Five Powers of Fives Produce Unique Pandigital Number…Solve for X..Tell me YCrack the Code #1Longest Calculator Word?A rather curious division machineVegas Street Magician Math TrickPassword CrackingFind a Strobogrammatic number, so if we square it, the result is a pandigit numberHoneydripping around the clockA mo-Roman samplerFind the equality with all digitsLong digital sequence. 16xxxxxxxxxxxxx61

Why use a retrograde orbit?

​Cuban​ ​Primes

When did Britain learn about American independence?

What formula to chose a nonlinear formula?

What would a Dragon have to exhale to cause rain?

Would a "ring language" be possible?

Why is the A380’s with-reversers stopping distance the same as its no-reversers stopping distance?

Does a non-singular matrix have a large minor with disjoint rows and columns and full rank?

Is it standard for US-based universities to consider the ethnicity of an applicant during PhD admissions?

FIFO data structure in pure C

How can I safely determine the output voltage and current of a transformer?

When the match time is called, does the current turn end immediately?

What are the effects of eating many berries from the Goodberry spell per day?

Holding rent money for my friend which amounts to over $10k?

Usage of the relative pronoun "dont"

Why is vowel phonology represented in a trapezoid instead of a square?

Do we see some Unsullied doing this in S08E05?

Why do academics prefer Mac/Linux?

Would it be fair to use 1d30 (instead of rolling 2d20 and taking the higher die) for advantage rolls?

What is the velocity distribution of the exhaust for a typical rocket engine?

Was the dragon prowess intentionally downplayed in S08E04?

Why are there five extra turns in tournament Magic?

Why is the marginal distribution/marginal probability described as "marginal"?

Five Powers of Fives Produce Unique Pandigital Number...Solve for X..Tell me Y



Five Powers of Fives Produce Unique Pandigital Number…Solve for X..Tell me Y


Crack the Code #1Longest Calculator Word?A rather curious division machineVegas Street Magician Math TrickPassword CrackingFind a Strobogrammatic number, so if we square it, the result is a pandigit numberHoneydripping around the clockA mo-Roman samplerFind the equality with all digitsLong digital sequence. 16xxxxxxxxxxxxx61













2












$begingroup$


Given: Y is a Pan-digital Number (no zero, 1 to 9 only) ending in 3.



 Pan digital number consists of all 9 digits 1 to 9..each digit occurring only once as is the case here. Last digit is given as 3 and all other digits 1,2,4,5,6,7,8,9 can be anywhere in the number.


No googling, no computers, you don’t even need the calculator till the last step to calculate Y from X.



$Y = (X-1) ^ 5 + ( X + 7 ) ^ 5 + ( 2X + 6 ) ^ 5 + ( 4X + 3 ) ^ 5 + ( 5 X + 8) ^ 5$



Most concise, logical answer will be accepted.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    In the future, for these kinds of alphametic/mathematical puzzles, I strongly encourage you to use MathJax to make the formatting look good, as it does now. Here's a meta post from Mathematics SE that gives a quick tutorial. I also recommend reading the Markdown help page for other formatting matters. Keep up the good work! :)
    $endgroup$
    – PiIsNot3
    1 hour ago










  • $begingroup$
    You may add the definition of pan-digital number (or put a link will do), I just know that term today
    $endgroup$
    – athin
    1 hour ago










  • $begingroup$
    Thx..will do in the future..didn’t have time to learn it fully
    $endgroup$
    – Uvc
    1 hour ago















2












$begingroup$


Given: Y is a Pan-digital Number (no zero, 1 to 9 only) ending in 3.



 Pan digital number consists of all 9 digits 1 to 9..each digit occurring only once as is the case here. Last digit is given as 3 and all other digits 1,2,4,5,6,7,8,9 can be anywhere in the number.


No googling, no computers, you don’t even need the calculator till the last step to calculate Y from X.



$Y = (X-1) ^ 5 + ( X + 7 ) ^ 5 + ( 2X + 6 ) ^ 5 + ( 4X + 3 ) ^ 5 + ( 5 X + 8) ^ 5$



Most concise, logical answer will be accepted.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    In the future, for these kinds of alphametic/mathematical puzzles, I strongly encourage you to use MathJax to make the formatting look good, as it does now. Here's a meta post from Mathematics SE that gives a quick tutorial. I also recommend reading the Markdown help page for other formatting matters. Keep up the good work! :)
    $endgroup$
    – PiIsNot3
    1 hour ago










  • $begingroup$
    You may add the definition of pan-digital number (or put a link will do), I just know that term today
    $endgroup$
    – athin
    1 hour ago










  • $begingroup$
    Thx..will do in the future..didn’t have time to learn it fully
    $endgroup$
    – Uvc
    1 hour ago













2












2








2





$begingroup$


Given: Y is a Pan-digital Number (no zero, 1 to 9 only) ending in 3.



 Pan digital number consists of all 9 digits 1 to 9..each digit occurring only once as is the case here. Last digit is given as 3 and all other digits 1,2,4,5,6,7,8,9 can be anywhere in the number.


No googling, no computers, you don’t even need the calculator till the last step to calculate Y from X.



$Y = (X-1) ^ 5 + ( X + 7 ) ^ 5 + ( 2X + 6 ) ^ 5 + ( 4X + 3 ) ^ 5 + ( 5 X + 8) ^ 5$



Most concise, logical answer will be accepted.










share|improve this question











$endgroup$




Given: Y is a Pan-digital Number (no zero, 1 to 9 only) ending in 3.



 Pan digital number consists of all 9 digits 1 to 9..each digit occurring only once as is the case here. Last digit is given as 3 and all other digits 1,2,4,5,6,7,8,9 can be anywhere in the number.


No googling, no computers, you don’t even need the calculator till the last step to calculate Y from X.



$Y = (X-1) ^ 5 + ( X + 7 ) ^ 5 + ( 2X + 6 ) ^ 5 + ( 4X + 3 ) ^ 5 + ( 5 X + 8) ^ 5$



Most concise, logical answer will be accepted.







mathematics no-computers






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago







Uvc

















asked 1 hour ago









UvcUvc

59310




59310







  • 1




    $begingroup$
    In the future, for these kinds of alphametic/mathematical puzzles, I strongly encourage you to use MathJax to make the formatting look good, as it does now. Here's a meta post from Mathematics SE that gives a quick tutorial. I also recommend reading the Markdown help page for other formatting matters. Keep up the good work! :)
    $endgroup$
    – PiIsNot3
    1 hour ago










  • $begingroup$
    You may add the definition of pan-digital number (or put a link will do), I just know that term today
    $endgroup$
    – athin
    1 hour ago










  • $begingroup$
    Thx..will do in the future..didn’t have time to learn it fully
    $endgroup$
    – Uvc
    1 hour ago












  • 1




    $begingroup$
    In the future, for these kinds of alphametic/mathematical puzzles, I strongly encourage you to use MathJax to make the formatting look good, as it does now. Here's a meta post from Mathematics SE that gives a quick tutorial. I also recommend reading the Markdown help page for other formatting matters. Keep up the good work! :)
    $endgroup$
    – PiIsNot3
    1 hour ago










  • $begingroup$
    You may add the definition of pan-digital number (or put a link will do), I just know that term today
    $endgroup$
    – athin
    1 hour ago










  • $begingroup$
    Thx..will do in the future..didn’t have time to learn it fully
    $endgroup$
    – Uvc
    1 hour ago







1




1




$begingroup$
In the future, for these kinds of alphametic/mathematical puzzles, I strongly encourage you to use MathJax to make the formatting look good, as it does now. Here's a meta post from Mathematics SE that gives a quick tutorial. I also recommend reading the Markdown help page for other formatting matters. Keep up the good work! :)
$endgroup$
– PiIsNot3
1 hour ago




$begingroup$
In the future, for these kinds of alphametic/mathematical puzzles, I strongly encourage you to use MathJax to make the formatting look good, as it does now. Here's a meta post from Mathematics SE that gives a quick tutorial. I also recommend reading the Markdown help page for other formatting matters. Keep up the good work! :)
$endgroup$
– PiIsNot3
1 hour ago












$begingroup$
You may add the definition of pan-digital number (or put a link will do), I just know that term today
$endgroup$
– athin
1 hour ago




$begingroup$
You may add the definition of pan-digital number (or put a link will do), I just know that term today
$endgroup$
– athin
1 hour ago












$begingroup$
Thx..will do in the future..didn’t have time to learn it fully
$endgroup$
– Uvc
1 hour ago




$begingroup$
Thx..will do in the future..didn’t have time to learn it fully
$endgroup$
– Uvc
1 hour ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

OK, now i realise its beauty...




for all $i$ from $0$ to $9$, $i^5$ mod $10$ = $i$




so to simply get the ending digit of $X$, the equation can be simplified:




$Y = (X-1) + ( X + 7 ) + ( 2X + 6 ) + ( 4X + 3 ) + ( 5 X + 8) $
$Y=13X +23$




More mod10-ing:




$Y=3X+3$




Sub $Y mod10 = 3$:




$3=3X+3$




Deducing $X mod10$:




$3X=0$
$X=0 (mod 10)$




Then, trial and error time, start from $X = $




$10$




Result (using a calculator in this very last step)




$Y=816725493$ BRAVO!!!







share|improve this answer











$endgroup$












  • $begingroup$
    ...yes.........
    $endgroup$
    – Uvc
    56 mins ago










  • $begingroup$
    beautiful question!!! @Uvc +1ed
    $endgroup$
    – Omega Krypton
    55 mins ago










  • $begingroup$
    Technically, you don't even need trial and error, as rot13(trareny zntavghqr pnyphyngvbaf zrna vg pbhyq bayl or 10. 20 znxrf bar grez 108^5, juvpu vf zber gura 9 qvtvgf).
    $endgroup$
    – Aranlyde
    39 mins ago


















1












$begingroup$

Without computers or calculators (at least until the very end), the answer is




$ X = boxed10 $




The key here is to realize that




the units digit of $ Y $ being 3 limits our possibilities for $ X $ by a lot. Finding the last digit of a positive integer is the same as taking the integer modulo 10, so we will take the given expression for $ Y $ modulo 10, set it equal to 3, and solve for $ X. $




To do this, we




apply Euler's Theorem, which states that for all coprime integers $ a, n $ we have $ a^phi(n) equiv 1 ! pmodn, $ where $ phi(n) $ is Euler's totient function. For this problem, we'll rely on a similar equation $ a^phi(n) + 1 equiv a ! pmodn, $ which works for any integers $ a, n, $ not just coprime.




Applying this theorem:




We have $ n = 10, $ so $$ a^phi(10) + 1 equiv a^5 equiv a ! ! ! pmod10. $$ Thus, $$ begingather* (X - 1)^5 + (X + 7)^5 + (2X + 6)^5 + (4X + 3)^5 + (5X + 8)^5 equiv 3 ! ! ! pmod10 \ (X - 1) + (X + 7) + (2X + 6) + (4X + 3) + (5X + 8) equiv 3 ! ! ! pmod10 \ 13X + 23 equiv 3 ! ! ! pmod10 \ 3X equiv 0 ! ! ! pmod10 \ X equiv 0 ! ! ! pmod10 endgather* $$




Final answer:




We know now that $ X equiv 0 ! pmod10 $ i.e. $ X $ is a multiple of 10 (0, 10, 20, 30, ...). Note that $ Y $ has exactly 9 digits, so $ X = 0$ can be ruled out since the sum will be less than 5 orders of magnitude. $ X = 10, $ however, does have the potential to come close, and by using a calculator we find that indeed it does work. Any higher values of $ X $ would cause it to have more than 9 digits, so this is our final and only answer.




For the record, the final solution for $ Y $ is




$ 816725493 = 9^5 + 17^5 + 26^5 + 43^5 + 58^5 $







share|improve this answer











$endgroup$












  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago










  • $begingroup$
    @OmegaKrypton Well you did get a five minute head start.. I was still typing out my MathJax when your answer popped up! No matters, the OP will decide who gets the check mark :)
    $endgroup$
    – PiIsNot3
    48 mins ago



















1












$begingroup$

So this puzzle hinges on the fact that




$X^5mod10 = X$. ($1^5=1$, $2^5=32$, $3^5=243$, and so on.)




This means that




$(X+9)mod10+(X+7)mod10+(2X+6)mod10+(4X+3)mod10+(5X+8)mod10 = 3mod 10$ (as $(X-1)mod10 = (X+9)mod10$).




This simplifies to




$(13X+33)mod10=3$. Because of how the 3-times table works, this only works if $Xmod10=0$.




Looking only at




number of digits (for order-of-magnitude calculation), $8^5$ (for $X=0$), doesn't work, but $58^5$ (for $X=10$) does, thus making it the only possible solution.




The number is therefore




$816725943$.







share|improve this answer











$endgroup$












  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "559"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f84005%2ffive-powers-of-fives-produce-unique-pandigital-number-solve-for-x-tell-me-y%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

OK, now i realise its beauty...




for all $i$ from $0$ to $9$, $i^5$ mod $10$ = $i$




so to simply get the ending digit of $X$, the equation can be simplified:




$Y = (X-1) + ( X + 7 ) + ( 2X + 6 ) + ( 4X + 3 ) + ( 5 X + 8) $
$Y=13X +23$




More mod10-ing:




$Y=3X+3$




Sub $Y mod10 = 3$:




$3=3X+3$




Deducing $X mod10$:




$3X=0$
$X=0 (mod 10)$




Then, trial and error time, start from $X = $




$10$




Result (using a calculator in this very last step)




$Y=816725493$ BRAVO!!!







share|improve this answer











$endgroup$












  • $begingroup$
    ...yes.........
    $endgroup$
    – Uvc
    56 mins ago










  • $begingroup$
    beautiful question!!! @Uvc +1ed
    $endgroup$
    – Omega Krypton
    55 mins ago










  • $begingroup$
    Technically, you don't even need trial and error, as rot13(trareny zntavghqr pnyphyngvbaf zrna vg pbhyq bayl or 10. 20 znxrf bar grez 108^5, juvpu vf zber gura 9 qvtvgf).
    $endgroup$
    – Aranlyde
    39 mins ago















1












$begingroup$

OK, now i realise its beauty...




for all $i$ from $0$ to $9$, $i^5$ mod $10$ = $i$




so to simply get the ending digit of $X$, the equation can be simplified:




$Y = (X-1) + ( X + 7 ) + ( 2X + 6 ) + ( 4X + 3 ) + ( 5 X + 8) $
$Y=13X +23$




More mod10-ing:




$Y=3X+3$




Sub $Y mod10 = 3$:




$3=3X+3$




Deducing $X mod10$:




$3X=0$
$X=0 (mod 10)$




Then, trial and error time, start from $X = $




$10$




Result (using a calculator in this very last step)




$Y=816725493$ BRAVO!!!







share|improve this answer











$endgroup$












  • $begingroup$
    ...yes.........
    $endgroup$
    – Uvc
    56 mins ago










  • $begingroup$
    beautiful question!!! @Uvc +1ed
    $endgroup$
    – Omega Krypton
    55 mins ago










  • $begingroup$
    Technically, you don't even need trial and error, as rot13(trareny zntavghqr pnyphyngvbaf zrna vg pbhyq bayl or 10. 20 znxrf bar grez 108^5, juvpu vf zber gura 9 qvtvgf).
    $endgroup$
    – Aranlyde
    39 mins ago













1












1








1





$begingroup$

OK, now i realise its beauty...




for all $i$ from $0$ to $9$, $i^5$ mod $10$ = $i$




so to simply get the ending digit of $X$, the equation can be simplified:




$Y = (X-1) + ( X + 7 ) + ( 2X + 6 ) + ( 4X + 3 ) + ( 5 X + 8) $
$Y=13X +23$




More mod10-ing:




$Y=3X+3$




Sub $Y mod10 = 3$:




$3=3X+3$




Deducing $X mod10$:




$3X=0$
$X=0 (mod 10)$




Then, trial and error time, start from $X = $




$10$




Result (using a calculator in this very last step)




$Y=816725493$ BRAVO!!!







share|improve this answer











$endgroup$



OK, now i realise its beauty...




for all $i$ from $0$ to $9$, $i^5$ mod $10$ = $i$




so to simply get the ending digit of $X$, the equation can be simplified:




$Y = (X-1) + ( X + 7 ) + ( 2X + 6 ) + ( 4X + 3 ) + ( 5 X + 8) $
$Y=13X +23$




More mod10-ing:




$Y=3X+3$




Sub $Y mod10 = 3$:




$3=3X+3$




Deducing $X mod10$:




$3X=0$
$X=0 (mod 10)$




Then, trial and error time, start from $X = $




$10$




Result (using a calculator in this very last step)




$Y=816725493$ BRAVO!!!








share|improve this answer














share|improve this answer



share|improve this answer








edited 47 mins ago

























answered 1 hour ago









Omega KryptonOmega Krypton

6,1382953




6,1382953











  • $begingroup$
    ...yes.........
    $endgroup$
    – Uvc
    56 mins ago










  • $begingroup$
    beautiful question!!! @Uvc +1ed
    $endgroup$
    – Omega Krypton
    55 mins ago










  • $begingroup$
    Technically, you don't even need trial and error, as rot13(trareny zntavghqr pnyphyngvbaf zrna vg pbhyq bayl or 10. 20 znxrf bar grez 108^5, juvpu vf zber gura 9 qvtvgf).
    $endgroup$
    – Aranlyde
    39 mins ago
















  • $begingroup$
    ...yes.........
    $endgroup$
    – Uvc
    56 mins ago










  • $begingroup$
    beautiful question!!! @Uvc +1ed
    $endgroup$
    – Omega Krypton
    55 mins ago










  • $begingroup$
    Technically, you don't even need trial and error, as rot13(trareny zntavghqr pnyphyngvbaf zrna vg pbhyq bayl or 10. 20 znxrf bar grez 108^5, juvpu vf zber gura 9 qvtvgf).
    $endgroup$
    – Aranlyde
    39 mins ago















$begingroup$
...yes.........
$endgroup$
– Uvc
56 mins ago




$begingroup$
...yes.........
$endgroup$
– Uvc
56 mins ago












$begingroup$
beautiful question!!! @Uvc +1ed
$endgroup$
– Omega Krypton
55 mins ago




$begingroup$
beautiful question!!! @Uvc +1ed
$endgroup$
– Omega Krypton
55 mins ago












$begingroup$
Technically, you don't even need trial and error, as rot13(trareny zntavghqr pnyphyngvbaf zrna vg pbhyq bayl or 10. 20 znxrf bar grez 108^5, juvpu vf zber gura 9 qvtvgf).
$endgroup$
– Aranlyde
39 mins ago




$begingroup$
Technically, you don't even need trial and error, as rot13(trareny zntavghqr pnyphyngvbaf zrna vg pbhyq bayl or 10. 20 znxrf bar grez 108^5, juvpu vf zber gura 9 qvtvgf).
$endgroup$
– Aranlyde
39 mins ago











1












$begingroup$

Without computers or calculators (at least until the very end), the answer is




$ X = boxed10 $




The key here is to realize that




the units digit of $ Y $ being 3 limits our possibilities for $ X $ by a lot. Finding the last digit of a positive integer is the same as taking the integer modulo 10, so we will take the given expression for $ Y $ modulo 10, set it equal to 3, and solve for $ X. $




To do this, we




apply Euler's Theorem, which states that for all coprime integers $ a, n $ we have $ a^phi(n) equiv 1 ! pmodn, $ where $ phi(n) $ is Euler's totient function. For this problem, we'll rely on a similar equation $ a^phi(n) + 1 equiv a ! pmodn, $ which works for any integers $ a, n, $ not just coprime.




Applying this theorem:




We have $ n = 10, $ so $$ a^phi(10) + 1 equiv a^5 equiv a ! ! ! pmod10. $$ Thus, $$ begingather* (X - 1)^5 + (X + 7)^5 + (2X + 6)^5 + (4X + 3)^5 + (5X + 8)^5 equiv 3 ! ! ! pmod10 \ (X - 1) + (X + 7) + (2X + 6) + (4X + 3) + (5X + 8) equiv 3 ! ! ! pmod10 \ 13X + 23 equiv 3 ! ! ! pmod10 \ 3X equiv 0 ! ! ! pmod10 \ X equiv 0 ! ! ! pmod10 endgather* $$




Final answer:




We know now that $ X equiv 0 ! pmod10 $ i.e. $ X $ is a multiple of 10 (0, 10, 20, 30, ...). Note that $ Y $ has exactly 9 digits, so $ X = 0$ can be ruled out since the sum will be less than 5 orders of magnitude. $ X = 10, $ however, does have the potential to come close, and by using a calculator we find that indeed it does work. Any higher values of $ X $ would cause it to have more than 9 digits, so this is our final and only answer.




For the record, the final solution for $ Y $ is




$ 816725493 = 9^5 + 17^5 + 26^5 + 43^5 + 58^5 $







share|improve this answer











$endgroup$












  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago










  • $begingroup$
    @OmegaKrypton Well you did get a five minute head start.. I was still typing out my MathJax when your answer popped up! No matters, the OP will decide who gets the check mark :)
    $endgroup$
    – PiIsNot3
    48 mins ago
















1












$begingroup$

Without computers or calculators (at least until the very end), the answer is




$ X = boxed10 $




The key here is to realize that




the units digit of $ Y $ being 3 limits our possibilities for $ X $ by a lot. Finding the last digit of a positive integer is the same as taking the integer modulo 10, so we will take the given expression for $ Y $ modulo 10, set it equal to 3, and solve for $ X. $




To do this, we




apply Euler's Theorem, which states that for all coprime integers $ a, n $ we have $ a^phi(n) equiv 1 ! pmodn, $ where $ phi(n) $ is Euler's totient function. For this problem, we'll rely on a similar equation $ a^phi(n) + 1 equiv a ! pmodn, $ which works for any integers $ a, n, $ not just coprime.




Applying this theorem:




We have $ n = 10, $ so $$ a^phi(10) + 1 equiv a^5 equiv a ! ! ! pmod10. $$ Thus, $$ begingather* (X - 1)^5 + (X + 7)^5 + (2X + 6)^5 + (4X + 3)^5 + (5X + 8)^5 equiv 3 ! ! ! pmod10 \ (X - 1) + (X + 7) + (2X + 6) + (4X + 3) + (5X + 8) equiv 3 ! ! ! pmod10 \ 13X + 23 equiv 3 ! ! ! pmod10 \ 3X equiv 0 ! ! ! pmod10 \ X equiv 0 ! ! ! pmod10 endgather* $$




Final answer:




We know now that $ X equiv 0 ! pmod10 $ i.e. $ X $ is a multiple of 10 (0, 10, 20, 30, ...). Note that $ Y $ has exactly 9 digits, so $ X = 0$ can be ruled out since the sum will be less than 5 orders of magnitude. $ X = 10, $ however, does have the potential to come close, and by using a calculator we find that indeed it does work. Any higher values of $ X $ would cause it to have more than 9 digits, so this is our final and only answer.




For the record, the final solution for $ Y $ is




$ 816725493 = 9^5 + 17^5 + 26^5 + 43^5 + 58^5 $







share|improve this answer











$endgroup$












  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago










  • $begingroup$
    @OmegaKrypton Well you did get a five minute head start.. I was still typing out my MathJax when your answer popped up! No matters, the OP will decide who gets the check mark :)
    $endgroup$
    – PiIsNot3
    48 mins ago














1












1








1





$begingroup$

Without computers or calculators (at least until the very end), the answer is




$ X = boxed10 $




The key here is to realize that




the units digit of $ Y $ being 3 limits our possibilities for $ X $ by a lot. Finding the last digit of a positive integer is the same as taking the integer modulo 10, so we will take the given expression for $ Y $ modulo 10, set it equal to 3, and solve for $ X. $




To do this, we




apply Euler's Theorem, which states that for all coprime integers $ a, n $ we have $ a^phi(n) equiv 1 ! pmodn, $ where $ phi(n) $ is Euler's totient function. For this problem, we'll rely on a similar equation $ a^phi(n) + 1 equiv a ! pmodn, $ which works for any integers $ a, n, $ not just coprime.




Applying this theorem:




We have $ n = 10, $ so $$ a^phi(10) + 1 equiv a^5 equiv a ! ! ! pmod10. $$ Thus, $$ begingather* (X - 1)^5 + (X + 7)^5 + (2X + 6)^5 + (4X + 3)^5 + (5X + 8)^5 equiv 3 ! ! ! pmod10 \ (X - 1) + (X + 7) + (2X + 6) + (4X + 3) + (5X + 8) equiv 3 ! ! ! pmod10 \ 13X + 23 equiv 3 ! ! ! pmod10 \ 3X equiv 0 ! ! ! pmod10 \ X equiv 0 ! ! ! pmod10 endgather* $$




Final answer:




We know now that $ X equiv 0 ! pmod10 $ i.e. $ X $ is a multiple of 10 (0, 10, 20, 30, ...). Note that $ Y $ has exactly 9 digits, so $ X = 0$ can be ruled out since the sum will be less than 5 orders of magnitude. $ X = 10, $ however, does have the potential to come close, and by using a calculator we find that indeed it does work. Any higher values of $ X $ would cause it to have more than 9 digits, so this is our final and only answer.




For the record, the final solution for $ Y $ is




$ 816725493 = 9^5 + 17^5 + 26^5 + 43^5 + 58^5 $







share|improve this answer











$endgroup$



Without computers or calculators (at least until the very end), the answer is




$ X = boxed10 $




The key here is to realize that




the units digit of $ Y $ being 3 limits our possibilities for $ X $ by a lot. Finding the last digit of a positive integer is the same as taking the integer modulo 10, so we will take the given expression for $ Y $ modulo 10, set it equal to 3, and solve for $ X. $




To do this, we




apply Euler's Theorem, which states that for all coprime integers $ a, n $ we have $ a^phi(n) equiv 1 ! pmodn, $ where $ phi(n) $ is Euler's totient function. For this problem, we'll rely on a similar equation $ a^phi(n) + 1 equiv a ! pmodn, $ which works for any integers $ a, n, $ not just coprime.




Applying this theorem:




We have $ n = 10, $ so $$ a^phi(10) + 1 equiv a^5 equiv a ! ! ! pmod10. $$ Thus, $$ begingather* (X - 1)^5 + (X + 7)^5 + (2X + 6)^5 + (4X + 3)^5 + (5X + 8)^5 equiv 3 ! ! ! pmod10 \ (X - 1) + (X + 7) + (2X + 6) + (4X + 3) + (5X + 8) equiv 3 ! ! ! pmod10 \ 13X + 23 equiv 3 ! ! ! pmod10 \ 3X equiv 0 ! ! ! pmod10 \ X equiv 0 ! ! ! pmod10 endgather* $$




Final answer:




We know now that $ X equiv 0 ! pmod10 $ i.e. $ X $ is a multiple of 10 (0, 10, 20, 30, ...). Note that $ Y $ has exactly 9 digits, so $ X = 0$ can be ruled out since the sum will be less than 5 orders of magnitude. $ X = 10, $ however, does have the potential to come close, and by using a calculator we find that indeed it does work. Any higher values of $ X $ would cause it to have more than 9 digits, so this is our final and only answer.




For the record, the final solution for $ Y $ is




$ 816725493 = 9^5 + 17^5 + 26^5 + 43^5 + 58^5 $








share|improve this answer














share|improve this answer



share|improve this answer








edited 46 mins ago

























answered 54 mins ago









PiIsNot3PiIsNot3

4,323952




4,323952











  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago










  • $begingroup$
    @OmegaKrypton Well you did get a five minute head start.. I was still typing out my MathJax when your answer popped up! No matters, the OP will decide who gets the check mark :)
    $endgroup$
    – PiIsNot3
    48 mins ago

















  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago










  • $begingroup$
    @OmegaKrypton Well you did get a five minute head start.. I was still typing out my MathJax when your answer popped up! No matters, the OP will decide who gets the check mark :)
    $endgroup$
    – PiIsNot3
    48 mins ago
















$begingroup$
sorry, ninja-ed you, have an upvote!
$endgroup$
– Omega Krypton
54 mins ago




$begingroup$
sorry, ninja-ed you, have an upvote!
$endgroup$
– Omega Krypton
54 mins ago












$begingroup$
@OmegaKrypton Well you did get a five minute head start.. I was still typing out my MathJax when your answer popped up! No matters, the OP will decide who gets the check mark :)
$endgroup$
– PiIsNot3
48 mins ago





$begingroup$
@OmegaKrypton Well you did get a five minute head start.. I was still typing out my MathJax when your answer popped up! No matters, the OP will decide who gets the check mark :)
$endgroup$
– PiIsNot3
48 mins ago












1












$begingroup$

So this puzzle hinges on the fact that




$X^5mod10 = X$. ($1^5=1$, $2^5=32$, $3^5=243$, and so on.)




This means that




$(X+9)mod10+(X+7)mod10+(2X+6)mod10+(4X+3)mod10+(5X+8)mod10 = 3mod 10$ (as $(X-1)mod10 = (X+9)mod10$).




This simplifies to




$(13X+33)mod10=3$. Because of how the 3-times table works, this only works if $Xmod10=0$.




Looking only at




number of digits (for order-of-magnitude calculation), $8^5$ (for $X=0$), doesn't work, but $58^5$ (for $X=10$) does, thus making it the only possible solution.




The number is therefore




$816725943$.







share|improve this answer











$endgroup$












  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago















1












$begingroup$

So this puzzle hinges on the fact that




$X^5mod10 = X$. ($1^5=1$, $2^5=32$, $3^5=243$, and so on.)




This means that




$(X+9)mod10+(X+7)mod10+(2X+6)mod10+(4X+3)mod10+(5X+8)mod10 = 3mod 10$ (as $(X-1)mod10 = (X+9)mod10$).




This simplifies to




$(13X+33)mod10=3$. Because of how the 3-times table works, this only works if $Xmod10=0$.




Looking only at




number of digits (for order-of-magnitude calculation), $8^5$ (for $X=0$), doesn't work, but $58^5$ (for $X=10$) does, thus making it the only possible solution.




The number is therefore




$816725943$.







share|improve this answer











$endgroup$












  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago













1












1








1





$begingroup$

So this puzzle hinges on the fact that




$X^5mod10 = X$. ($1^5=1$, $2^5=32$, $3^5=243$, and so on.)




This means that




$(X+9)mod10+(X+7)mod10+(2X+6)mod10+(4X+3)mod10+(5X+8)mod10 = 3mod 10$ (as $(X-1)mod10 = (X+9)mod10$).




This simplifies to




$(13X+33)mod10=3$. Because of how the 3-times table works, this only works if $Xmod10=0$.




Looking only at




number of digits (for order-of-magnitude calculation), $8^5$ (for $X=0$), doesn't work, but $58^5$ (for $X=10$) does, thus making it the only possible solution.




The number is therefore




$816725943$.







share|improve this answer











$endgroup$



So this puzzle hinges on the fact that




$X^5mod10 = X$. ($1^5=1$, $2^5=32$, $3^5=243$, and so on.)




This means that




$(X+9)mod10+(X+7)mod10+(2X+6)mod10+(4X+3)mod10+(5X+8)mod10 = 3mod 10$ (as $(X-1)mod10 = (X+9)mod10$).




This simplifies to




$(13X+33)mod10=3$. Because of how the 3-times table works, this only works if $Xmod10=0$.




Looking only at




number of digits (for order-of-magnitude calculation), $8^5$ (for $X=0$), doesn't work, but $58^5$ (for $X=10$) does, thus making it the only possible solution.




The number is therefore




$816725943$.








share|improve this answer














share|improve this answer



share|improve this answer








edited 36 mins ago

























answered 55 mins ago









AranlydeAranlyde

656212




656212











  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago
















  • $begingroup$
    sorry, ninja-ed you, have an upvote!
    $endgroup$
    – Omega Krypton
    54 mins ago















$begingroup$
sorry, ninja-ed you, have an upvote!
$endgroup$
– Omega Krypton
54 mins ago




$begingroup$
sorry, ninja-ed you, have an upvote!
$endgroup$
– Omega Krypton
54 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Puzzling Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f84005%2ffive-powers-of-fives-produce-unique-pandigital-number-solve-for-x-tell-me-y%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)