Ring Automorphisms that fix 1. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbbR^n$group of automorphisms of the ring $mathbbZtimesmathbbZ$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbbQ[sqrt[3]5]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbbQ(sqrt[4]2)/mathbbQ$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?
Why aren't air breathing engines used as small first stages
What is known about the Ubaid lizard-people figurines?
When a candle burns, why does the top of wick glow if bottom of flame is hottest?
What's the meaning of 間時肆拾貳 at a car parking sign
How widely used is the term Treppenwitz? Is it something that most Germans know?
What is the meaning of the new sigil in Game of Thrones Season 8 intro?
What does the "x" in "x86" represent?
51k Euros annually for a family of 4 in Berlin: Is it enough?
Using et al. for a last / senior author rather than for a first author
Is it fair for a professor to grade us on the possession of past papers?
List of Python versions
Naming the result of a source block
3 doors, three guards, one stone
Fundamental Solution of the Pell Equation
Can a USB port passively 'listen only'?
What does this icon in iOS Stardew Valley mean?
If a contract sometimes uses the wrong name, is it still valid?
Can I cast Passwall to drop an enemy into a 20-foot pit?
What causes the vertical darker bands in my photo?
What is the logic behind the Maharil's explanation of why we don't say שעשה ניסים on Pesach?
Echoing a tail command produces unexpected output?
How to answer "Have you ever been terminated?"
How to tell that you are a giant?
List *all* the tuples!
Ring Automorphisms that fix 1.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbbR^n$group of automorphisms of the ring $mathbbZtimesmathbbZ$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbbQ[sqrt[3]5]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbbQ(sqrt[4]2)/mathbbQ$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
add a comment |
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
add a comment |
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
abstract-algebra ring-theory field-theory galois-theory
asked 3 hours ago


Solarflare0Solarflare0
9813
9813
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
answered 3 hours ago


lhflhf
168k11172405
168k11172405
add a comment |
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
answered 3 hours ago


60056005
37.1k752127
37.1k752127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown