Proving n+1 th differential as zero given lower differentials are 0Derivatives and continuity of one variable functionsDerivative changes sign for continuous and differentiable functionCalculus Three time differentiableTrue or false: If $f(x)$ is continuous on $[0, 2]$ and $f(0)=f(2)$, then there exists a number $cin [0, 1]$ such that $f(c) = f(c + 1)$.A question on an inequality relating a function and its derivativeLet $f : Bbb R rightarrow Bbb R$ be a func such that $p>0$, that $f(x+p) = f(x)$ for all $x in Bbb R$ . Show that $f$ has an absolute max and minLet $f(x)=4x^3-3x^2-2x+1,$ use Rolle's theorem to prove that there exist $c,0<c<1$ such that $f(c)=0$If $f(a)=f(b)=0$, then $f'(c)+f(c)g'(c)=0,$ for some $cin(a,b)$Let $f(x)$ be differentiable over $left[0,1right]$ with $f(0) = f(1) = 0$. Prove that $f'(x) - 2f(x)$ has a zero in $(0,1)$Justify differentiability for a parametric function

ZSPL language, anyone heard of it?

Point of the Dothraki's attack in GoT S8E3?

Appropriate certificate to ask for a fibre installation (ANSI/TIA-568.3-D?)

Why wasn't the Night King naked in S08E03?

3D Volume in TIKZ

Do I add modifiers to the Charisma check roll of 15 granted by the Glibness spell?

Should I dumb down my writing in a foreign country?

How to adjust tikz picture so it fits to current size of a table cell?

Out of scope work duties and resignation

Are there any of the Children of the Forest left, or are they extinct?

How should I tell my manager I'm not paying for an optional after work event I'm not going to?

How to safely wipe a USB flash drive

Adding command shortcuts to bin

Understanding trademark infringements in a world where many dictionary words are trademarks?

Decoupling cap routing on a 4 layer PCB

Pressure inside an infinite ocean?

How to write a 12-bar blues melody

I need a disease

Are pressure-treated posts that have been submerged for a few days ruined?

How can I get people to remember my character's gender?

Why aren't nationalizations in Russia described as socialist?

Why do people keep telling me that I am a bad photographer?

How can internet speed be 10 times slower without a router than when using a router?

Where can I go to avoid planes overhead?



Proving n+1 th differential as zero given lower differentials are 0


Derivatives and continuity of one variable functionsDerivative changes sign for continuous and differentiable functionCalculus Three time differentiableTrue or false: If $f(x)$ is continuous on $[0, 2]$ and $f(0)=f(2)$, then there exists a number $cin [0, 1]$ such that $f(c) = f(c + 1)$.A question on an inequality relating a function and its derivativeLet $f : Bbb R rightarrow Bbb R$ be a func such that $p>0$, that $f(x+p) = f(x)$ for all $x in Bbb R$ . Show that $f$ has an absolute max and minLet $f(x)=4x^3-3x^2-2x+1,$ use Rolle's theorem to prove that there exist $c,0<c<1$ such that $f(c)=0$If $f(a)=f(b)=0$, then $f'(c)+f(c)g'(c)=0,$ for some $cin(a,b)$Let $f(x)$ be differentiable over $left[0,1right]$ with $f(0) = f(1) = 0$. Prove that $f'(x) - 2f(x)$ has a zero in $(0,1)$Justify differentiability for a parametric function













4












$begingroup$


Following is a question I am stuck in.




Let $f : Bbb R to Bbb R$ be an infinitely differentiable function and suppose that for some $n ≥ 1$,
$$f(1) = f(0) = f^(1)(0) = f^(2)(0) = · · · = f^(n)(0) = 0$$
Prove that there exists $x in (0, 1)$ such that $f^(n+1)(x) = 0$.




It is a past question of an entrance exam.



I thought to use Rolle's Theorem, but this requires information about $f^(n) (1)$ that I am unable to get. Only information about behaviour at $1$ I have is $f(1)=0$










share|cite|improve this question









New contributor




A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    4












    $begingroup$


    Following is a question I am stuck in.




    Let $f : Bbb R to Bbb R$ be an infinitely differentiable function and suppose that for some $n ≥ 1$,
    $$f(1) = f(0) = f^(1)(0) = f^(2)(0) = · · · = f^(n)(0) = 0$$
    Prove that there exists $x in (0, 1)$ such that $f^(n+1)(x) = 0$.




    It is a past question of an entrance exam.



    I thought to use Rolle's Theorem, but this requires information about $f^(n) (1)$ that I am unable to get. Only information about behaviour at $1$ I have is $f(1)=0$










    share|cite|improve this question









    New contributor




    A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      4












      4








      4


      3



      $begingroup$


      Following is a question I am stuck in.




      Let $f : Bbb R to Bbb R$ be an infinitely differentiable function and suppose that for some $n ≥ 1$,
      $$f(1) = f(0) = f^(1)(0) = f^(2)(0) = · · · = f^(n)(0) = 0$$
      Prove that there exists $x in (0, 1)$ such that $f^(n+1)(x) = 0$.




      It is a past question of an entrance exam.



      I thought to use Rolle's Theorem, but this requires information about $f^(n) (1)$ that I am unable to get. Only information about behaviour at $1$ I have is $f(1)=0$










      share|cite|improve this question









      New contributor




      A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Following is a question I am stuck in.




      Let $f : Bbb R to Bbb R$ be an infinitely differentiable function and suppose that for some $n ≥ 1$,
      $$f(1) = f(0) = f^(1)(0) = f^(2)(0) = · · · = f^(n)(0) = 0$$
      Prove that there exists $x in (0, 1)$ such that $f^(n+1)(x) = 0$.




      It is a past question of an entrance exam.



      I thought to use Rolle's Theorem, but this requires information about $f^(n) (1)$ that I am unable to get. Only information about behaviour at $1$ I have is $f(1)=0$







      real-analysis calculus






      share|cite|improve this question









      New contributor




      A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 36 mins ago









      Ivo Terek

      47.2k954147




      47.2k954147






      New contributor




      A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 48 mins ago









      A.S. GhoshA.S. Ghosh

      232




      232




      New contributor




      A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      A.S. Ghosh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          Hint: Well, think small. For $n=0$ it is trivial. So try to think about what happens for $n=1$ first. The result would read




          If $f(1) = f(0) = f'(0) = 0$, there is $x in (0,1)$ such that $f''(x) = 0$.




          How would one go about this? Ok, if $f(1) = f(0)$ there is $y in (0,1)$ such that $f'(y) = 0$. Now there is $x in (0,y)subseteq (0,1)$ such that $f''(x) = 0$, by Rolle's theorem again. Do you see the pattern?






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Thanks...I was fixated on fiding values at 1 that I forgot to consider intermediate values...
            $endgroup$
            – A.S. Ghosh
            32 mins ago


















          2












          $begingroup$

          Since $f(0)=f(1)=0, exists cin(0,1)$ such that $f'(c)= 0.$ Now since $f'(0) = f'(c)=0, exists d in (0,c)$ such that $f''(d)=0.$ Proceed.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Love the answers. Another method.



            Taylor expansion:
            $$f(x) = f(0)+ f'(0)x+dots + f^(n)(0)fracx^nn!+fracf^(n+1)(c)(n+1)!x^n+1,$$



            $c$ is in the open interval between $0$ and $x$.






            share|cite|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              A.S. Ghosh is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3211798%2fproving-n1-th-differential-as-zero-given-lower-differentials-are-0%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Hint: Well, think small. For $n=0$ it is trivial. So try to think about what happens for $n=1$ first. The result would read




              If $f(1) = f(0) = f'(0) = 0$, there is $x in (0,1)$ such that $f''(x) = 0$.




              How would one go about this? Ok, if $f(1) = f(0)$ there is $y in (0,1)$ such that $f'(y) = 0$. Now there is $x in (0,y)subseteq (0,1)$ such that $f''(x) = 0$, by Rolle's theorem again. Do you see the pattern?






              share|cite|improve this answer









              $endgroup$








              • 1




                $begingroup$
                Thanks...I was fixated on fiding values at 1 that I forgot to consider intermediate values...
                $endgroup$
                – A.S. Ghosh
                32 mins ago















              3












              $begingroup$

              Hint: Well, think small. For $n=0$ it is trivial. So try to think about what happens for $n=1$ first. The result would read




              If $f(1) = f(0) = f'(0) = 0$, there is $x in (0,1)$ such that $f''(x) = 0$.




              How would one go about this? Ok, if $f(1) = f(0)$ there is $y in (0,1)$ such that $f'(y) = 0$. Now there is $x in (0,y)subseteq (0,1)$ such that $f''(x) = 0$, by Rolle's theorem again. Do you see the pattern?






              share|cite|improve this answer









              $endgroup$








              • 1




                $begingroup$
                Thanks...I was fixated on fiding values at 1 that I forgot to consider intermediate values...
                $endgroup$
                – A.S. Ghosh
                32 mins ago













              3












              3








              3





              $begingroup$

              Hint: Well, think small. For $n=0$ it is trivial. So try to think about what happens for $n=1$ first. The result would read




              If $f(1) = f(0) = f'(0) = 0$, there is $x in (0,1)$ such that $f''(x) = 0$.




              How would one go about this? Ok, if $f(1) = f(0)$ there is $y in (0,1)$ such that $f'(y) = 0$. Now there is $x in (0,y)subseteq (0,1)$ such that $f''(x) = 0$, by Rolle's theorem again. Do you see the pattern?






              share|cite|improve this answer









              $endgroup$



              Hint: Well, think small. For $n=0$ it is trivial. So try to think about what happens for $n=1$ first. The result would read




              If $f(1) = f(0) = f'(0) = 0$, there is $x in (0,1)$ such that $f''(x) = 0$.




              How would one go about this? Ok, if $f(1) = f(0)$ there is $y in (0,1)$ such that $f'(y) = 0$. Now there is $x in (0,y)subseteq (0,1)$ such that $f''(x) = 0$, by Rolle's theorem again. Do you see the pattern?







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 38 mins ago









              Ivo TerekIvo Terek

              47.2k954147




              47.2k954147







              • 1




                $begingroup$
                Thanks...I was fixated on fiding values at 1 that I forgot to consider intermediate values...
                $endgroup$
                – A.S. Ghosh
                32 mins ago












              • 1




                $begingroup$
                Thanks...I was fixated on fiding values at 1 that I forgot to consider intermediate values...
                $endgroup$
                – A.S. Ghosh
                32 mins ago







              1




              1




              $begingroup$
              Thanks...I was fixated on fiding values at 1 that I forgot to consider intermediate values...
              $endgroup$
              – A.S. Ghosh
              32 mins ago




              $begingroup$
              Thanks...I was fixated on fiding values at 1 that I forgot to consider intermediate values...
              $endgroup$
              – A.S. Ghosh
              32 mins ago











              2












              $begingroup$

              Since $f(0)=f(1)=0, exists cin(0,1)$ such that $f'(c)= 0.$ Now since $f'(0) = f'(c)=0, exists d in (0,c)$ such that $f''(d)=0.$ Proceed.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Since $f(0)=f(1)=0, exists cin(0,1)$ such that $f'(c)= 0.$ Now since $f'(0) = f'(c)=0, exists d in (0,c)$ such that $f''(d)=0.$ Proceed.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Since $f(0)=f(1)=0, exists cin(0,1)$ such that $f'(c)= 0.$ Now since $f'(0) = f'(c)=0, exists d in (0,c)$ such that $f''(d)=0.$ Proceed.






                  share|cite|improve this answer









                  $endgroup$



                  Since $f(0)=f(1)=0, exists cin(0,1)$ such that $f'(c)= 0.$ Now since $f'(0) = f'(c)=0, exists d in (0,c)$ such that $f''(d)=0.$ Proceed.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 37 mins ago









                  saulspatzsaulspatz

                  18.1k41636




                  18.1k41636





















                      2












                      $begingroup$

                      Love the answers. Another method.



                      Taylor expansion:
                      $$f(x) = f(0)+ f'(0)x+dots + f^(n)(0)fracx^nn!+fracf^(n+1)(c)(n+1)!x^n+1,$$



                      $c$ is in the open interval between $0$ and $x$.






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        Love the answers. Another method.



                        Taylor expansion:
                        $$f(x) = f(0)+ f'(0)x+dots + f^(n)(0)fracx^nn!+fracf^(n+1)(c)(n+1)!x^n+1,$$



                        $c$ is in the open interval between $0$ and $x$.






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Love the answers. Another method.



                          Taylor expansion:
                          $$f(x) = f(0)+ f'(0)x+dots + f^(n)(0)fracx^nn!+fracf^(n+1)(c)(n+1)!x^n+1,$$



                          $c$ is in the open interval between $0$ and $x$.






                          share|cite|improve this answer









                          $endgroup$



                          Love the answers. Another method.



                          Taylor expansion:
                          $$f(x) = f(0)+ f'(0)x+dots + f^(n)(0)fracx^nn!+fracf^(n+1)(c)(n+1)!x^n+1,$$



                          $c$ is in the open interval between $0$ and $x$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 29 mins ago









                          FnacoolFnacool

                          5,506612




                          5,506612




















                              A.S. Ghosh is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              A.S. Ghosh is a new contributor. Be nice, and check out our Code of Conduct.












                              A.S. Ghosh is a new contributor. Be nice, and check out our Code of Conduct.











                              A.S. Ghosh is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3211798%2fproving-n1-th-differential-as-zero-given-lower-differentials-are-0%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

                              Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу