Centrifugal force with Newton's third law?Why do we feel a force in circular motion?Centrifugal ForceWhy is centrifugal 'force' perpendicular to line of inertiaDoes centrifugal force exist?Reference frame and centrifugal forceWho plays the role of centrifugal force in an inertial frame of reference?Centripetal and centrifugal forceWhy do we only feel the centrifugal force?Solidifying understanding of centrifugal force at the equator vs polesHow is centrifugal force derived?Centrifugal force in effective potential

What was an "insurance cover"?

How to create a grid following points in QGIS?

How is underwater propagation of sound possible?

Why there so many pitch control surfaces on the Piaggio P180 Avanti?

Where are they calling from?

As an employer, can I compel my employees to vote?

When does removing Goblin Warchief affect its cost reduction ability?

Pseudo Game of Cups in Python

Can planetary bodies have a second axis of rotation?

Was there a trial by combat between a man and a dog in medieval France?

What do these pins mean? Where should I plug them in?

Why are some of the Stunts in The Expanse RPG labelled 'Core'?

What is a Heptagon Number™?

Is there a builtin function to turn selective Echos off?

The 100 soldier problem

Spectrum of a Subspace of Matrices

Can someone explain to me the parameters of a lognormal distribution?

Temporarily moving a SQL Server 2016 database to SQL Server 2017 and then moving back. Is it possible?

Pandas aggregate with dynamic column names

How to make interviewee comfortable interviewing in lounge chairs

Is it true that, "just ten trading days represent 63 per cent of the returns of the past 50 years"?

Safely hang a mirror that does not have hooks

Algorithm that spans orthogonal vectors: Python

Centrifugal force with Newton's third law?



Centrifugal force with Newton's third law?


Why do we feel a force in circular motion?Centrifugal ForceWhy is centrifugal 'force' perpendicular to line of inertiaDoes centrifugal force exist?Reference frame and centrifugal forceWho plays the role of centrifugal force in an inertial frame of reference?Centripetal and centrifugal forceWhy do we only feel the centrifugal force?Solidifying understanding of centrifugal force at the equator vs polesHow is centrifugal force derived?Centrifugal force in effective potential






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


When an object moves in a circle, there's an acceleration towards the center of the circle, the centripetal acceleration, which also gives us the centrifugal force (since $F = ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force). But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0. So my question is, what is actually this reaction force that's created by the centripetal force, and where does the centrifugal force come from? I do know that the centrifugal force can be viewed as an inertial force in a certian reference frame, but is there any way to describe it in another way? I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.










share|cite|improve this question









$endgroup$




















    2












    $begingroup$


    When an object moves in a circle, there's an acceleration towards the center of the circle, the centripetal acceleration, which also gives us the centrifugal force (since $F = ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force). But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0. So my question is, what is actually this reaction force that's created by the centripetal force, and where does the centrifugal force come from? I do know that the centrifugal force can be viewed as an inertial force in a certian reference frame, but is there any way to describe it in another way? I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.










    share|cite|improve this question









    $endgroup$
















      2












      2








      2





      $begingroup$


      When an object moves in a circle, there's an acceleration towards the center of the circle, the centripetal acceleration, which also gives us the centrifugal force (since $F = ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force). But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0. So my question is, what is actually this reaction force that's created by the centripetal force, and where does the centrifugal force come from? I do know that the centrifugal force can be viewed as an inertial force in a certian reference frame, but is there any way to describe it in another way? I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.










      share|cite|improve this question









      $endgroup$




      When an object moves in a circle, there's an acceleration towards the center of the circle, the centripetal acceleration, which also gives us the centrifugal force (since $F = ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force). But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0. So my question is, what is actually this reaction force that's created by the centripetal force, and where does the centrifugal force come from? I do know that the centrifugal force can be viewed as an inertial force in a certian reference frame, but is there any way to describe it in another way? I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.







      newtonian-mechanics reference-frames centripetal-force centrifugal-force






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 8 hours ago









      MelvinMelvin

      3932 silver badges11 bronze badges




      3932 silver badges11 bronze badges























          5 Answers
          5






          active

          oldest

          votes


















          0














          $begingroup$

          Lets look at the Earth-moon system for an example. The centripetal force is Earth's gravity, keeping the Moon from flying away. But this works both ways, the Earth is pulled towards the Moon just as hard as the moon is pulled towards the Earth.



          In your car example, the angle of the front tires means some percentage of the force of the car is spent on turning the car. The opposite force is spent trying to push the roadway in the opposite direction. It's the same as driving forwards really, except your force vector isn't parallel with your velocity vector.



          Quick little aside: Newton's laws, the ones you learn in High-school anyways, only work in inertial reference frames. Centrifugal force does exist in a rotating reference frame.






          share|cite|improve this answer









          $endgroup$














          • $begingroup$
            oh, so what would you use instead of Newton's laws in a non-inertial frame of reference?
            $endgroup$
            – Melvin
            8 hours ago










          • $begingroup$
            Still Newton's laws, just more than you learn in an average highschool physics class.
            $endgroup$
            – Ryan_L
            8 hours ago










          • $begingroup$
            ok, but an inertia frame of reference is that the frame of reference or coordinate system is not moving, right?
            $endgroup$
            – Melvin
            8 hours ago






          • 1




            $begingroup$
            A rotating reference frame is NOT inertial because it is accelerating.
            $endgroup$
            – Ryan_L
            7 hours ago






          • 1




            $begingroup$
            In an inertial reference frame, an object is "pulled" away from the center of rotation by it's tangential inertia. In a rotating reference frame, the object has no inertia and is being pulled away by centrifugal force. Centripetal force exists in both reference frames. Whether centrifugal force or inertia is responsible depends on where the observer is.
            $endgroup$
            – Ryan_L
            7 hours ago


















          4














          $begingroup$

          This is a common misinterpretation of Newton's third law, often stated as "to every action, there's an equal and opposite reaction." As you surmise, "action" and "reaction" refer to forces. However, they refer to forces acting on different things. Otherwise, nothing could accelerate, ever: if every force were always canceled out by an equal and opposite force, no force could ever do anything. Instead, forces occur between objects--say car and road, to take your example. The road exerts an inward force on the car, which, you're right, is the centripetal force. The equal and opposite force is exerted by the car, on the road. The two forces are acting on different things, so they do not cancel. This second force (the force exerted by the car on the road) is sometimes referred to as the "reactive centrifugal force," which is confusing, because it's different from the more common meaning of centrifugal force.






          share|cite|improve this answer









          $endgroup$






















            1














            $begingroup$


            which also gives us the centrifugal force (since $F=ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force).




            You shouldn't call it "centrifugal force", but rather centripetal force. A centripetal force inwards causes the centripetal acceleration inwards. When people say "centrifugal force", they usually mean the feeling of being swung outwards, so this imaginary "centrifugal force" would be opposite to the actual centripetal force.



            Note, though, that there is no such thing as a centrifugal force (it just feels like there is, but that's just an illusion); there is only a centripetal force.




            But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0.




            A very important note: The action/reaction forces in Newton's 3rd law do not act on the same object. Your object is pulled inwards and another object is simultaneously pulled outwards (the opposite way) with an equal force.



            A circular motion happens because



            • you swing something around in a string (the outwards force acts on your hand)

            • you turn with your car (the outwards force acts on the ground/asphault/planet)

            • a satellite is orbiting Earth (the outwards force acts on the Earth)

            • etc.

            There is always a source of the inwards force; there is always an interaction with something else, before a force can be present. That "something else", is what feels the reaction force via Newton's 3rd law.




            I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.




            You are basically answering the question here yourself. The only last thing to point out is, as mentioned above, that there is no such thing as a "centrifugal force". That is a bad term, because it is not a force. It is a feeling. You are swung outwards against the window when a car turns, not because some "centrifugal force" pushes you outwards, but because the car is pulled inwards by the centripetal force.



            It is not you being pushed outwards, it is the car moving away from the straight path your body has and thus pulling you along. But from the perspective of the car it looks like you are the one moving and not the car - that is just an illusion, a trick by our brains. The same trick happens when a guy on roller skates is standing in a bus. When the bus accelerates, it looks like he rolls backwards - but it is not him rolling backwards, it is the bus rolling forwards away from underneath his feet.



            In summary: It is not you moving outwards, it is the car moving into you. Nothing pushes you outwards, and there is no motion/acceleration outwards which would be caused by any force. Only the feeling/illusion of it.






            share|cite|improve this answer











            $endgroup$






















              1














              $begingroup$

              Imagine an object connected by a string moving in a circular motion.




              what is actually this reaction force that's created by the centripetal force?




              The force on a object, which causes the centripetal acceleration of an object, is due to another entity - the action, eg the force on the object due to the string.



              The Newton third law pair is the force on another entity due to the object - the reaction, eg the force on the string due to the object.




              where does the centrifugal force come from?




              The centrifugal force is not a real force, rather it is introduced for the convenience of being able to use Newton’s second law in the rotational (non-inertial) frame of the object.



              There is no Newton third law pair to the centrifugal force.






              share|cite|improve this answer









              $endgroup$






















                0














                $begingroup$


                But this is obviously not true since that would mean that the net
                acceleration on the object moving in the circle would be 0.




                That is not correct. An object is undergoing acceleration if either its speed changes, it changes direction, or both. According to Newtons first law, a body moving in a straight line at constant speed will continue to do so unless acted upon by a net external force. At any instant in time the velocity vector of a body undergoing circular motion is tangent to the circle. The inertia of the body resists a change in direction of that vector. The centrifugal force is a fictitious force that appears to be acting on the body in a non-inertial (accelerating) reference frame due to the inertia of the body. The centripetal force is the net force acting on the object forcing it to constantly change direction towards the center of the circular path.



                Perhaps it is easiest to see this if you consider a car driving in a straight line at constant speed. An object is on the passenger seat. The driver (in this case on the left side of the car) makes a sharp left turn, which is the beginning of circular motion. The object on the seat slides towards the passenger side door. The driver experiences the sensation of being pushed towards the passenger side. But neither the driver nor the object is subjected to any contact force pushing them in that direction. They are experiencing a centrifugal (fictitious) force.



                Now suppose instead that the object does not slide on the seat because of the static friction between the object and the seat. The static friction force is a centripetal force towards the center of the circular preventing the object from continuing in a straight line as viewed from an inertial reference frame (e.g., the road). This is the same thing that is happening in your example.



                Bottom line: The centripetal force keeps changing the direction of the object towards the center of the circular path. A change in direction of the motion of an object results in an acceleration even if the speed of the object is unchanged.



                Hope this helps.






                share|cite|improve this answer









                $endgroup$

















                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "151"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: false,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: null,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );














                  draft saved

                  draft discarded
















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f503488%2fcentrifugal-force-with-newtons-third-law%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  0














                  $begingroup$

                  Lets look at the Earth-moon system for an example. The centripetal force is Earth's gravity, keeping the Moon from flying away. But this works both ways, the Earth is pulled towards the Moon just as hard as the moon is pulled towards the Earth.



                  In your car example, the angle of the front tires means some percentage of the force of the car is spent on turning the car. The opposite force is spent trying to push the roadway in the opposite direction. It's the same as driving forwards really, except your force vector isn't parallel with your velocity vector.



                  Quick little aside: Newton's laws, the ones you learn in High-school anyways, only work in inertial reference frames. Centrifugal force does exist in a rotating reference frame.






                  share|cite|improve this answer









                  $endgroup$














                  • $begingroup$
                    oh, so what would you use instead of Newton's laws in a non-inertial frame of reference?
                    $endgroup$
                    – Melvin
                    8 hours ago










                  • $begingroup$
                    Still Newton's laws, just more than you learn in an average highschool physics class.
                    $endgroup$
                    – Ryan_L
                    8 hours ago










                  • $begingroup$
                    ok, but an inertia frame of reference is that the frame of reference or coordinate system is not moving, right?
                    $endgroup$
                    – Melvin
                    8 hours ago






                  • 1




                    $begingroup$
                    A rotating reference frame is NOT inertial because it is accelerating.
                    $endgroup$
                    – Ryan_L
                    7 hours ago






                  • 1




                    $begingroup$
                    In an inertial reference frame, an object is "pulled" away from the center of rotation by it's tangential inertia. In a rotating reference frame, the object has no inertia and is being pulled away by centrifugal force. Centripetal force exists in both reference frames. Whether centrifugal force or inertia is responsible depends on where the observer is.
                    $endgroup$
                    – Ryan_L
                    7 hours ago















                  0














                  $begingroup$

                  Lets look at the Earth-moon system for an example. The centripetal force is Earth's gravity, keeping the Moon from flying away. But this works both ways, the Earth is pulled towards the Moon just as hard as the moon is pulled towards the Earth.



                  In your car example, the angle of the front tires means some percentage of the force of the car is spent on turning the car. The opposite force is spent trying to push the roadway in the opposite direction. It's the same as driving forwards really, except your force vector isn't parallel with your velocity vector.



                  Quick little aside: Newton's laws, the ones you learn in High-school anyways, only work in inertial reference frames. Centrifugal force does exist in a rotating reference frame.






                  share|cite|improve this answer









                  $endgroup$














                  • $begingroup$
                    oh, so what would you use instead of Newton's laws in a non-inertial frame of reference?
                    $endgroup$
                    – Melvin
                    8 hours ago










                  • $begingroup$
                    Still Newton's laws, just more than you learn in an average highschool physics class.
                    $endgroup$
                    – Ryan_L
                    8 hours ago










                  • $begingroup$
                    ok, but an inertia frame of reference is that the frame of reference or coordinate system is not moving, right?
                    $endgroup$
                    – Melvin
                    8 hours ago






                  • 1




                    $begingroup$
                    A rotating reference frame is NOT inertial because it is accelerating.
                    $endgroup$
                    – Ryan_L
                    7 hours ago






                  • 1




                    $begingroup$
                    In an inertial reference frame, an object is "pulled" away from the center of rotation by it's tangential inertia. In a rotating reference frame, the object has no inertia and is being pulled away by centrifugal force. Centripetal force exists in both reference frames. Whether centrifugal force or inertia is responsible depends on where the observer is.
                    $endgroup$
                    – Ryan_L
                    7 hours ago













                  0














                  0










                  0







                  $begingroup$

                  Lets look at the Earth-moon system for an example. The centripetal force is Earth's gravity, keeping the Moon from flying away. But this works both ways, the Earth is pulled towards the Moon just as hard as the moon is pulled towards the Earth.



                  In your car example, the angle of the front tires means some percentage of the force of the car is spent on turning the car. The opposite force is spent trying to push the roadway in the opposite direction. It's the same as driving forwards really, except your force vector isn't parallel with your velocity vector.



                  Quick little aside: Newton's laws, the ones you learn in High-school anyways, only work in inertial reference frames. Centrifugal force does exist in a rotating reference frame.






                  share|cite|improve this answer









                  $endgroup$



                  Lets look at the Earth-moon system for an example. The centripetal force is Earth's gravity, keeping the Moon from flying away. But this works both ways, the Earth is pulled towards the Moon just as hard as the moon is pulled towards the Earth.



                  In your car example, the angle of the front tires means some percentage of the force of the car is spent on turning the car. The opposite force is spent trying to push the roadway in the opposite direction. It's the same as driving forwards really, except your force vector isn't parallel with your velocity vector.



                  Quick little aside: Newton's laws, the ones you learn in High-school anyways, only work in inertial reference frames. Centrifugal force does exist in a rotating reference frame.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  Ryan_LRyan_L

                  1944 bronze badges




                  1944 bronze badges














                  • $begingroup$
                    oh, so what would you use instead of Newton's laws in a non-inertial frame of reference?
                    $endgroup$
                    – Melvin
                    8 hours ago










                  • $begingroup$
                    Still Newton's laws, just more than you learn in an average highschool physics class.
                    $endgroup$
                    – Ryan_L
                    8 hours ago










                  • $begingroup$
                    ok, but an inertia frame of reference is that the frame of reference or coordinate system is not moving, right?
                    $endgroup$
                    – Melvin
                    8 hours ago






                  • 1




                    $begingroup$
                    A rotating reference frame is NOT inertial because it is accelerating.
                    $endgroup$
                    – Ryan_L
                    7 hours ago






                  • 1




                    $begingroup$
                    In an inertial reference frame, an object is "pulled" away from the center of rotation by it's tangential inertia. In a rotating reference frame, the object has no inertia and is being pulled away by centrifugal force. Centripetal force exists in both reference frames. Whether centrifugal force or inertia is responsible depends on where the observer is.
                    $endgroup$
                    – Ryan_L
                    7 hours ago
















                  • $begingroup$
                    oh, so what would you use instead of Newton's laws in a non-inertial frame of reference?
                    $endgroup$
                    – Melvin
                    8 hours ago










                  • $begingroup$
                    Still Newton's laws, just more than you learn in an average highschool physics class.
                    $endgroup$
                    – Ryan_L
                    8 hours ago










                  • $begingroup$
                    ok, but an inertia frame of reference is that the frame of reference or coordinate system is not moving, right?
                    $endgroup$
                    – Melvin
                    8 hours ago






                  • 1




                    $begingroup$
                    A rotating reference frame is NOT inertial because it is accelerating.
                    $endgroup$
                    – Ryan_L
                    7 hours ago






                  • 1




                    $begingroup$
                    In an inertial reference frame, an object is "pulled" away from the center of rotation by it's tangential inertia. In a rotating reference frame, the object has no inertia and is being pulled away by centrifugal force. Centripetal force exists in both reference frames. Whether centrifugal force or inertia is responsible depends on where the observer is.
                    $endgroup$
                    – Ryan_L
                    7 hours ago















                  $begingroup$
                  oh, so what would you use instead of Newton's laws in a non-inertial frame of reference?
                  $endgroup$
                  – Melvin
                  8 hours ago




                  $begingroup$
                  oh, so what would you use instead of Newton's laws in a non-inertial frame of reference?
                  $endgroup$
                  – Melvin
                  8 hours ago












                  $begingroup$
                  Still Newton's laws, just more than you learn in an average highschool physics class.
                  $endgroup$
                  – Ryan_L
                  8 hours ago




                  $begingroup$
                  Still Newton's laws, just more than you learn in an average highschool physics class.
                  $endgroup$
                  – Ryan_L
                  8 hours ago












                  $begingroup$
                  ok, but an inertia frame of reference is that the frame of reference or coordinate system is not moving, right?
                  $endgroup$
                  – Melvin
                  8 hours ago




                  $begingroup$
                  ok, but an inertia frame of reference is that the frame of reference or coordinate system is not moving, right?
                  $endgroup$
                  – Melvin
                  8 hours ago




                  1




                  1




                  $begingroup$
                  A rotating reference frame is NOT inertial because it is accelerating.
                  $endgroup$
                  – Ryan_L
                  7 hours ago




                  $begingroup$
                  A rotating reference frame is NOT inertial because it is accelerating.
                  $endgroup$
                  – Ryan_L
                  7 hours ago




                  1




                  1




                  $begingroup$
                  In an inertial reference frame, an object is "pulled" away from the center of rotation by it's tangential inertia. In a rotating reference frame, the object has no inertia and is being pulled away by centrifugal force. Centripetal force exists in both reference frames. Whether centrifugal force or inertia is responsible depends on where the observer is.
                  $endgroup$
                  – Ryan_L
                  7 hours ago




                  $begingroup$
                  In an inertial reference frame, an object is "pulled" away from the center of rotation by it's tangential inertia. In a rotating reference frame, the object has no inertia and is being pulled away by centrifugal force. Centripetal force exists in both reference frames. Whether centrifugal force or inertia is responsible depends on where the observer is.
                  $endgroup$
                  – Ryan_L
                  7 hours ago













                  4














                  $begingroup$

                  This is a common misinterpretation of Newton's third law, often stated as "to every action, there's an equal and opposite reaction." As you surmise, "action" and "reaction" refer to forces. However, they refer to forces acting on different things. Otherwise, nothing could accelerate, ever: if every force were always canceled out by an equal and opposite force, no force could ever do anything. Instead, forces occur between objects--say car and road, to take your example. The road exerts an inward force on the car, which, you're right, is the centripetal force. The equal and opposite force is exerted by the car, on the road. The two forces are acting on different things, so they do not cancel. This second force (the force exerted by the car on the road) is sometimes referred to as the "reactive centrifugal force," which is confusing, because it's different from the more common meaning of centrifugal force.






                  share|cite|improve this answer









                  $endgroup$



















                    4














                    $begingroup$

                    This is a common misinterpretation of Newton's third law, often stated as "to every action, there's an equal and opposite reaction." As you surmise, "action" and "reaction" refer to forces. However, they refer to forces acting on different things. Otherwise, nothing could accelerate, ever: if every force were always canceled out by an equal and opposite force, no force could ever do anything. Instead, forces occur between objects--say car and road, to take your example. The road exerts an inward force on the car, which, you're right, is the centripetal force. The equal and opposite force is exerted by the car, on the road. The two forces are acting on different things, so they do not cancel. This second force (the force exerted by the car on the road) is sometimes referred to as the "reactive centrifugal force," which is confusing, because it's different from the more common meaning of centrifugal force.






                    share|cite|improve this answer









                    $endgroup$

















                      4














                      4










                      4







                      $begingroup$

                      This is a common misinterpretation of Newton's third law, often stated as "to every action, there's an equal and opposite reaction." As you surmise, "action" and "reaction" refer to forces. However, they refer to forces acting on different things. Otherwise, nothing could accelerate, ever: if every force were always canceled out by an equal and opposite force, no force could ever do anything. Instead, forces occur between objects--say car and road, to take your example. The road exerts an inward force on the car, which, you're right, is the centripetal force. The equal and opposite force is exerted by the car, on the road. The two forces are acting on different things, so they do not cancel. This second force (the force exerted by the car on the road) is sometimes referred to as the "reactive centrifugal force," which is confusing, because it's different from the more common meaning of centrifugal force.






                      share|cite|improve this answer









                      $endgroup$



                      This is a common misinterpretation of Newton's third law, often stated as "to every action, there's an equal and opposite reaction." As you surmise, "action" and "reaction" refer to forces. However, they refer to forces acting on different things. Otherwise, nothing could accelerate, ever: if every force were always canceled out by an equal and opposite force, no force could ever do anything. Instead, forces occur between objects--say car and road, to take your example. The road exerts an inward force on the car, which, you're right, is the centripetal force. The equal and opposite force is exerted by the car, on the road. The two forces are acting on different things, so they do not cancel. This second force (the force exerted by the car on the road) is sometimes referred to as the "reactive centrifugal force," which is confusing, because it's different from the more common meaning of centrifugal force.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 7 hours ago









                      Ben51Ben51

                      4,1788 silver badges30 bronze badges




                      4,1788 silver badges30 bronze badges
























                          1














                          $begingroup$


                          which also gives us the centrifugal force (since $F=ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force).




                          You shouldn't call it "centrifugal force", but rather centripetal force. A centripetal force inwards causes the centripetal acceleration inwards. When people say "centrifugal force", they usually mean the feeling of being swung outwards, so this imaginary "centrifugal force" would be opposite to the actual centripetal force.



                          Note, though, that there is no such thing as a centrifugal force (it just feels like there is, but that's just an illusion); there is only a centripetal force.




                          But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0.




                          A very important note: The action/reaction forces in Newton's 3rd law do not act on the same object. Your object is pulled inwards and another object is simultaneously pulled outwards (the opposite way) with an equal force.



                          A circular motion happens because



                          • you swing something around in a string (the outwards force acts on your hand)

                          • you turn with your car (the outwards force acts on the ground/asphault/planet)

                          • a satellite is orbiting Earth (the outwards force acts on the Earth)

                          • etc.

                          There is always a source of the inwards force; there is always an interaction with something else, before a force can be present. That "something else", is what feels the reaction force via Newton's 3rd law.




                          I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.




                          You are basically answering the question here yourself. The only last thing to point out is, as mentioned above, that there is no such thing as a "centrifugal force". That is a bad term, because it is not a force. It is a feeling. You are swung outwards against the window when a car turns, not because some "centrifugal force" pushes you outwards, but because the car is pulled inwards by the centripetal force.



                          It is not you being pushed outwards, it is the car moving away from the straight path your body has and thus pulling you along. But from the perspective of the car it looks like you are the one moving and not the car - that is just an illusion, a trick by our brains. The same trick happens when a guy on roller skates is standing in a bus. When the bus accelerates, it looks like he rolls backwards - but it is not him rolling backwards, it is the bus rolling forwards away from underneath his feet.



                          In summary: It is not you moving outwards, it is the car moving into you. Nothing pushes you outwards, and there is no motion/acceleration outwards which would be caused by any force. Only the feeling/illusion of it.






                          share|cite|improve this answer











                          $endgroup$



















                            1














                            $begingroup$


                            which also gives us the centrifugal force (since $F=ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force).




                            You shouldn't call it "centrifugal force", but rather centripetal force. A centripetal force inwards causes the centripetal acceleration inwards. When people say "centrifugal force", they usually mean the feeling of being swung outwards, so this imaginary "centrifugal force" would be opposite to the actual centripetal force.



                            Note, though, that there is no such thing as a centrifugal force (it just feels like there is, but that's just an illusion); there is only a centripetal force.




                            But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0.




                            A very important note: The action/reaction forces in Newton's 3rd law do not act on the same object. Your object is pulled inwards and another object is simultaneously pulled outwards (the opposite way) with an equal force.



                            A circular motion happens because



                            • you swing something around in a string (the outwards force acts on your hand)

                            • you turn with your car (the outwards force acts on the ground/asphault/planet)

                            • a satellite is orbiting Earth (the outwards force acts on the Earth)

                            • etc.

                            There is always a source of the inwards force; there is always an interaction with something else, before a force can be present. That "something else", is what feels the reaction force via Newton's 3rd law.




                            I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.




                            You are basically answering the question here yourself. The only last thing to point out is, as mentioned above, that there is no such thing as a "centrifugal force". That is a bad term, because it is not a force. It is a feeling. You are swung outwards against the window when a car turns, not because some "centrifugal force" pushes you outwards, but because the car is pulled inwards by the centripetal force.



                            It is not you being pushed outwards, it is the car moving away from the straight path your body has and thus pulling you along. But from the perspective of the car it looks like you are the one moving and not the car - that is just an illusion, a trick by our brains. The same trick happens when a guy on roller skates is standing in a bus. When the bus accelerates, it looks like he rolls backwards - but it is not him rolling backwards, it is the bus rolling forwards away from underneath his feet.



                            In summary: It is not you moving outwards, it is the car moving into you. Nothing pushes you outwards, and there is no motion/acceleration outwards which would be caused by any force. Only the feeling/illusion of it.






                            share|cite|improve this answer











                            $endgroup$

















                              1














                              1










                              1







                              $begingroup$


                              which also gives us the centrifugal force (since $F=ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force).




                              You shouldn't call it "centrifugal force", but rather centripetal force. A centripetal force inwards causes the centripetal acceleration inwards. When people say "centrifugal force", they usually mean the feeling of being swung outwards, so this imaginary "centrifugal force" would be opposite to the actual centripetal force.



                              Note, though, that there is no such thing as a centrifugal force (it just feels like there is, but that's just an illusion); there is only a centripetal force.




                              But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0.




                              A very important note: The action/reaction forces in Newton's 3rd law do not act on the same object. Your object is pulled inwards and another object is simultaneously pulled outwards (the opposite way) with an equal force.



                              A circular motion happens because



                              • you swing something around in a string (the outwards force acts on your hand)

                              • you turn with your car (the outwards force acts on the ground/asphault/planet)

                              • a satellite is orbiting Earth (the outwards force acts on the Earth)

                              • etc.

                              There is always a source of the inwards force; there is always an interaction with something else, before a force can be present. That "something else", is what feels the reaction force via Newton's 3rd law.




                              I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.




                              You are basically answering the question here yourself. The only last thing to point out is, as mentioned above, that there is no such thing as a "centrifugal force". That is a bad term, because it is not a force. It is a feeling. You are swung outwards against the window when a car turns, not because some "centrifugal force" pushes you outwards, but because the car is pulled inwards by the centripetal force.



                              It is not you being pushed outwards, it is the car moving away from the straight path your body has and thus pulling you along. But from the perspective of the car it looks like you are the one moving and not the car - that is just an illusion, a trick by our brains. The same trick happens when a guy on roller skates is standing in a bus. When the bus accelerates, it looks like he rolls backwards - but it is not him rolling backwards, it is the bus rolling forwards away from underneath his feet.



                              In summary: It is not you moving outwards, it is the car moving into you. Nothing pushes you outwards, and there is no motion/acceleration outwards which would be caused by any force. Only the feeling/illusion of it.






                              share|cite|improve this answer











                              $endgroup$




                              which also gives us the centrifugal force (since $F=ma$ is the equation for a force and the acceleration of an object, therefore, is caused by a force).




                              You shouldn't call it "centrifugal force", but rather centripetal force. A centripetal force inwards causes the centripetal acceleration inwards. When people say "centrifugal force", they usually mean the feeling of being swung outwards, so this imaginary "centrifugal force" would be opposite to the actual centripetal force.



                              Note, though, that there is no such thing as a centrifugal force (it just feels like there is, but that's just an illusion); there is only a centripetal force.




                              But according to newton's third law, for every action, there is an equal and opposite reaction, which would mean that because of the centripetal force there's an equal force outwards, which I would say is the centrifugal force. But this is obviously not true since that would mean that the net acceleration on the object moving in the circle would be 0.




                              A very important note: The action/reaction forces in Newton's 3rd law do not act on the same object. Your object is pulled inwards and another object is simultaneously pulled outwards (the opposite way) with an equal force.



                              A circular motion happens because



                              • you swing something around in a string (the outwards force acts on your hand)

                              • you turn with your car (the outwards force acts on the ground/asphault/planet)

                              • a satellite is orbiting Earth (the outwards force acts on the Earth)

                              • etc.

                              There is always a source of the inwards force; there is always an interaction with something else, before a force can be present. That "something else", is what feels the reaction force via Newton's 3rd law.




                              I can imagine that the centripetal force may come from friction with the road if you're in a car and if the reaction force is the force into the ground it makes sense, except for the centrifugal force.




                              You are basically answering the question here yourself. The only last thing to point out is, as mentioned above, that there is no such thing as a "centrifugal force". That is a bad term, because it is not a force. It is a feeling. You are swung outwards against the window when a car turns, not because some "centrifugal force" pushes you outwards, but because the car is pulled inwards by the centripetal force.



                              It is not you being pushed outwards, it is the car moving away from the straight path your body has and thus pulling you along. But from the perspective of the car it looks like you are the one moving and not the car - that is just an illusion, a trick by our brains. The same trick happens when a guy on roller skates is standing in a bus. When the bus accelerates, it looks like he rolls backwards - but it is not him rolling backwards, it is the bus rolling forwards away from underneath his feet.



                              In summary: It is not you moving outwards, it is the car moving into you. Nothing pushes you outwards, and there is no motion/acceleration outwards which would be caused by any force. Only the feeling/illusion of it.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited 6 hours ago

























                              answered 6 hours ago









                              SteevenSteeven

                              29.9k8 gold badges72 silver badges121 bronze badges




                              29.9k8 gold badges72 silver badges121 bronze badges
























                                  1














                                  $begingroup$

                                  Imagine an object connected by a string moving in a circular motion.




                                  what is actually this reaction force that's created by the centripetal force?




                                  The force on a object, which causes the centripetal acceleration of an object, is due to another entity - the action, eg the force on the object due to the string.



                                  The Newton third law pair is the force on another entity due to the object - the reaction, eg the force on the string due to the object.




                                  where does the centrifugal force come from?




                                  The centrifugal force is not a real force, rather it is introduced for the convenience of being able to use Newton’s second law in the rotational (non-inertial) frame of the object.



                                  There is no Newton third law pair to the centrifugal force.






                                  share|cite|improve this answer









                                  $endgroup$



















                                    1














                                    $begingroup$

                                    Imagine an object connected by a string moving in a circular motion.




                                    what is actually this reaction force that's created by the centripetal force?




                                    The force on a object, which causes the centripetal acceleration of an object, is due to another entity - the action, eg the force on the object due to the string.



                                    The Newton third law pair is the force on another entity due to the object - the reaction, eg the force on the string due to the object.




                                    where does the centrifugal force come from?




                                    The centrifugal force is not a real force, rather it is introduced for the convenience of being able to use Newton’s second law in the rotational (non-inertial) frame of the object.



                                    There is no Newton third law pair to the centrifugal force.






                                    share|cite|improve this answer









                                    $endgroup$

















                                      1














                                      1










                                      1







                                      $begingroup$

                                      Imagine an object connected by a string moving in a circular motion.




                                      what is actually this reaction force that's created by the centripetal force?




                                      The force on a object, which causes the centripetal acceleration of an object, is due to another entity - the action, eg the force on the object due to the string.



                                      The Newton third law pair is the force on another entity due to the object - the reaction, eg the force on the string due to the object.




                                      where does the centrifugal force come from?




                                      The centrifugal force is not a real force, rather it is introduced for the convenience of being able to use Newton’s second law in the rotational (non-inertial) frame of the object.



                                      There is no Newton third law pair to the centrifugal force.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Imagine an object connected by a string moving in a circular motion.




                                      what is actually this reaction force that's created by the centripetal force?




                                      The force on a object, which causes the centripetal acceleration of an object, is due to another entity - the action, eg the force on the object due to the string.



                                      The Newton third law pair is the force on another entity due to the object - the reaction, eg the force on the string due to the object.




                                      where does the centrifugal force come from?




                                      The centrifugal force is not a real force, rather it is introduced for the convenience of being able to use Newton’s second law in the rotational (non-inertial) frame of the object.



                                      There is no Newton third law pair to the centrifugal force.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 4 hours ago









                                      FarcherFarcher

                                      56.6k3 gold badges45 silver badges123 bronze badges




                                      56.6k3 gold badges45 silver badges123 bronze badges
























                                          0














                                          $begingroup$


                                          But this is obviously not true since that would mean that the net
                                          acceleration on the object moving in the circle would be 0.




                                          That is not correct. An object is undergoing acceleration if either its speed changes, it changes direction, or both. According to Newtons first law, a body moving in a straight line at constant speed will continue to do so unless acted upon by a net external force. At any instant in time the velocity vector of a body undergoing circular motion is tangent to the circle. The inertia of the body resists a change in direction of that vector. The centrifugal force is a fictitious force that appears to be acting on the body in a non-inertial (accelerating) reference frame due to the inertia of the body. The centripetal force is the net force acting on the object forcing it to constantly change direction towards the center of the circular path.



                                          Perhaps it is easiest to see this if you consider a car driving in a straight line at constant speed. An object is on the passenger seat. The driver (in this case on the left side of the car) makes a sharp left turn, which is the beginning of circular motion. The object on the seat slides towards the passenger side door. The driver experiences the sensation of being pushed towards the passenger side. But neither the driver nor the object is subjected to any contact force pushing them in that direction. They are experiencing a centrifugal (fictitious) force.



                                          Now suppose instead that the object does not slide on the seat because of the static friction between the object and the seat. The static friction force is a centripetal force towards the center of the circular preventing the object from continuing in a straight line as viewed from an inertial reference frame (e.g., the road). This is the same thing that is happening in your example.



                                          Bottom line: The centripetal force keeps changing the direction of the object towards the center of the circular path. A change in direction of the motion of an object results in an acceleration even if the speed of the object is unchanged.



                                          Hope this helps.






                                          share|cite|improve this answer









                                          $endgroup$



















                                            0














                                            $begingroup$


                                            But this is obviously not true since that would mean that the net
                                            acceleration on the object moving in the circle would be 0.




                                            That is not correct. An object is undergoing acceleration if either its speed changes, it changes direction, or both. According to Newtons first law, a body moving in a straight line at constant speed will continue to do so unless acted upon by a net external force. At any instant in time the velocity vector of a body undergoing circular motion is tangent to the circle. The inertia of the body resists a change in direction of that vector. The centrifugal force is a fictitious force that appears to be acting on the body in a non-inertial (accelerating) reference frame due to the inertia of the body. The centripetal force is the net force acting on the object forcing it to constantly change direction towards the center of the circular path.



                                            Perhaps it is easiest to see this if you consider a car driving in a straight line at constant speed. An object is on the passenger seat. The driver (in this case on the left side of the car) makes a sharp left turn, which is the beginning of circular motion. The object on the seat slides towards the passenger side door. The driver experiences the sensation of being pushed towards the passenger side. But neither the driver nor the object is subjected to any contact force pushing them in that direction. They are experiencing a centrifugal (fictitious) force.



                                            Now suppose instead that the object does not slide on the seat because of the static friction between the object and the seat. The static friction force is a centripetal force towards the center of the circular preventing the object from continuing in a straight line as viewed from an inertial reference frame (e.g., the road). This is the same thing that is happening in your example.



                                            Bottom line: The centripetal force keeps changing the direction of the object towards the center of the circular path. A change in direction of the motion of an object results in an acceleration even if the speed of the object is unchanged.



                                            Hope this helps.






                                            share|cite|improve this answer









                                            $endgroup$

















                                              0














                                              0










                                              0







                                              $begingroup$


                                              But this is obviously not true since that would mean that the net
                                              acceleration on the object moving in the circle would be 0.




                                              That is not correct. An object is undergoing acceleration if either its speed changes, it changes direction, or both. According to Newtons first law, a body moving in a straight line at constant speed will continue to do so unless acted upon by a net external force. At any instant in time the velocity vector of a body undergoing circular motion is tangent to the circle. The inertia of the body resists a change in direction of that vector. The centrifugal force is a fictitious force that appears to be acting on the body in a non-inertial (accelerating) reference frame due to the inertia of the body. The centripetal force is the net force acting on the object forcing it to constantly change direction towards the center of the circular path.



                                              Perhaps it is easiest to see this if you consider a car driving in a straight line at constant speed. An object is on the passenger seat. The driver (in this case on the left side of the car) makes a sharp left turn, which is the beginning of circular motion. The object on the seat slides towards the passenger side door. The driver experiences the sensation of being pushed towards the passenger side. But neither the driver nor the object is subjected to any contact force pushing them in that direction. They are experiencing a centrifugal (fictitious) force.



                                              Now suppose instead that the object does not slide on the seat because of the static friction between the object and the seat. The static friction force is a centripetal force towards the center of the circular preventing the object from continuing in a straight line as viewed from an inertial reference frame (e.g., the road). This is the same thing that is happening in your example.



                                              Bottom line: The centripetal force keeps changing the direction of the object towards the center of the circular path. A change in direction of the motion of an object results in an acceleration even if the speed of the object is unchanged.



                                              Hope this helps.






                                              share|cite|improve this answer









                                              $endgroup$




                                              But this is obviously not true since that would mean that the net
                                              acceleration on the object moving in the circle would be 0.




                                              That is not correct. An object is undergoing acceleration if either its speed changes, it changes direction, or both. According to Newtons first law, a body moving in a straight line at constant speed will continue to do so unless acted upon by a net external force. At any instant in time the velocity vector of a body undergoing circular motion is tangent to the circle. The inertia of the body resists a change in direction of that vector. The centrifugal force is a fictitious force that appears to be acting on the body in a non-inertial (accelerating) reference frame due to the inertia of the body. The centripetal force is the net force acting on the object forcing it to constantly change direction towards the center of the circular path.



                                              Perhaps it is easiest to see this if you consider a car driving in a straight line at constant speed. An object is on the passenger seat. The driver (in this case on the left side of the car) makes a sharp left turn, which is the beginning of circular motion. The object on the seat slides towards the passenger side door. The driver experiences the sensation of being pushed towards the passenger side. But neither the driver nor the object is subjected to any contact force pushing them in that direction. They are experiencing a centrifugal (fictitious) force.



                                              Now suppose instead that the object does not slide on the seat because of the static friction between the object and the seat. The static friction force is a centripetal force towards the center of the circular preventing the object from continuing in a straight line as viewed from an inertial reference frame (e.g., the road). This is the same thing that is happening in your example.



                                              Bottom line: The centripetal force keeps changing the direction of the object towards the center of the circular path. A change in direction of the motion of an object results in an acceleration even if the speed of the object is unchanged.



                                              Hope this helps.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 6 hours ago









                                              Bob DBob D

                                              13.7k3 gold badges12 silver badges40 bronze badges




                                              13.7k3 gold badges12 silver badges40 bronze badges































                                                  draft saved

                                                  draft discarded















































                                                  Thanks for contributing an answer to Physics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f503488%2fcentrifugal-force-with-newtons-third-law%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                                  Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                                  Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)