“Counterexample” for the Inverse function theoremApplication of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?

Is Big Ben visible from the British museum?

Why is Drogon so much better in battle than Rhaegal and Viserion?

Cannot remove door knob -- totally inaccessible!

Why aren't satellites disintegrated even though they orbit earth within their Roche Limits?

Have there been any examples of re-usable rockets in the past?

Capital gains on stocks sold to take initial investment off the table

Why is so much ransomware breakable?

How to deal with the extreme reverberation in big cathedrals when playing the pipe organs?

Square spiral in Mathematica

How could it be that 80% of townspeople were farmers during the Edo period in Japan?

Roman Numerals Equation 2

Cycling to work - 30mile return

Why does Taylor’s series “work”?

How do Ctrl+C and Ctrl+V work?

A latin word for "area of interest"

Would a "ring language" be possible?

How was the blinking terminal cursor invented?

What dog breeds survive the apocalypse for generations?

Why are there five extra turns in tournament Magic?

Is there any deeper thematic meaning to the white horse that Arya finds in The Bells (S08E05)?

Why do galaxies collide?

Why does string strummed with finger sound different from the one strummed with pick?

Deleting the same lines from a list

Given 0s on Assignments with suspected and dismissed cheating?



“Counterexample” for the Inverse function theorem


Application of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?













6












$begingroup$


In my class we stated the theorem as follows:



Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



Thanks










share|cite|improve this question









$endgroup$
















    6












    $begingroup$


    In my class we stated the theorem as follows:



    Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



    This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



    Thanks










    share|cite|improve this question









    $endgroup$














      6












      6








      6


      1



      $begingroup$


      In my class we stated the theorem as follows:



      Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



      This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



      Thanks










      share|cite|improve this question









      $endgroup$




      In my class we stated the theorem as follows:



      Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



      This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



      Thanks







      real-analysis examples-counterexamples inverse-function-theorem






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      PedroPedro

      661212




      661212




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          Actually, this is not possible in $mathbbR^n$ either.



          Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



          From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Actually, this is not possible in $mathbbR^n$ either.



            Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



            From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






            share|cite|improve this answer









            $endgroup$

















              6












              $begingroup$

              Actually, this is not possible in $mathbbR^n$ either.



              Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



              From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






              share|cite|improve this answer









              $endgroup$















                6












                6








                6





                $begingroup$

                Actually, this is not possible in $mathbbR^n$ either.



                Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



                From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






                share|cite|improve this answer









                $endgroup$



                Actually, this is not possible in $mathbbR^n$ either.



                Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



                From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                MindlackMindlack

                5,100312




                5,100312



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

                    Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

                    19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу