Rhombuses, kites etc

What's the minimum number of sensors for a hobby GPS waypoint-following UAV?

Single word for "refusing to move to next activity unless present one is completed."

definition of "percentile"

Was I subtly told to resign?

Is there any word for "disobedience to God"?

references on the empirical study on the practice of OR

Can fluent English speakers distinguish “steel”, “still” and “steal”?

How to compute distance with respect to inner product?

What do the horizontal lines in a P-V phase diagram mean?

Why do people keep referring to Leia as Princess Leia, even after the destruction of Alderaan?

Was lunar module "pilot" Harrison Schmitt legally a "pilot" at the time?

Why isn't pressure filtration popular compared to vacuum filtration?

Why isn't there research to build a standard lunar, or Martian mobility platform?

Why would guns not work in the dungeon?

Storming Area 51

Are randomly-generated passwords starting with "a" less secure?

Why does the autopilot disengage even when it does not receive pilot input?

Managing and organizing the massively increased number of classes after switching to SOLID?

Why did my rum cake turn black?

Supporting developers who insist on using their pet language

Why are Hobbits so fond of mushrooms?

In Parshas Chukas, why is first mention of Parah Adumah "פָרָה" instead of "פָּרָה"?

Did any of the founding fathers anticipate Lysander Spooner's criticism of the constitution?

Cops: The Hidden OEIS Substring



Rhombuses, kites etc







.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


As a high school teacher, I sometimes wonder about the usefulness of certain topics. Some topics seem to be in the textbook because they have always been there, not because they lead anywhere interesting.



For instance, I am fairly sure that rhombuses and kites are pretty useless. In fact, once you get past alt-int angles, parallelograms are not horribly useful later. I do not recall needing any of this in any math afterwards, at least up to and including calculus.



Since I have been told to cut out some geometry to make way for statistics / probability, it seems to me that rhombuses, kites and a good lot of parallelograms are perfect candidates for the chopping block.



Am I right? Or do rhombuses and kites turn out to be really useful in the conceivable future of any random student? I am not denying their beauty etc.



If proofs could be be put back into the state test, of course, rhombuses etc. would just be more practice in proofs.










share|improve this question









New contributor



Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 5




    $begingroup$
    I see the use in helping students understand definitions and quantifiers; many high school students STILL struggle with the classification of quadrilaterals and recognizing that, for example, every square is a rectangle, but not every rectangle is a square. This facility with language (not just mathematical language) is very important for a logical thinker to have, and I have found that quadrilaterals lead to the best opportunity to develop it in geometry.
    $endgroup$
    – Opal E
    8 hours ago






  • 4




    $begingroup$
    Students who will encounter vectors will also encounter parallelograms in one of the standard definitions of vector addition and in the connection between areas and 2-by-2 determinants.
    $endgroup$
    – Andreas Blass
    7 hours ago






  • 1




    $begingroup$
    The same question on math.se math.stackexchange.com/questions/3290170/…
    $endgroup$
    – Paracosmiste
    5 hours ago






  • 1




    $begingroup$
    Related math.stackexchange.com/questions/650161/…
    $endgroup$
    – Paracosmiste
    5 hours ago

















1












$begingroup$


As a high school teacher, I sometimes wonder about the usefulness of certain topics. Some topics seem to be in the textbook because they have always been there, not because they lead anywhere interesting.



For instance, I am fairly sure that rhombuses and kites are pretty useless. In fact, once you get past alt-int angles, parallelograms are not horribly useful later. I do not recall needing any of this in any math afterwards, at least up to and including calculus.



Since I have been told to cut out some geometry to make way for statistics / probability, it seems to me that rhombuses, kites and a good lot of parallelograms are perfect candidates for the chopping block.



Am I right? Or do rhombuses and kites turn out to be really useful in the conceivable future of any random student? I am not denying their beauty etc.



If proofs could be be put back into the state test, of course, rhombuses etc. would just be more practice in proofs.










share|improve this question









New contributor



Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 5




    $begingroup$
    I see the use in helping students understand definitions and quantifiers; many high school students STILL struggle with the classification of quadrilaterals and recognizing that, for example, every square is a rectangle, but not every rectangle is a square. This facility with language (not just mathematical language) is very important for a logical thinker to have, and I have found that quadrilaterals lead to the best opportunity to develop it in geometry.
    $endgroup$
    – Opal E
    8 hours ago






  • 4




    $begingroup$
    Students who will encounter vectors will also encounter parallelograms in one of the standard definitions of vector addition and in the connection between areas and 2-by-2 determinants.
    $endgroup$
    – Andreas Blass
    7 hours ago






  • 1




    $begingroup$
    The same question on math.se math.stackexchange.com/questions/3290170/…
    $endgroup$
    – Paracosmiste
    5 hours ago






  • 1




    $begingroup$
    Related math.stackexchange.com/questions/650161/…
    $endgroup$
    – Paracosmiste
    5 hours ago













1












1








1





$begingroup$


As a high school teacher, I sometimes wonder about the usefulness of certain topics. Some topics seem to be in the textbook because they have always been there, not because they lead anywhere interesting.



For instance, I am fairly sure that rhombuses and kites are pretty useless. In fact, once you get past alt-int angles, parallelograms are not horribly useful later. I do not recall needing any of this in any math afterwards, at least up to and including calculus.



Since I have been told to cut out some geometry to make way for statistics / probability, it seems to me that rhombuses, kites and a good lot of parallelograms are perfect candidates for the chopping block.



Am I right? Or do rhombuses and kites turn out to be really useful in the conceivable future of any random student? I am not denying their beauty etc.



If proofs could be be put back into the state test, of course, rhombuses etc. would just be more practice in proofs.










share|improve this question









New contributor



Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




As a high school teacher, I sometimes wonder about the usefulness of certain topics. Some topics seem to be in the textbook because they have always been there, not because they lead anywhere interesting.



For instance, I am fairly sure that rhombuses and kites are pretty useless. In fact, once you get past alt-int angles, parallelograms are not horribly useful later. I do not recall needing any of this in any math afterwards, at least up to and including calculus.



Since I have been told to cut out some geometry to make way for statistics / probability, it seems to me that rhombuses, kites and a good lot of parallelograms are perfect candidates for the chopping block.



Am I right? Or do rhombuses and kites turn out to be really useful in the conceivable future of any random student? I am not denying their beauty etc.



If proofs could be be put back into the state test, of course, rhombuses etc. would just be more practice in proofs.







geometry teaching






share|improve this question









New contributor



Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|improve this question









New contributor



Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|improve this question




share|improve this question








edited 3 hours ago









Jasper

2,5829 silver badges19 bronze badges




2,5829 silver badges19 bronze badges






New contributor



Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 8 hours ago









Dan MonroeDan Monroe

91 bronze badge




91 bronze badge




New contributor



Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




Dan Monroe is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









  • 5




    $begingroup$
    I see the use in helping students understand definitions and quantifiers; many high school students STILL struggle with the classification of quadrilaterals and recognizing that, for example, every square is a rectangle, but not every rectangle is a square. This facility with language (not just mathematical language) is very important for a logical thinker to have, and I have found that quadrilaterals lead to the best opportunity to develop it in geometry.
    $endgroup$
    – Opal E
    8 hours ago






  • 4




    $begingroup$
    Students who will encounter vectors will also encounter parallelograms in one of the standard definitions of vector addition and in the connection between areas and 2-by-2 determinants.
    $endgroup$
    – Andreas Blass
    7 hours ago






  • 1




    $begingroup$
    The same question on math.se math.stackexchange.com/questions/3290170/…
    $endgroup$
    – Paracosmiste
    5 hours ago






  • 1




    $begingroup$
    Related math.stackexchange.com/questions/650161/…
    $endgroup$
    – Paracosmiste
    5 hours ago












  • 5




    $begingroup$
    I see the use in helping students understand definitions and quantifiers; many high school students STILL struggle with the classification of quadrilaterals and recognizing that, for example, every square is a rectangle, but not every rectangle is a square. This facility with language (not just mathematical language) is very important for a logical thinker to have, and I have found that quadrilaterals lead to the best opportunity to develop it in geometry.
    $endgroup$
    – Opal E
    8 hours ago






  • 4




    $begingroup$
    Students who will encounter vectors will also encounter parallelograms in one of the standard definitions of vector addition and in the connection between areas and 2-by-2 determinants.
    $endgroup$
    – Andreas Blass
    7 hours ago






  • 1




    $begingroup$
    The same question on math.se math.stackexchange.com/questions/3290170/…
    $endgroup$
    – Paracosmiste
    5 hours ago






  • 1




    $begingroup$
    Related math.stackexchange.com/questions/650161/…
    $endgroup$
    – Paracosmiste
    5 hours ago







5




5




$begingroup$
I see the use in helping students understand definitions and quantifiers; many high school students STILL struggle with the classification of quadrilaterals and recognizing that, for example, every square is a rectangle, but not every rectangle is a square. This facility with language (not just mathematical language) is very important for a logical thinker to have, and I have found that quadrilaterals lead to the best opportunity to develop it in geometry.
$endgroup$
– Opal E
8 hours ago




$begingroup$
I see the use in helping students understand definitions and quantifiers; many high school students STILL struggle with the classification of quadrilaterals and recognizing that, for example, every square is a rectangle, but not every rectangle is a square. This facility with language (not just mathematical language) is very important for a logical thinker to have, and I have found that quadrilaterals lead to the best opportunity to develop it in geometry.
$endgroup$
– Opal E
8 hours ago




4




4




$begingroup$
Students who will encounter vectors will also encounter parallelograms in one of the standard definitions of vector addition and in the connection between areas and 2-by-2 determinants.
$endgroup$
– Andreas Blass
7 hours ago




$begingroup$
Students who will encounter vectors will also encounter parallelograms in one of the standard definitions of vector addition and in the connection between areas and 2-by-2 determinants.
$endgroup$
– Andreas Blass
7 hours ago




1




1




$begingroup$
The same question on math.se math.stackexchange.com/questions/3290170/…
$endgroup$
– Paracosmiste
5 hours ago




$begingroup$
The same question on math.se math.stackexchange.com/questions/3290170/…
$endgroup$
– Paracosmiste
5 hours ago




1




1




$begingroup$
Related math.stackexchange.com/questions/650161/…
$endgroup$
– Paracosmiste
5 hours ago




$begingroup$
Related math.stackexchange.com/questions/650161/…
$endgroup$
– Paracosmiste
5 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

Parallelograms are useful for understanding:



  • Paths taken by light, especially through a layer of a medium with a different refractive coefficient

  • Shear, and related deformations

  • Area = height * width (but not necessarily the product of the sides' lengths)

  • Dot products

  • Surface integrals

Paths taken by light are useful for understanding which routes people and other animals will take to minimize their effort.






share|improve this answer









$endgroup$




















    2












    $begingroup$

    I am just now close to completing my first time teaching geometry (at a community college, a course that parallels the typical high school course) Using the fact that parallelograms (and hence rhombuses) have bisecting diagonals makes a short proof for why the line segment midpoint construction works. Other than that, I don't see rhombuses as a big part of geometry. I would keep some of parallelograms in. Have you looked at the common core standards to see which topics are meant to be kept?



    Henri Picciotto, a former high-school teacher and (current) curriculum developer, has written a well-thought out pair of blog posts, In Defense of Geometry, which you might find useful.






    share|improve this answer









    $endgroup$












    • $begingroup$
      I wish I could upvote, but Henry mentioning NCTM positively and suggesting teaching fractals in public school (a topic that requires university-level education) did not jive with my outlook on school math education.
      $endgroup$
      – Rusty Core
      6 hours ago






    • 1




      $begingroup$
      @RustyCore I'm not sure why you believe that "teaching fractals" (whatever that phrase means) requires a university-level education. Give me any topic in mathematics (with which I, personally, have sufficient knowledge), and I can prepare a lesson that I can teach to middle schoolers, and I can also prepare a lesson which might give some PhDs a hard time (elementary topics can become research level topics very quickly). I have a 50 minute "Introduction to Dimension Theory" talk that I have given successfully to high school freshman and sophomores in the past which touches on fractal geometry.
      $endgroup$
      – Xander Henderson
      5 hours ago










    • $begingroup$
      @XanderHenderson He says that he does not don’t "the underlying mathematics" of statistics, yet he is going to teach high school students topology? Hausdorff dimension? Extended real numbers? I don't think so. It will be an overview with pretty pictures at best, all at the cost of removing either Algebra II or Geometry topics. This is not what public school students need. They need instead a coherent curriculum without repetitions and omissions, not some fancy stuff that school teachers know nothing about.
      $endgroup$
      – Rusty Core
      52 mins ago










    • $begingroup$
      You can have your opinions, but his work is stellar, and helped me teach a good course.
      $endgroup$
      – Sue VanHattum
      49 mins ago













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "548"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Dan Monroe is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmatheducators.stackexchange.com%2fquestions%2f16807%2frhombuses-kites-etc%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Parallelograms are useful for understanding:



    • Paths taken by light, especially through a layer of a medium with a different refractive coefficient

    • Shear, and related deformations

    • Area = height * width (but not necessarily the product of the sides' lengths)

    • Dot products

    • Surface integrals

    Paths taken by light are useful for understanding which routes people and other animals will take to minimize their effort.






    share|improve this answer









    $endgroup$

















      3












      $begingroup$

      Parallelograms are useful for understanding:



      • Paths taken by light, especially through a layer of a medium with a different refractive coefficient

      • Shear, and related deformations

      • Area = height * width (but not necessarily the product of the sides' lengths)

      • Dot products

      • Surface integrals

      Paths taken by light are useful for understanding which routes people and other animals will take to minimize their effort.






      share|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        Parallelograms are useful for understanding:



        • Paths taken by light, especially through a layer of a medium with a different refractive coefficient

        • Shear, and related deformations

        • Area = height * width (but not necessarily the product of the sides' lengths)

        • Dot products

        • Surface integrals

        Paths taken by light are useful for understanding which routes people and other animals will take to minimize their effort.






        share|improve this answer









        $endgroup$



        Parallelograms are useful for understanding:



        • Paths taken by light, especially through a layer of a medium with a different refractive coefficient

        • Shear, and related deformations

        • Area = height * width (but not necessarily the product of the sides' lengths)

        • Dot products

        • Surface integrals

        Paths taken by light are useful for understanding which routes people and other animals will take to minimize their effort.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 3 hours ago









        JasperJasper

        2,5829 silver badges19 bronze badges




        2,5829 silver badges19 bronze badges























            2












            $begingroup$

            I am just now close to completing my first time teaching geometry (at a community college, a course that parallels the typical high school course) Using the fact that parallelograms (and hence rhombuses) have bisecting diagonals makes a short proof for why the line segment midpoint construction works. Other than that, I don't see rhombuses as a big part of geometry. I would keep some of parallelograms in. Have you looked at the common core standards to see which topics are meant to be kept?



            Henri Picciotto, a former high-school teacher and (current) curriculum developer, has written a well-thought out pair of blog posts, In Defense of Geometry, which you might find useful.






            share|improve this answer









            $endgroup$












            • $begingroup$
              I wish I could upvote, but Henry mentioning NCTM positively and suggesting teaching fractals in public school (a topic that requires university-level education) did not jive with my outlook on school math education.
              $endgroup$
              – Rusty Core
              6 hours ago






            • 1




              $begingroup$
              @RustyCore I'm not sure why you believe that "teaching fractals" (whatever that phrase means) requires a university-level education. Give me any topic in mathematics (with which I, personally, have sufficient knowledge), and I can prepare a lesson that I can teach to middle schoolers, and I can also prepare a lesson which might give some PhDs a hard time (elementary topics can become research level topics very quickly). I have a 50 minute "Introduction to Dimension Theory" talk that I have given successfully to high school freshman and sophomores in the past which touches on fractal geometry.
              $endgroup$
              – Xander Henderson
              5 hours ago










            • $begingroup$
              @XanderHenderson He says that he does not don’t "the underlying mathematics" of statistics, yet he is going to teach high school students topology? Hausdorff dimension? Extended real numbers? I don't think so. It will be an overview with pretty pictures at best, all at the cost of removing either Algebra II or Geometry topics. This is not what public school students need. They need instead a coherent curriculum without repetitions and omissions, not some fancy stuff that school teachers know nothing about.
              $endgroup$
              – Rusty Core
              52 mins ago










            • $begingroup$
              You can have your opinions, but his work is stellar, and helped me teach a good course.
              $endgroup$
              – Sue VanHattum
              49 mins ago















            2












            $begingroup$

            I am just now close to completing my first time teaching geometry (at a community college, a course that parallels the typical high school course) Using the fact that parallelograms (and hence rhombuses) have bisecting diagonals makes a short proof for why the line segment midpoint construction works. Other than that, I don't see rhombuses as a big part of geometry. I would keep some of parallelograms in. Have you looked at the common core standards to see which topics are meant to be kept?



            Henri Picciotto, a former high-school teacher and (current) curriculum developer, has written a well-thought out pair of blog posts, In Defense of Geometry, which you might find useful.






            share|improve this answer









            $endgroup$












            • $begingroup$
              I wish I could upvote, but Henry mentioning NCTM positively and suggesting teaching fractals in public school (a topic that requires university-level education) did not jive with my outlook on school math education.
              $endgroup$
              – Rusty Core
              6 hours ago






            • 1




              $begingroup$
              @RustyCore I'm not sure why you believe that "teaching fractals" (whatever that phrase means) requires a university-level education. Give me any topic in mathematics (with which I, personally, have sufficient knowledge), and I can prepare a lesson that I can teach to middle schoolers, and I can also prepare a lesson which might give some PhDs a hard time (elementary topics can become research level topics very quickly). I have a 50 minute "Introduction to Dimension Theory" talk that I have given successfully to high school freshman and sophomores in the past which touches on fractal geometry.
              $endgroup$
              – Xander Henderson
              5 hours ago










            • $begingroup$
              @XanderHenderson He says that he does not don’t "the underlying mathematics" of statistics, yet he is going to teach high school students topology? Hausdorff dimension? Extended real numbers? I don't think so. It will be an overview with pretty pictures at best, all at the cost of removing either Algebra II or Geometry topics. This is not what public school students need. They need instead a coherent curriculum without repetitions and omissions, not some fancy stuff that school teachers know nothing about.
              $endgroup$
              – Rusty Core
              52 mins ago










            • $begingroup$
              You can have your opinions, but his work is stellar, and helped me teach a good course.
              $endgroup$
              – Sue VanHattum
              49 mins ago













            2












            2








            2





            $begingroup$

            I am just now close to completing my first time teaching geometry (at a community college, a course that parallels the typical high school course) Using the fact that parallelograms (and hence rhombuses) have bisecting diagonals makes a short proof for why the line segment midpoint construction works. Other than that, I don't see rhombuses as a big part of geometry. I would keep some of parallelograms in. Have you looked at the common core standards to see which topics are meant to be kept?



            Henri Picciotto, a former high-school teacher and (current) curriculum developer, has written a well-thought out pair of blog posts, In Defense of Geometry, which you might find useful.






            share|improve this answer









            $endgroup$



            I am just now close to completing my first time teaching geometry (at a community college, a course that parallels the typical high school course) Using the fact that parallelograms (and hence rhombuses) have bisecting diagonals makes a short proof for why the line segment midpoint construction works. Other than that, I don't see rhombuses as a big part of geometry. I would keep some of parallelograms in. Have you looked at the common core standards to see which topics are meant to be kept?



            Henri Picciotto, a former high-school teacher and (current) curriculum developer, has written a well-thought out pair of blog posts, In Defense of Geometry, which you might find useful.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 7 hours ago









            Sue VanHattumSue VanHattum

            9,7681 gold badge21 silver badges63 bronze badges




            9,7681 gold badge21 silver badges63 bronze badges











            • $begingroup$
              I wish I could upvote, but Henry mentioning NCTM positively and suggesting teaching fractals in public school (a topic that requires university-level education) did not jive with my outlook on school math education.
              $endgroup$
              – Rusty Core
              6 hours ago






            • 1




              $begingroup$
              @RustyCore I'm not sure why you believe that "teaching fractals" (whatever that phrase means) requires a university-level education. Give me any topic in mathematics (with which I, personally, have sufficient knowledge), and I can prepare a lesson that I can teach to middle schoolers, and I can also prepare a lesson which might give some PhDs a hard time (elementary topics can become research level topics very quickly). I have a 50 minute "Introduction to Dimension Theory" talk that I have given successfully to high school freshman and sophomores in the past which touches on fractal geometry.
              $endgroup$
              – Xander Henderson
              5 hours ago










            • $begingroup$
              @XanderHenderson He says that he does not don’t "the underlying mathematics" of statistics, yet he is going to teach high school students topology? Hausdorff dimension? Extended real numbers? I don't think so. It will be an overview with pretty pictures at best, all at the cost of removing either Algebra II or Geometry topics. This is not what public school students need. They need instead a coherent curriculum without repetitions and omissions, not some fancy stuff that school teachers know nothing about.
              $endgroup$
              – Rusty Core
              52 mins ago










            • $begingroup$
              You can have your opinions, but his work is stellar, and helped me teach a good course.
              $endgroup$
              – Sue VanHattum
              49 mins ago
















            • $begingroup$
              I wish I could upvote, but Henry mentioning NCTM positively and suggesting teaching fractals in public school (a topic that requires university-level education) did not jive with my outlook on school math education.
              $endgroup$
              – Rusty Core
              6 hours ago






            • 1




              $begingroup$
              @RustyCore I'm not sure why you believe that "teaching fractals" (whatever that phrase means) requires a university-level education. Give me any topic in mathematics (with which I, personally, have sufficient knowledge), and I can prepare a lesson that I can teach to middle schoolers, and I can also prepare a lesson which might give some PhDs a hard time (elementary topics can become research level topics very quickly). I have a 50 minute "Introduction to Dimension Theory" talk that I have given successfully to high school freshman and sophomores in the past which touches on fractal geometry.
              $endgroup$
              – Xander Henderson
              5 hours ago










            • $begingroup$
              @XanderHenderson He says that he does not don’t "the underlying mathematics" of statistics, yet he is going to teach high school students topology? Hausdorff dimension? Extended real numbers? I don't think so. It will be an overview with pretty pictures at best, all at the cost of removing either Algebra II or Geometry topics. This is not what public school students need. They need instead a coherent curriculum without repetitions and omissions, not some fancy stuff that school teachers know nothing about.
              $endgroup$
              – Rusty Core
              52 mins ago










            • $begingroup$
              You can have your opinions, but his work is stellar, and helped me teach a good course.
              $endgroup$
              – Sue VanHattum
              49 mins ago















            $begingroup$
            I wish I could upvote, but Henry mentioning NCTM positively and suggesting teaching fractals in public school (a topic that requires university-level education) did not jive with my outlook on school math education.
            $endgroup$
            – Rusty Core
            6 hours ago




            $begingroup$
            I wish I could upvote, but Henry mentioning NCTM positively and suggesting teaching fractals in public school (a topic that requires university-level education) did not jive with my outlook on school math education.
            $endgroup$
            – Rusty Core
            6 hours ago




            1




            1




            $begingroup$
            @RustyCore I'm not sure why you believe that "teaching fractals" (whatever that phrase means) requires a university-level education. Give me any topic in mathematics (with which I, personally, have sufficient knowledge), and I can prepare a lesson that I can teach to middle schoolers, and I can also prepare a lesson which might give some PhDs a hard time (elementary topics can become research level topics very quickly). I have a 50 minute "Introduction to Dimension Theory" talk that I have given successfully to high school freshman and sophomores in the past which touches on fractal geometry.
            $endgroup$
            – Xander Henderson
            5 hours ago




            $begingroup$
            @RustyCore I'm not sure why you believe that "teaching fractals" (whatever that phrase means) requires a university-level education. Give me any topic in mathematics (with which I, personally, have sufficient knowledge), and I can prepare a lesson that I can teach to middle schoolers, and I can also prepare a lesson which might give some PhDs a hard time (elementary topics can become research level topics very quickly). I have a 50 minute "Introduction to Dimension Theory" talk that I have given successfully to high school freshman and sophomores in the past which touches on fractal geometry.
            $endgroup$
            – Xander Henderson
            5 hours ago












            $begingroup$
            @XanderHenderson He says that he does not don’t "the underlying mathematics" of statistics, yet he is going to teach high school students topology? Hausdorff dimension? Extended real numbers? I don't think so. It will be an overview with pretty pictures at best, all at the cost of removing either Algebra II or Geometry topics. This is not what public school students need. They need instead a coherent curriculum without repetitions and omissions, not some fancy stuff that school teachers know nothing about.
            $endgroup$
            – Rusty Core
            52 mins ago




            $begingroup$
            @XanderHenderson He says that he does not don’t "the underlying mathematics" of statistics, yet he is going to teach high school students topology? Hausdorff dimension? Extended real numbers? I don't think so. It will be an overview with pretty pictures at best, all at the cost of removing either Algebra II or Geometry topics. This is not what public school students need. They need instead a coherent curriculum without repetitions and omissions, not some fancy stuff that school teachers know nothing about.
            $endgroup$
            – Rusty Core
            52 mins ago












            $begingroup$
            You can have your opinions, but his work is stellar, and helped me teach a good course.
            $endgroup$
            – Sue VanHattum
            49 mins ago




            $begingroup$
            You can have your opinions, but his work is stellar, and helped me teach a good course.
            $endgroup$
            – Sue VanHattum
            49 mins ago










            Dan Monroe is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Dan Monroe is a new contributor. Be nice, and check out our Code of Conduct.












            Dan Monroe is a new contributor. Be nice, and check out our Code of Conduct.











            Dan Monroe is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Educators Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmatheducators.stackexchange.com%2fquestions%2f16807%2frhombuses-kites-etc%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

            Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

            Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거