The role of Lorentz tranformationsInvariant equations of motion under Lorentz transformationsProof that Maxwell equations are Lorentz invariantLocal Lorentz Invariance and Conformal Metric TransformationsIs spacetime symmetry a gauge symmetry?What is the significance of Maxwell's equations being invariant under the Lorentz transformation?Is local Lorentz + diffeomorphism invariance equivalent to full local Poincaré invariance?Connection between gauge invariance and Lorentz invariance

Output Distinct Factor Cuboids

Test to know when to use GLM over Linear Regression?

What does the "capacitor into resistance" symbol mean?

How to install Rasbian Stretch on Raspberry Pi 4?

Travel distance across water in early prehistory

Floating Point XOR

How do we know that black holes are spinning?

Can an infinite series be thought of as adding up "infinitely many" terms?

Is there a generally agreed upon solution to Bradley's Infinite Regress without appeal to Paraconsistent Logic?

Anagrams Question

What is a "major country" as named in Bernie Sanders' Healthcare debate answers?

Other than good shoes and a stick, what are some ways to preserve your knees on long hikes?

Can a business put whatever they want into a contract?

Is there a tool to measure the "maturity" of a code in Git?

Exam design: give maximum score per question or not?

What is the word for a person who destroys monuments?

how to know this integral finite or infinite

Statistical tests for benchmark comparison

Python web-scraper to download table of transistor counts from Wikipedia

Where is it? - The Google Earth Challenge Ep. 4

Smooth irreducible subvarieties in an algebraic group that are stable under power maps

Tips for remembering the order of parameters for ln?

Impossible Scrabble Words

Maximum-cardinality matching in unbalanced bipartite graphs



The role of Lorentz tranformations


Invariant equations of motion under Lorentz transformationsProof that Maxwell equations are Lorentz invariantLocal Lorentz Invariance and Conformal Metric TransformationsIs spacetime symmetry a gauge symmetry?What is the significance of Maxwell's equations being invariant under the Lorentz transformation?Is local Lorentz + diffeomorphism invariance equivalent to full local Poincaré invariance?Connection between gauge invariance and Lorentz invariance






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


My questions concern the role of Lorentz transformations in Special Relativity and General Relativity, as described in the following fragment of the series of GR lectures: https://www.youtube.com/watch?v=iFAxSEoj6Go&list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_&index=14&t=0s#t=102m50s 
(lecture 13 of International Winter School on Gravity and Light 2015 by Frederic Schuller, can be found also here: https://gravity-and-light.herokuapp.com/lectures)



In short, it says that:



  1. The role of Lorentz transformations is exactly the same in SR and GR.

  2. Namely, Lorentz transformations relate the frames of any two observers at the same point $p in M$ and as such are the change of the basis of the tangent space at $p$, $T_p M$.


  3. Therefore, it is conceptually wrong to think of them as acting on the points of the spacetime manifold $M$ as transforming $x^mu to x'^mu = Lambda^mu_nu x^nu$.


Here are my questions:



  1. Is there any physics textbook that follows consistently this way of thinking? People usually use $x^mu to x'^mu$ as the formula for the Lorentz transformations without mentioning that this is in any way improper.


  2. How to think about the Lorentz invariance of laws, e.g. of the Maxwell equations? It was historically an important observation that the Maxwell equations are not Galilei invariant but Lorentz invariant, which led to the construction of SR. But checking the invariance of the equations amounts to checking how the equations behave when we change $x^mu to x'^mu$ $-$ at least this was always presented to me in this way.


  3. The transformation $x^mu to x'^mu$ also seems to be used in the derivation of Noether's theorems.


  4. If Lorentz transformations take place in the tangent space and translations take place in the spacetime, then how does it make sense to talk about the Poincaré group that encompasses them all?










share|cite|improve this question









New contributor



wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




















    2












    $begingroup$


    My questions concern the role of Lorentz transformations in Special Relativity and General Relativity, as described in the following fragment of the series of GR lectures: https://www.youtube.com/watch?v=iFAxSEoj6Go&list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_&index=14&t=0s#t=102m50s 
    (lecture 13 of International Winter School on Gravity and Light 2015 by Frederic Schuller, can be found also here: https://gravity-and-light.herokuapp.com/lectures)



    In short, it says that:



    1. The role of Lorentz transformations is exactly the same in SR and GR.

    2. Namely, Lorentz transformations relate the frames of any two observers at the same point $p in M$ and as such are the change of the basis of the tangent space at $p$, $T_p M$.


    3. Therefore, it is conceptually wrong to think of them as acting on the points of the spacetime manifold $M$ as transforming $x^mu to x'^mu = Lambda^mu_nu x^nu$.


    Here are my questions:



    1. Is there any physics textbook that follows consistently this way of thinking? People usually use $x^mu to x'^mu$ as the formula for the Lorentz transformations without mentioning that this is in any way improper.


    2. How to think about the Lorentz invariance of laws, e.g. of the Maxwell equations? It was historically an important observation that the Maxwell equations are not Galilei invariant but Lorentz invariant, which led to the construction of SR. But checking the invariance of the equations amounts to checking how the equations behave when we change $x^mu to x'^mu$ $-$ at least this was always presented to me in this way.


    3. The transformation $x^mu to x'^mu$ also seems to be used in the derivation of Noether's theorems.


    4. If Lorentz transformations take place in the tangent space and translations take place in the spacetime, then how does it make sense to talk about the Poincaré group that encompasses them all?










    share|cite|improve this question









    New contributor



    wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$
















      2












      2








      2





      $begingroup$


      My questions concern the role of Lorentz transformations in Special Relativity and General Relativity, as described in the following fragment of the series of GR lectures: https://www.youtube.com/watch?v=iFAxSEoj6Go&list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_&index=14&t=0s#t=102m50s 
      (lecture 13 of International Winter School on Gravity and Light 2015 by Frederic Schuller, can be found also here: https://gravity-and-light.herokuapp.com/lectures)



      In short, it says that:



      1. The role of Lorentz transformations is exactly the same in SR and GR.

      2. Namely, Lorentz transformations relate the frames of any two observers at the same point $p in M$ and as such are the change of the basis of the tangent space at $p$, $T_p M$.


      3. Therefore, it is conceptually wrong to think of them as acting on the points of the spacetime manifold $M$ as transforming $x^mu to x'^mu = Lambda^mu_nu x^nu$.


      Here are my questions:



      1. Is there any physics textbook that follows consistently this way of thinking? People usually use $x^mu to x'^mu$ as the formula for the Lorentz transformations without mentioning that this is in any way improper.


      2. How to think about the Lorentz invariance of laws, e.g. of the Maxwell equations? It was historically an important observation that the Maxwell equations are not Galilei invariant but Lorentz invariant, which led to the construction of SR. But checking the invariance of the equations amounts to checking how the equations behave when we change $x^mu to x'^mu$ $-$ at least this was always presented to me in this way.


      3. The transformation $x^mu to x'^mu$ also seems to be used in the derivation of Noether's theorems.


      4. If Lorentz transformations take place in the tangent space and translations take place in the spacetime, then how does it make sense to talk about the Poincaré group that encompasses them all?










      share|cite|improve this question









      New contributor



      wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      My questions concern the role of Lorentz transformations in Special Relativity and General Relativity, as described in the following fragment of the series of GR lectures: https://www.youtube.com/watch?v=iFAxSEoj6Go&list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_&index=14&t=0s#t=102m50s 
      (lecture 13 of International Winter School on Gravity and Light 2015 by Frederic Schuller, can be found also here: https://gravity-and-light.herokuapp.com/lectures)



      In short, it says that:



      1. The role of Lorentz transformations is exactly the same in SR and GR.

      2. Namely, Lorentz transformations relate the frames of any two observers at the same point $p in M$ and as such are the change of the basis of the tangent space at $p$, $T_p M$.


      3. Therefore, it is conceptually wrong to think of them as acting on the points of the spacetime manifold $M$ as transforming $x^mu to x'^mu = Lambda^mu_nu x^nu$.


      Here are my questions:



      1. Is there any physics textbook that follows consistently this way of thinking? People usually use $x^mu to x'^mu$ as the formula for the Lorentz transformations without mentioning that this is in any way improper.


      2. How to think about the Lorentz invariance of laws, e.g. of the Maxwell equations? It was historically an important observation that the Maxwell equations are not Galilei invariant but Lorentz invariant, which led to the construction of SR. But checking the invariance of the equations amounts to checking how the equations behave when we change $x^mu to x'^mu$ $-$ at least this was always presented to me in this way.


      3. The transformation $x^mu to x'^mu$ also seems to be used in the derivation of Noether's theorems.


      4. If Lorentz transformations take place in the tangent space and translations take place in the spacetime, then how does it make sense to talk about the Poincaré group that encompasses them all?







      general-relativity special-relativity coordinate-systems lorentz-symmetry poincare-symmetry






      share|cite|improve this question









      New contributor



      wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|cite|improve this question









      New contributor



      wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|cite|improve this question




      share|cite|improve this question








      edited 7 hours ago







      wiktoria













      New contributor



      wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 8 hours ago









      wiktoriawiktoria

      213 bronze badges




      213 bronze badges




      New contributor



      wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      wiktoria is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.

























          1 Answer
          1






          active

          oldest

          votes


















          3














          $begingroup$

          The local Lorentz transformation are acting on the tangent space $T_p(M)$ to the curved GR manifold at each point $p$. The idea of a "tangent space" is a formal way of ascribing a flat space to the neighbourhood of $p$ in which we are so close to $p$ that we don't notice the curvature. This is in the same way that when we draw of map of a town, we do not notice that the surface of the Earth is a sphere and not an infinite plane. The $x^mu$ are coordinates in this neighbourhood. Each point $p$ has it's own neighbourhood with their origin at $p$. Although the neighbourhoods of nearby $p$'s will overlap, when we get sufficiently far away we can no longer maintain the convenient fiction that we are in a flat space.



          The equivalence principle says that each point $pin M$ has a sufficiently small neighbourhood in which we don't notice the curvature and so, for example, the flat space Maxwell equations can be used. These flat-space equations are Lorentz invariant, so each point has its own attached group of Lorentz tranformations that act on the local coordinates $x^mu$ just as they do in SR.






          share|cite|improve this answer









          $endgroup$














          • $begingroup$
            But tangent space is associated to one point, so how can I translate any manipulations on it to other points on spacetime? By assuming that they are associated with the same tangent space? Also, the lecturer stressed that tangent space is a vector space and spacetime is a manifold without the vector space structure - does it make any problem for such a translation?
            $endgroup$
            – wiktoria
            7 hours ago











          • $begingroup$
            And what you said seems to be against the first claim of the lecturer that I listed, namely that the meaning of Lorentz transformations is the same in SR and GR.
            $endgroup$
            – wiktoria
            7 hours ago







          • 1




            $begingroup$
            The flat tangent space is "soldered" to the curved manifold by the "solder form". There is a wikipedia page with that title about how it works. The only difference between SR and GR is that in the former you can take the neighbourhood of Minkowski space that is as being treated as a vector space as large as you like. In GR you are restricted to mapping only a small region of the curved manifold 1-1 onto the vector space.
            $endgroup$
            – mike stone
            6 hours ago













          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );







          wiktoria is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded
















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f502982%2fthe-role-of-lorentz-tranformations%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          $begingroup$

          The local Lorentz transformation are acting on the tangent space $T_p(M)$ to the curved GR manifold at each point $p$. The idea of a "tangent space" is a formal way of ascribing a flat space to the neighbourhood of $p$ in which we are so close to $p$ that we don't notice the curvature. This is in the same way that when we draw of map of a town, we do not notice that the surface of the Earth is a sphere and not an infinite plane. The $x^mu$ are coordinates in this neighbourhood. Each point $p$ has it's own neighbourhood with their origin at $p$. Although the neighbourhoods of nearby $p$'s will overlap, when we get sufficiently far away we can no longer maintain the convenient fiction that we are in a flat space.



          The equivalence principle says that each point $pin M$ has a sufficiently small neighbourhood in which we don't notice the curvature and so, for example, the flat space Maxwell equations can be used. These flat-space equations are Lorentz invariant, so each point has its own attached group of Lorentz tranformations that act on the local coordinates $x^mu$ just as they do in SR.






          share|cite|improve this answer









          $endgroup$














          • $begingroup$
            But tangent space is associated to one point, so how can I translate any manipulations on it to other points on spacetime? By assuming that they are associated with the same tangent space? Also, the lecturer stressed that tangent space is a vector space and spacetime is a manifold without the vector space structure - does it make any problem for such a translation?
            $endgroup$
            – wiktoria
            7 hours ago











          • $begingroup$
            And what you said seems to be against the first claim of the lecturer that I listed, namely that the meaning of Lorentz transformations is the same in SR and GR.
            $endgroup$
            – wiktoria
            7 hours ago







          • 1




            $begingroup$
            The flat tangent space is "soldered" to the curved manifold by the "solder form". There is a wikipedia page with that title about how it works. The only difference between SR and GR is that in the former you can take the neighbourhood of Minkowski space that is as being treated as a vector space as large as you like. In GR you are restricted to mapping only a small region of the curved manifold 1-1 onto the vector space.
            $endgroup$
            – mike stone
            6 hours ago















          3














          $begingroup$

          The local Lorentz transformation are acting on the tangent space $T_p(M)$ to the curved GR manifold at each point $p$. The idea of a "tangent space" is a formal way of ascribing a flat space to the neighbourhood of $p$ in which we are so close to $p$ that we don't notice the curvature. This is in the same way that when we draw of map of a town, we do not notice that the surface of the Earth is a sphere and not an infinite plane. The $x^mu$ are coordinates in this neighbourhood. Each point $p$ has it's own neighbourhood with their origin at $p$. Although the neighbourhoods of nearby $p$'s will overlap, when we get sufficiently far away we can no longer maintain the convenient fiction that we are in a flat space.



          The equivalence principle says that each point $pin M$ has a sufficiently small neighbourhood in which we don't notice the curvature and so, for example, the flat space Maxwell equations can be used. These flat-space equations are Lorentz invariant, so each point has its own attached group of Lorentz tranformations that act on the local coordinates $x^mu$ just as they do in SR.






          share|cite|improve this answer









          $endgroup$














          • $begingroup$
            But tangent space is associated to one point, so how can I translate any manipulations on it to other points on spacetime? By assuming that they are associated with the same tangent space? Also, the lecturer stressed that tangent space is a vector space and spacetime is a manifold without the vector space structure - does it make any problem for such a translation?
            $endgroup$
            – wiktoria
            7 hours ago











          • $begingroup$
            And what you said seems to be against the first claim of the lecturer that I listed, namely that the meaning of Lorentz transformations is the same in SR and GR.
            $endgroup$
            – wiktoria
            7 hours ago







          • 1




            $begingroup$
            The flat tangent space is "soldered" to the curved manifold by the "solder form". There is a wikipedia page with that title about how it works. The only difference between SR and GR is that in the former you can take the neighbourhood of Minkowski space that is as being treated as a vector space as large as you like. In GR you are restricted to mapping only a small region of the curved manifold 1-1 onto the vector space.
            $endgroup$
            – mike stone
            6 hours ago













          3














          3










          3







          $begingroup$

          The local Lorentz transformation are acting on the tangent space $T_p(M)$ to the curved GR manifold at each point $p$. The idea of a "tangent space" is a formal way of ascribing a flat space to the neighbourhood of $p$ in which we are so close to $p$ that we don't notice the curvature. This is in the same way that when we draw of map of a town, we do not notice that the surface of the Earth is a sphere and not an infinite plane. The $x^mu$ are coordinates in this neighbourhood. Each point $p$ has it's own neighbourhood with their origin at $p$. Although the neighbourhoods of nearby $p$'s will overlap, when we get sufficiently far away we can no longer maintain the convenient fiction that we are in a flat space.



          The equivalence principle says that each point $pin M$ has a sufficiently small neighbourhood in which we don't notice the curvature and so, for example, the flat space Maxwell equations can be used. These flat-space equations are Lorentz invariant, so each point has its own attached group of Lorentz tranformations that act on the local coordinates $x^mu$ just as they do in SR.






          share|cite|improve this answer









          $endgroup$



          The local Lorentz transformation are acting on the tangent space $T_p(M)$ to the curved GR manifold at each point $p$. The idea of a "tangent space" is a formal way of ascribing a flat space to the neighbourhood of $p$ in which we are so close to $p$ that we don't notice the curvature. This is in the same way that when we draw of map of a town, we do not notice that the surface of the Earth is a sphere and not an infinite plane. The $x^mu$ are coordinates in this neighbourhood. Each point $p$ has it's own neighbourhood with their origin at $p$. Although the neighbourhoods of nearby $p$'s will overlap, when we get sufficiently far away we can no longer maintain the convenient fiction that we are in a flat space.



          The equivalence principle says that each point $pin M$ has a sufficiently small neighbourhood in which we don't notice the curvature and so, for example, the flat space Maxwell equations can be used. These flat-space equations are Lorentz invariant, so each point has its own attached group of Lorentz tranformations that act on the local coordinates $x^mu$ just as they do in SR.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 7 hours ago









          mike stonemike stone

          10.3k1 gold badge13 silver badges33 bronze badges




          10.3k1 gold badge13 silver badges33 bronze badges














          • $begingroup$
            But tangent space is associated to one point, so how can I translate any manipulations on it to other points on spacetime? By assuming that they are associated with the same tangent space? Also, the lecturer stressed that tangent space is a vector space and spacetime is a manifold without the vector space structure - does it make any problem for such a translation?
            $endgroup$
            – wiktoria
            7 hours ago











          • $begingroup$
            And what you said seems to be against the first claim of the lecturer that I listed, namely that the meaning of Lorentz transformations is the same in SR and GR.
            $endgroup$
            – wiktoria
            7 hours ago







          • 1




            $begingroup$
            The flat tangent space is "soldered" to the curved manifold by the "solder form". There is a wikipedia page with that title about how it works. The only difference between SR and GR is that in the former you can take the neighbourhood of Minkowski space that is as being treated as a vector space as large as you like. In GR you are restricted to mapping only a small region of the curved manifold 1-1 onto the vector space.
            $endgroup$
            – mike stone
            6 hours ago
















          • $begingroup$
            But tangent space is associated to one point, so how can I translate any manipulations on it to other points on spacetime? By assuming that they are associated with the same tangent space? Also, the lecturer stressed that tangent space is a vector space and spacetime is a manifold without the vector space structure - does it make any problem for such a translation?
            $endgroup$
            – wiktoria
            7 hours ago











          • $begingroup$
            And what you said seems to be against the first claim of the lecturer that I listed, namely that the meaning of Lorentz transformations is the same in SR and GR.
            $endgroup$
            – wiktoria
            7 hours ago







          • 1




            $begingroup$
            The flat tangent space is "soldered" to the curved manifold by the "solder form". There is a wikipedia page with that title about how it works. The only difference between SR and GR is that in the former you can take the neighbourhood of Minkowski space that is as being treated as a vector space as large as you like. In GR you are restricted to mapping only a small region of the curved manifold 1-1 onto the vector space.
            $endgroup$
            – mike stone
            6 hours ago















          $begingroup$
          But tangent space is associated to one point, so how can I translate any manipulations on it to other points on spacetime? By assuming that they are associated with the same tangent space? Also, the lecturer stressed that tangent space is a vector space and spacetime is a manifold without the vector space structure - does it make any problem for such a translation?
          $endgroup$
          – wiktoria
          7 hours ago





          $begingroup$
          But tangent space is associated to one point, so how can I translate any manipulations on it to other points on spacetime? By assuming that they are associated with the same tangent space? Also, the lecturer stressed that tangent space is a vector space and spacetime is a manifold without the vector space structure - does it make any problem for such a translation?
          $endgroup$
          – wiktoria
          7 hours ago













          $begingroup$
          And what you said seems to be against the first claim of the lecturer that I listed, namely that the meaning of Lorentz transformations is the same in SR and GR.
          $endgroup$
          – wiktoria
          7 hours ago





          $begingroup$
          And what you said seems to be against the first claim of the lecturer that I listed, namely that the meaning of Lorentz transformations is the same in SR and GR.
          $endgroup$
          – wiktoria
          7 hours ago





          1




          1




          $begingroup$
          The flat tangent space is "soldered" to the curved manifold by the "solder form". There is a wikipedia page with that title about how it works. The only difference between SR and GR is that in the former you can take the neighbourhood of Minkowski space that is as being treated as a vector space as large as you like. In GR you are restricted to mapping only a small region of the curved manifold 1-1 onto the vector space.
          $endgroup$
          – mike stone
          6 hours ago




          $begingroup$
          The flat tangent space is "soldered" to the curved manifold by the "solder form". There is a wikipedia page with that title about how it works. The only difference between SR and GR is that in the former you can take the neighbourhood of Minkowski space that is as being treated as a vector space as large as you like. In GR you are restricted to mapping only a small region of the curved manifold 1-1 onto the vector space.
          $endgroup$
          – mike stone
          6 hours ago











          wiktoria is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded

















          wiktoria is a new contributor. Be nice, and check out our Code of Conduct.












          wiktoria is a new contributor. Be nice, and check out our Code of Conduct.











          wiktoria is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f502982%2fthe-role-of-lorentz-tranformations%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

          Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

          Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)