Write electromagnetic field tensor in terms of four-vector potentialProof that 4-potential exists from Gauss-Faraday field equationHistory of Electromagnetic Field TensorElectromagnetic field tensor via tensor products?Is electromagnetic vector field a sum of E and B?Can a static electric field have a vector potential field?contravariant components of electromagnetic field tensor under lorentz transformationWhy is the electromagnetic field strength $F_munu=partial_nu A_mu-partial_mu A_nu$ a tensor?Electromagnetic field tensorRapid question about Electromagnetic TensorQuestion about derivation of four-velocity vector4-Gradient vector and the Field strength tensor

Cycling to work - 30mile return

Is there a method to separate iron from mercury?

Is it possible to pass a pointer to an operator as an argument like a pointer to a function?

Why would you put your input amplifier in front of your filtering for and ECG signal?

What kind of action are dodge and disengage?

301 Redirects what does ([a-z]+)-(.*) and ([0-9]+)-(.*) mean

Can a person still be an Orthodox Jew and believe that the Torah contains narratives that are not scientifically correct?

Given 0s on Assignments with suspected and dismissed cheating?

Why is so much ransomware breakable?

How can I safely determine the output voltage and current of a transformer?

Would a "ring language" be possible?

How to know the path of a particular software?

Promotion comes with unexpected 24/7/365 on-call

​Cuban​ ​Primes

What formula to chose a nonlinear formula?

How come Arya Stark didn't burn in Game of Thrones Season 8 Episode 5

Why would company (decision makers) wait for someone to retire, rather than lay them off, when their role is no longer needed?

Why are lawsuits between the President and Congress not automatically sent to the Supreme Court

How was the blinking terminal cursor invented?

Why is vowel phonology represented in a trapezoid instead of a square?

Why do galaxies collide?

Have there been any examples of re-usable rockets in the past?

Usage of the relative pronoun "dont"

Is there an academic word that means "to split hairs over"?



Write electromagnetic field tensor in terms of four-vector potential


Proof that 4-potential exists from Gauss-Faraday field equationHistory of Electromagnetic Field TensorElectromagnetic field tensor via tensor products?Is electromagnetic vector field a sum of E and B?Can a static electric field have a vector potential field?contravariant components of electromagnetic field tensor under lorentz transformationWhy is the electromagnetic field strength $F_munu=partial_nu A_mu-partial_mu A_nu$ a tensor?Electromagnetic field tensorRapid question about Electromagnetic TensorQuestion about derivation of four-velocity vector4-Gradient vector and the Field strength tensor













2












$begingroup$


How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$











  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    4 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    4 hours ago















2












$begingroup$


How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$











  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    4 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    4 hours ago













2












2








2





$begingroup$


How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.







electromagnetism tensor-calculus






share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|cite|improve this question




share|cite|improve this question








edited 4 hours ago







Lucas L.













New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 5 hours ago









Lucas L.Lucas L.

335




335




New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.













  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    4 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    4 hours ago
















  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    4 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    4 hours ago















$begingroup$
The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
$endgroup$
– user1620696
4 hours ago




$begingroup$
The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
$endgroup$
– user1620696
4 hours ago












$begingroup$
This was what I was looking for. Thank you, I will look up Poincare's lemma.
$endgroup$
– Lucas L.
4 hours ago




$begingroup$
This was what I was looking for. Thank you, I will look up Poincare's lemma.
$endgroup$
– Lucas L.
4 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






share|cite|improve this answer











$endgroup$




















    3












    $begingroup$

    One way to write the homogenous Maxwell's equations is
    with the Levi-Civita symbol $epsilon$:
    $$epsilon^alphabetamunu partial_beta F_munu = 0$$



    Solution to this is obviously (with arbitrary potential $A$):
    $$F_munu = partial_mu A_nu - partial_nu A_mu$$



    It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
    upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






    share|cite|improve this answer











    $endgroup$




















      0












      $begingroup$

      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
        $endgroup$
        – Lucas L.
        4 hours ago










      • $begingroup$
        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
        $endgroup$
        – ggcg
        4 hours ago










      • $begingroup$
        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
        $endgroup$
        – ggcg
        4 hours ago











      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "151"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f480324%2fwrite-electromagnetic-field-tensor-in-terms-of-four-vector-potential%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






      share|cite|improve this answer











      $endgroup$

















        3












        $begingroup$

        The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






        share|cite|improve this answer











        $endgroup$















          3












          3








          3





          $begingroup$

          The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






          share|cite|improve this answer











          $endgroup$



          The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 4 hours ago

























          answered 4 hours ago









          QmechanicQmechanic

          109k122051270




          109k122051270





















              3












              $begingroup$

              One way to write the homogenous Maxwell's equations is
              with the Levi-Civita symbol $epsilon$:
              $$epsilon^alphabetamunu partial_beta F_munu = 0$$



              Solution to this is obviously (with arbitrary potential $A$):
              $$F_munu = partial_mu A_nu - partial_nu A_mu$$



              It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
              upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                One way to write the homogenous Maxwell's equations is
                with the Levi-Civita symbol $epsilon$:
                $$epsilon^alphabetamunu partial_beta F_munu = 0$$



                Solution to this is obviously (with arbitrary potential $A$):
                $$F_munu = partial_mu A_nu - partial_nu A_mu$$



                It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
                upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  One way to write the homogenous Maxwell's equations is
                  with the Levi-Civita symbol $epsilon$:
                  $$epsilon^alphabetamunu partial_beta F_munu = 0$$



                  Solution to this is obviously (with arbitrary potential $A$):
                  $$F_munu = partial_mu A_nu - partial_nu A_mu$$



                  It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
                  upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






                  share|cite|improve this answer











                  $endgroup$



                  One way to write the homogenous Maxwell's equations is
                  with the Levi-Civita symbol $epsilon$:
                  $$epsilon^alphabetamunu partial_beta F_munu = 0$$



                  Solution to this is obviously (with arbitrary potential $A$):
                  $$F_munu = partial_mu A_nu - partial_nu A_mu$$



                  It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
                  upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 3 hours ago

























                  answered 4 hours ago









                  Thomas FritschThomas Fritsch

                  1,8301016




                  1,8301016





















                      0












                      $begingroup$

                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        4 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        4 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        4 hours ago















                      0












                      $begingroup$

                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        4 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        4 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        4 hours ago













                      0












                      0








                      0





                      $begingroup$

                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






                      share|cite|improve this answer









                      $endgroup$



                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 4 hours ago









                      ggcgggcg

                      1,626114




                      1,626114











                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        4 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        4 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        4 hours ago
















                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        4 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        4 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        4 hours ago















                      $begingroup$
                      I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                      $endgroup$
                      – Lucas L.
                      4 hours ago




                      $begingroup$
                      I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                      $endgroup$
                      – Lucas L.
                      4 hours ago












                      $begingroup$
                      I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                      $endgroup$
                      – ggcg
                      4 hours ago




                      $begingroup$
                      I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                      $endgroup$
                      – ggcg
                      4 hours ago












                      $begingroup$
                      Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                      $endgroup$
                      – ggcg
                      4 hours ago




                      $begingroup$
                      Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                      $endgroup$
                      – ggcg
                      4 hours ago










                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.












                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.











                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Physics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f480324%2fwrite-electromagnetic-field-tensor-in-terms-of-four-vector-potential%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                      Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                      Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)