Using PCA vs Linear RegressionMaking sense of principal component analysis, eigenvectors & eigenvaluesAnalysis of compounds using PCA - selecting the right PCA “type” for the data…?Forecasting with use of PCA variables as independent and one ternary dependent variable in REstablishing an empirical relationship among environmental properties using PCA and Multiple RegressionPrincipal component regression (PCR) with some of the original predictors left out of PCAShould I use dummy variables or just assign numerical values to categorical predictors in regression / PCA?PCA too slow when both n,p are large: Alternatives?PCA and visualization using biplots on data with mixed typesHow to weight composites based on PCA with longitudinal data?SVM/Linear Regression after PCA and making up numbersUsing Linear Regression on Principal Components in R studio

The term for the person/group a political party aligns themselves with to appear concerned about the general public

Modern approach to radio buttons

What does the 0>&1 shell redirection mean?

How was Apollo supposed to rendezvous in the case of a lunar abort?

Where did the “vikings wear helmets with horn” stereotype come from and why?

Why is there a need to modify system call tables in linux?

Select row of data if next row contains zero

If Sweden was to magically float away, at what altitude would it be visible from the southern hemisphere?

Is it possible to change original filename of an exe?

If a problem only occurs randomly once in every N times on average, how many tests do I have to perform to be certain that it's now fixed?

Why were the Night's Watch required to be celibate?

What does the behaviour of water on the skin of an aircraft in flight tell us?

Asking bank to reduce APR instead of increasing credit limit

What are the slash markings on Gatwick's 08R/26L?

When a current flow in an inductor is interrupted, what limits the voltage rise?

Is the world in Game of Thrones spherical or flat?

Will My Circuit Work As intended?

What's the most polite way to tell a manager "shut up and let me work"?

Why don't I have ground wiring on any of my outlets?

What is the difference between nullifying your vote and not going to vote at all?

What does it mean when you think without speaking?

How can a single Member of the House block a Congressional bill?

Is having a hidden directory under /etc safe?

Is floating in space similar to falling under gravity?



Using PCA vs Linear Regression


Making sense of principal component analysis, eigenvectors & eigenvaluesAnalysis of compounds using PCA - selecting the right PCA “type” for the data…?Forecasting with use of PCA variables as independent and one ternary dependent variable in REstablishing an empirical relationship among environmental properties using PCA and Multiple RegressionPrincipal component regression (PCR) with some of the original predictors left out of PCAShould I use dummy variables or just assign numerical values to categorical predictors in regression / PCA?PCA too slow when both n,p are large: Alternatives?PCA and visualization using biplots on data with mixed typesHow to weight composites based on PCA with longitudinal data?SVM/Linear Regression after PCA and making up numbersUsing Linear Regression on Principal Components in R studio






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?










share|cite|improve this question









New contributor



4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$


















    2












    $begingroup$


    I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



    How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?










    share|cite|improve this question









    New contributor



    4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$














      2












      2








      2


      0



      $begingroup$


      I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



      How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?










      share|cite|improve this question









      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



      How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?







      regression pca






      share|cite|improve this question









      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|cite|improve this question









      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|cite|improve this question




      share|cite|improve this question








      edited 4 hours ago









      Ben

      30.8k235134




      30.8k235134






      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 8 hours ago









      4ntibody4ntibody

      111




      111




      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          3 Answers
          3






          active

          oldest

          votes


















          5












          $begingroup$

          PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



          Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



          Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



          If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            These techniques are not exclusive, and they can be complimentary.



            PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



            Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



            If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



            Best of luck!






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thank you for everybody's quick comments and insight! I now know what i need to do.
              $endgroup$
              – 4ntibody
              7 hours ago



















            0












            $begingroup$

            As other answers have said, PCA and Linear Regression (in general) are different tools.



            PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



            If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






            share|cite|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "65"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f410516%2fusing-pca-vs-linear-regression%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



              Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



              Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



              If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






              share|cite|improve this answer









              $endgroup$

















                5












                $begingroup$

                PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



                Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



                Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



                If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






                share|cite|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



                  Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



                  Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



                  If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






                  share|cite|improve this answer









                  $endgroup$



                  PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



                  Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



                  Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



                  If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  Peter FlomPeter Flom

                  78.2k12112220




                  78.2k12112220























                      1












                      $begingroup$

                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!






                      share|cite|improve this answer











                      $endgroup$












                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago
















                      1












                      $begingroup$

                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!






                      share|cite|improve this answer











                      $endgroup$












                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago














                      1












                      1








                      1





                      $begingroup$

                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!






                      share|cite|improve this answer











                      $endgroup$



                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 8 hours ago

























                      answered 8 hours ago









                      unicoderunicoder

                      164




                      164











                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago

















                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago
















                      $begingroup$
                      Thank you for everybody's quick comments and insight! I now know what i need to do.
                      $endgroup$
                      – 4ntibody
                      7 hours ago





                      $begingroup$
                      Thank you for everybody's quick comments and insight! I now know what i need to do.
                      $endgroup$
                      – 4ntibody
                      7 hours ago












                      0












                      $begingroup$

                      As other answers have said, PCA and Linear Regression (in general) are different tools.



                      PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                      If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






                      share|cite|improve this answer









                      $endgroup$

















                        0












                        $begingroup$

                        As other answers have said, PCA and Linear Regression (in general) are different tools.



                        PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                        If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






                        share|cite|improve this answer









                        $endgroup$















                          0












                          0








                          0





                          $begingroup$

                          As other answers have said, PCA and Linear Regression (in general) are different tools.



                          PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                          If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






                          share|cite|improve this answer









                          $endgroup$



                          As other answers have said, PCA and Linear Regression (in general) are different tools.



                          PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                          If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 5 hours ago









                          AlexanderAlexander

                          1194




                          1194




















                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.












                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.











                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to Cross Validated!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f410516%2fusing-pca-vs-linear-regression%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                              Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                              Черчино Становништво Референце Спољашње везе Мени за навигацију46°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.5081446°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.508143179111„The GeoNames geographical database”„Istituto Nazionale di Statistica”Званични веб-сајтпроширитиуу