and precalculus math including conics and logarithms and matrices and probability and math induction in the spring) during 1974-1975 (my sophomore HS year), and our teacher was able, I think, to get a special discount for us, so maybe 6 to 8 of us (out of around 30 total in the two 4th year classes) wound up getting a copy in fall 1974. For what it's worth, about 2 years ago, for prosperity purposes, I made a .pdf scan copy of my notes for that class (213 pages).
            $endgroup$
            – Dave L Renfro
            13 hours ago







          • 1




            $begingroup$
            @Roy Daulton (and Edgar): For more memories, see my answer to Using log table to solve a division problem.
            $endgroup$
            – Dave L Renfro
            13 hours ago










          • $begingroup$
            thanks, do you have any idea when such tables were first produced?
            $endgroup$
            – user157860
            12 hours ago







          1




          1




          $begingroup$
          When I was in high school (the early 70's), the CRC book was too expensive for me. I used (and still have) the Schaum Mathematical Handbook, but I mostly used a smaller book that was just tables. It was similar to your Logarithmic and Trigonometric Tables book but the cover was different. That was the book I used the most--so much that it fell apart on me a couple of years ago so I had to throw it away. And yes, I did use the table of square roots. +1 from me--thanks for the memories.
          $endgroup$
          – Rory Daulton
          15 hours ago





          $begingroup$
          When I was in high school (the early 70's), the CRC book was too expensive for me. I used (and still have) the Schaum Mathematical Handbook, but I mostly used a smaller book that was just tables. It was similar to your Logarithmic and Trigonometric Tables book but the cover was different. That was the book I used the most--so much that it fell apart on me a couple of years ago so I had to throw it away. And yes, I did use the table of square roots. +1 from me--thanks for the memories.
          $endgroup$
          – Rory Daulton
          15 hours ago





          1




          1




          $begingroup$
          +1 ... I, too, have the CRC book (a prize for a mathematical contest). But now I am considered to be "history" I guess.
          $endgroup$
          – Gerald Edgar
          13 hours ago




          $begingroup$
          +1 ... I, too, have the CRC book (a prize for a mathematical contest). But now I am considered to be "history" I guess.
          $endgroup$
          – Gerald Edgar
          13 hours ago












          $begingroup$
          @Roy Daulton: I was taking our 4th year math course (essentially trigonometry in the fall, and precalculus math including conics and logarithms and matrices and probability and math induction in the spring) during 1974-1975 (my sophomore HS year), and our teacher was able, I think, to get a special discount for us, so maybe 6 to 8 of us (out of around 30 total in the two 4th year classes) wound up getting a copy in fall 1974. For what it's worth, about 2 years ago, for prosperity purposes, I made a .pdf scan copy of my notes for that class (213 pages).
          $endgroup$
          – Dave L Renfro
          13 hours ago





          $begingroup$
          @Roy Daulton: I was taking our 4th year math course (essentially trigonometry in the fall, and precalculus math including conics and logarithms and matrices and probability and math induction in the spring) during 1974-1975 (my sophomore HS year), and our teacher was able, I think, to get a special discount for us, so maybe 6 to 8 of us (out of around 30 total in the two 4th year classes) wound up getting a copy in fall 1974. For what it's worth, about 2 years ago, for prosperity purposes, I made a .pdf scan copy of my notes for that class (213 pages).
          $endgroup$
          – Dave L Renfro
          13 hours ago





          1




          1




          $begingroup$
          @Roy Daulton (and Edgar): For more memories, see my answer to Using log table to solve a division problem.
          $endgroup$
          – Dave L Renfro
          13 hours ago




          $begingroup$
          @Roy Daulton (and Edgar): For more memories, see my answer to Using log table to solve a division problem.
          $endgroup$
          – Dave L Renfro
          13 hours ago












          $begingroup$
          thanks, do you have any idea when such tables were first produced?
          $endgroup$
          – user157860
          12 hours ago




          $begingroup$
          thanks, do you have any idea when such tables were first produced?
          $endgroup$
          – user157860
          12 hours ago











          1












          $begingroup$

          The Babylonian clay tablet from around 1700 BC known as YBC7289, since it's one of many in the Yale Babylonian Collection has a diagram of a square with one side marked as having length 1/2. They took this length, multiplied it by the square root of 2, and got the length of the diagonal.



          Given that square roots were in use then, it would have made sense to create a table of such, rather than repeating the labour in calculating the result.






          share|improve this answer









          $endgroup$












          • $begingroup$
            After seeing all these antiquities it seems that humans were quite intelligent thousands of years ago. From Mesopotamia to the building of huge pyramids---mysteries are spread everywhere.
            $endgroup$
            – M. Farooq
            9 hours ago















          1












          $begingroup$

          The Babylonian clay tablet from around 1700 BC known as YBC7289, since it's one of many in the Yale Babylonian Collection has a diagram of a square with one side marked as having length 1/2. They took this length, multiplied it by the square root of 2, and got the length of the diagonal.



          Given that square roots were in use then, it would have made sense to create a table of such, rather than repeating the labour in calculating the result.






          share|improve this answer









          $endgroup$












          • $begingroup$
            After seeing all these antiquities it seems that humans were quite intelligent thousands of years ago. From Mesopotamia to the building of huge pyramids---mysteries are spread everywhere.
            $endgroup$
            – M. Farooq
            9 hours ago













          1












          1








          1





          $begingroup$

          The Babylonian clay tablet from around 1700 BC known as YBC7289, since it's one of many in the Yale Babylonian Collection has a diagram of a square with one side marked as having length 1/2. They took this length, multiplied it by the square root of 2, and got the length of the diagonal.



          Given that square roots were in use then, it would have made sense to create a table of such, rather than repeating the labour in calculating the result.






          share|improve this answer









          $endgroup$



          The Babylonian clay tablet from around 1700 BC known as YBC7289, since it's one of many in the Yale Babylonian Collection has a diagram of a square with one side marked as having length 1/2. They took this length, multiplied it by the square root of 2, and got the length of the diagonal.



          Given that square roots were in use then, it would have made sense to create a table of such, rather than repeating the labour in calculating the result.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 11 hours ago









          Mozibur UllahMozibur Ullah

          469212




          469212











          • $begingroup$
            After seeing all these antiquities it seems that humans were quite intelligent thousands of years ago. From Mesopotamia to the building of huge pyramids---mysteries are spread everywhere.
            $endgroup$
            – M. Farooq
            9 hours ago
















          • $begingroup$
            After seeing all these antiquities it seems that humans were quite intelligent thousands of years ago. From Mesopotamia to the building of huge pyramids---mysteries are spread everywhere.
            $endgroup$
            – M. Farooq
            9 hours ago















          $begingroup$
          After seeing all these antiquities it seems that humans were quite intelligent thousands of years ago. From Mesopotamia to the building of huge pyramids---mysteries are spread everywhere.
          $endgroup$
          – M. Farooq
          9 hours ago




          $begingroup$
          After seeing all these antiquities it seems that humans were quite intelligent thousands of years ago. From Mesopotamia to the building of huge pyramids---mysteries are spread everywhere.
          $endgroup$
          – M. Farooq
          9 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to History of Science and Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fhsm.stackexchange.com%2fquestions%2f9711%2fwere-tables-of-square-roots-ever-in-use%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

          Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

          Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거