A Difficult Double Sum.Infinite Series $sum_n=1^inftyfracH_nn^22^n$Integral $int_0^1 fracln(1+x+x^2)ln(1-x+x^2)xdx$Closed-form of $sum_n=1^inftyfrac(-1)^n+1nPsi_3(n+1)=-int_0^1fracln(1+x)ln^3 x1-x,dx$Closed-form of integrals containing double exponentialsClosed-form of $int_0^1 B_n(x)psi(x+1),dx$Integral $int_0^inftyfractanh^2(x)x^2dx$Tough integrals that can be easily beaten by using simple techniquesWhat's about $-int_0^1fraclog(1+x^10)log xxdx$?A double sum or a definite integral.On the closed-form of the triple integral $int_0^inftyint_0^inftyint_0^inftyfrac1xyzleft(x+y+z+1/x+1/y+1/zright)^2rmdx,dy,dz$On closed forms for the binomial sum $sum_n=1^infty fracz^nn^p,binom 2nn$ for general $p$?Challenging Logarithmic Integral $int_0^1fracln^3(1-x)ln(1+x)x dx$
Why did Steve Rogers choose Sam in Endgame?
I won USD 50K! Now what should I do with it?
Is it OK to use personal email ID for faculty job applications or should we use (current) institute's ID
What is this old "lemon-squeezer" shaped pan
Is there a good program to play chess online in ubuntu?
Is it possible to cast two 9th level spells without taking a long rest in 5e?
What are some symbols representing peasants/oppressed persons fighting back?
Using two linked programs, output ordinal numbers up to n
Index Uniqueness Overhead
Confusion about a proof of a limit formula
Why doesn't philosophy have higher standards for its arguments?
When to ask for constructive criticism?
Why does the Trade Federation become so alarmed upon learning the ambassadors are Jedi Knights?
Why should I cook the flour first when making bechamel sauce?
Is dividends exclusively a part of earnings?
What exactly is a Hadouken?
Video editor for YouTube
Too many spies!
Do aircraft cabins have suspension?
Project Euler, problem # 9, Pythagorean triplet
What alternatives exist to at-will employment?
Why are road bikes (not time trial bikes) used in many triathlons?
How to honestly answer questions from a girlfriend like "How did you find this place" without giving the impression I'm always talking about my exes?
What do these three diagonal lines that cross through three measures and both staves mean, and what are they called?
A Difficult Double Sum.
Infinite Series $sum_n=1^inftyfracH_nn^22^n$Integral $int_0^1 fracln(1+x+x^2)ln(1-x+x^2)xdx$Closed-form of $sum_n=1^inftyfrac(-1)^n+1nPsi_3(n+1)=-int_0^1fracln(1+x)ln^3 x1-x,dx$Closed-form of integrals containing double exponentialsClosed-form of $int_0^1 B_n(x)psi(x+1),dx$Integral $int_0^inftyfractanh^2(x)x^2dx$Tough integrals that can be easily beaten by using simple techniquesWhat's about $-int_0^1fraclog(1+x^10)log xxdx$?A double sum or a definite integral.On the closed-form of the triple integral $int_0^inftyint_0^inftyint_0^inftyfrac1xyzleft(x+y+z+1/x+1/y+1/zright)^2rmdx,dy,dz$On closed forms for the binomial sum $sum_n=1^infty fracz^nn^p,binom 2nn$ for general $p$?Challenging Logarithmic Integral $int_0^1fracln^3(1-x)ln(1+x)x dx$
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I am seeking a closed-form solution for this double sum:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(colorblue3n+m)= ?.
endeqnarray*
I will turn it into $3$ tough integrals in a moment. But first I will state some similar results:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(n+m) &=& 2 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue2n+m) &=& frac118 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue4n+m) &=& frac6732 zeta(3) -fracG pi2. \
endeqnarray*
where $G$ is the Catalan constant. The last result took some effort ...
Now I know most of you folks prefer integrals to sums, so lets turn this into an integral. Using
begineqnarray*
frac1n &=& int_0^1 x^n-1 dx\
frac1m &=& int_0^1 y^m-1 dy\
frac13n+m &=& int_0^1 z^3n+m-1 dz \
endeqnarray*
and summing the geometric series, we have the following triple integral
begineqnarray*
int_0^1 int_0^1 int_0^1 fracz^3 dx dy dz(1-xz^3)(1-yz).
endeqnarray*
Now doing the $x$ and $y$ integrations we have
begineqnarray*
I=int_0^1 fracln(1-z) ln(1-z^3)z dz.
endeqnarray*
Factorize the argument of the second logarithm ...
begineqnarray*
I= underbraceint_0^1 fracln(1-z) ln(1-z)z dz_=2zeta(2) + int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
So if you prefer my question is ... find a closed form for:
begineqnarray*
I_1 = - int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
Integrating by parts gives:
begineqnarray*
I_1 = - int_0^1 fracln(z) ln(1+z+z^2)1-z dz + int_0^1 frac(1+2z)ln(z) ln(1-z)1+z+z^2 dz.
endeqnarray*
and let us call these integrals $I_2$ and $I_3$ respectively.
All $3$ of these integrals are not easy for me to evaluate and any help with their resolution will be gratefully received.
integration summation closed-form
$endgroup$
|
show 10 more comments
$begingroup$
I am seeking a closed-form solution for this double sum:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(colorblue3n+m)= ?.
endeqnarray*
I will turn it into $3$ tough integrals in a moment. But first I will state some similar results:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(n+m) &=& 2 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue2n+m) &=& frac118 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue4n+m) &=& frac6732 zeta(3) -fracG pi2. \
endeqnarray*
where $G$ is the Catalan constant. The last result took some effort ...
Now I know most of you folks prefer integrals to sums, so lets turn this into an integral. Using
begineqnarray*
frac1n &=& int_0^1 x^n-1 dx\
frac1m &=& int_0^1 y^m-1 dy\
frac13n+m &=& int_0^1 z^3n+m-1 dz \
endeqnarray*
and summing the geometric series, we have the following triple integral
begineqnarray*
int_0^1 int_0^1 int_0^1 fracz^3 dx dy dz(1-xz^3)(1-yz).
endeqnarray*
Now doing the $x$ and $y$ integrations we have
begineqnarray*
I=int_0^1 fracln(1-z) ln(1-z^3)z dz.
endeqnarray*
Factorize the argument of the second logarithm ...
begineqnarray*
I= underbraceint_0^1 fracln(1-z) ln(1-z)z dz_=2zeta(2) + int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
So if you prefer my question is ... find a closed form for:
begineqnarray*
I_1 = - int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
Integrating by parts gives:
begineqnarray*
I_1 = - int_0^1 fracln(z) ln(1+z+z^2)1-z dz + int_0^1 frac(1+2z)ln(z) ln(1-z)1+z+z^2 dz.
endeqnarray*
and let us call these integrals $I_2$ and $I_3$ respectively.
All $3$ of these integrals are not easy for me to evaluate and any help with their resolution will be gratefully received.
integration summation closed-form
$endgroup$
2
$begingroup$
Double plum, did you say??
$endgroup$
– Bernard
9 hours ago
3
$begingroup$
Ooops ... have I muddled my sums with my plums ?
$endgroup$
– Donald Splutterwit
9 hours ago
4
$begingroup$
Double plummation!
$endgroup$
– Zubin Mukerjee
9 hours ago
4
$begingroup$
$$sqrt-1 qquad 2^3 qquad displaystylesum qquad pi$$ I ate plum pie.
$endgroup$
– Zubin Mukerjee
8 hours ago
2
$begingroup$
Mathematica gives for the integral $$I=frac1216 left(-216 left(textLi_3left(fracsqrt[6]-1sqrt3right)+textLi_3left(-frac(-1)^5/6sqrt3right)right)+672 zeta (3)+9 log ^3(3)-15 pi ^2 log (3)+4 pi sqrt3 left(psi ^(1)left(frac23right)-psi ^(1)left(frac13right)right)right)$$
$endgroup$
– Yuriy S
8 hours ago
|
show 10 more comments
$begingroup$
I am seeking a closed-form solution for this double sum:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(colorblue3n+m)= ?.
endeqnarray*
I will turn it into $3$ tough integrals in a moment. But first I will state some similar results:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(n+m) &=& 2 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue2n+m) &=& frac118 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue4n+m) &=& frac6732 zeta(3) -fracG pi2. \
endeqnarray*
where $G$ is the Catalan constant. The last result took some effort ...
Now I know most of you folks prefer integrals to sums, so lets turn this into an integral. Using
begineqnarray*
frac1n &=& int_0^1 x^n-1 dx\
frac1m &=& int_0^1 y^m-1 dy\
frac13n+m &=& int_0^1 z^3n+m-1 dz \
endeqnarray*
and summing the geometric series, we have the following triple integral
begineqnarray*
int_0^1 int_0^1 int_0^1 fracz^3 dx dy dz(1-xz^3)(1-yz).
endeqnarray*
Now doing the $x$ and $y$ integrations we have
begineqnarray*
I=int_0^1 fracln(1-z) ln(1-z^3)z dz.
endeqnarray*
Factorize the argument of the second logarithm ...
begineqnarray*
I= underbraceint_0^1 fracln(1-z) ln(1-z)z dz_=2zeta(2) + int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
So if you prefer my question is ... find a closed form for:
begineqnarray*
I_1 = - int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
Integrating by parts gives:
begineqnarray*
I_1 = - int_0^1 fracln(z) ln(1+z+z^2)1-z dz + int_0^1 frac(1+2z)ln(z) ln(1-z)1+z+z^2 dz.
endeqnarray*
and let us call these integrals $I_2$ and $I_3$ respectively.
All $3$ of these integrals are not easy for me to evaluate and any help with their resolution will be gratefully received.
integration summation closed-form
$endgroup$
I am seeking a closed-form solution for this double sum:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(colorblue3n+m)= ?.
endeqnarray*
I will turn it into $3$ tough integrals in a moment. But first I will state some similar results:
begineqnarray*
sum_n=1^infty sum_m=1^infty frac1nm(n+m) &=& 2 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue2n+m) &=& frac118 zeta(3) \
sum_n=1^infty sum_m=1^infty frac1nm(colorblue4n+m) &=& frac6732 zeta(3) -fracG pi2. \
endeqnarray*
where $G$ is the Catalan constant. The last result took some effort ...
Now I know most of you folks prefer integrals to sums, so lets turn this into an integral. Using
begineqnarray*
frac1n &=& int_0^1 x^n-1 dx\
frac1m &=& int_0^1 y^m-1 dy\
frac13n+m &=& int_0^1 z^3n+m-1 dz \
endeqnarray*
and summing the geometric series, we have the following triple integral
begineqnarray*
int_0^1 int_0^1 int_0^1 fracz^3 dx dy dz(1-xz^3)(1-yz).
endeqnarray*
Now doing the $x$ and $y$ integrations we have
begineqnarray*
I=int_0^1 fracln(1-z) ln(1-z^3)z dz.
endeqnarray*
Factorize the argument of the second logarithm ...
begineqnarray*
I= underbraceint_0^1 fracln(1-z) ln(1-z)z dz_=2zeta(2) + int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
So if you prefer my question is ... find a closed form for:
begineqnarray*
I_1 = - int_0^1 fracln(1-z) ln(1+z+z^2)z dz.
endeqnarray*
Integrating by parts gives:
begineqnarray*
I_1 = - int_0^1 fracln(z) ln(1+z+z^2)1-z dz + int_0^1 frac(1+2z)ln(z) ln(1-z)1+z+z^2 dz.
endeqnarray*
and let us call these integrals $I_2$ and $I_3$ respectively.
All $3$ of these integrals are not easy for me to evaluate and any help with their resolution will be gratefully received.
integration summation closed-form
integration summation closed-form
edited 8 hours ago


David G. Stork
13.6k4 gold badges19 silver badges37 bronze badges
13.6k4 gold badges19 silver badges37 bronze badges
asked 9 hours ago
Donald SplutterwitDonald Splutterwit
23.8k2 gold badges14 silver badges49 bronze badges
23.8k2 gold badges14 silver badges49 bronze badges
2
$begingroup$
Double plum, did you say??
$endgroup$
– Bernard
9 hours ago
3
$begingroup$
Ooops ... have I muddled my sums with my plums ?
$endgroup$
– Donald Splutterwit
9 hours ago
4
$begingroup$
Double plummation!
$endgroup$
– Zubin Mukerjee
9 hours ago
4
$begingroup$
$$sqrt-1 qquad 2^3 qquad displaystylesum qquad pi$$ I ate plum pie.
$endgroup$
– Zubin Mukerjee
8 hours ago
2
$begingroup$
Mathematica gives for the integral $$I=frac1216 left(-216 left(textLi_3left(fracsqrt[6]-1sqrt3right)+textLi_3left(-frac(-1)^5/6sqrt3right)right)+672 zeta (3)+9 log ^3(3)-15 pi ^2 log (3)+4 pi sqrt3 left(psi ^(1)left(frac23right)-psi ^(1)left(frac13right)right)right)$$
$endgroup$
– Yuriy S
8 hours ago
|
show 10 more comments
2
$begingroup$
Double plum, did you say??
$endgroup$
– Bernard
9 hours ago
3
$begingroup$
Ooops ... have I muddled my sums with my plums ?
$endgroup$
– Donald Splutterwit
9 hours ago
4
$begingroup$
Double plummation!
$endgroup$
– Zubin Mukerjee
9 hours ago
4
$begingroup$
$$sqrt-1 qquad 2^3 qquad displaystylesum qquad pi$$ I ate plum pie.
$endgroup$
– Zubin Mukerjee
8 hours ago
2
$begingroup$
Mathematica gives for the integral $$I=frac1216 left(-216 left(textLi_3left(fracsqrt[6]-1sqrt3right)+textLi_3left(-frac(-1)^5/6sqrt3right)right)+672 zeta (3)+9 log ^3(3)-15 pi ^2 log (3)+4 pi sqrt3 left(psi ^(1)left(frac23right)-psi ^(1)left(frac13right)right)right)$$
$endgroup$
– Yuriy S
8 hours ago
2
2
$begingroup$
Double plum, did you say??
$endgroup$
– Bernard
9 hours ago
$begingroup$
Double plum, did you say??
$endgroup$
– Bernard
9 hours ago
3
3
$begingroup$
Ooops ... have I muddled my sums with my plums ?
$endgroup$
– Donald Splutterwit
9 hours ago
$begingroup$
Ooops ... have I muddled my sums with my plums ?
$endgroup$
– Donald Splutterwit
9 hours ago
4
4
$begingroup$
Double plummation!
$endgroup$
– Zubin Mukerjee
9 hours ago
$begingroup$
Double plummation!
$endgroup$
– Zubin Mukerjee
9 hours ago
4
4
$begingroup$
$$sqrt-1 qquad 2^3 qquad displaystylesum qquad pi$$ I ate plum pie.
$endgroup$
– Zubin Mukerjee
8 hours ago
$begingroup$
$$sqrt-1 qquad 2^3 qquad displaystylesum qquad pi$$ I ate plum pie.
$endgroup$
– Zubin Mukerjee
8 hours ago
2
2
$begingroup$
Mathematica gives for the integral $$I=frac1216 left(-216 left(textLi_3left(fracsqrt[6]-1sqrt3right)+textLi_3left(-frac(-1)^5/6sqrt3right)right)+672 zeta (3)+9 log ^3(3)-15 pi ^2 log (3)+4 pi sqrt3 left(psi ^(1)left(frac23right)-psi ^(1)left(frac13right)right)right)$$
$endgroup$
– Yuriy S
8 hours ago
$begingroup$
Mathematica gives for the integral $$I=frac1216 left(-216 left(textLi_3left(fracsqrt[6]-1sqrt3right)+textLi_3left(-frac(-1)^5/6sqrt3right)right)+672 zeta (3)+9 log ^3(3)-15 pi ^2 log (3)+4 pi sqrt3 left(psi ^(1)left(frac23right)-psi ^(1)left(frac13right)right)right)$$
$endgroup$
– Yuriy S
8 hours ago
|
show 10 more comments
2 Answers
2
active
oldest
votes
$begingroup$
$$boxedI=int_0^1 fracln(1-x) ln(1-x^3)xdx=frac53zeta(3) +frac2pi^327sqrt 3 -fracpi9sqrt 3psi_1left(frac13right)$$
Where the value of the integral can be extracted from here, since using $2ab=a^2+b^2-(a-b)^2$ we have:
$$2I=underbraceint_0^1 fracln^2(1-x)+ln^2(1-x^3)xdx_=frac83zeta(3)-int_0^1 fracln^2(1+x+x^2)xdx$$
Alternatively we can make use of the following series:
$$ln(1+x+x^2)=-2sum_n=1^infty fraccosleft(frac2n pi3right)n x^n $$
$$mathcal J =int_0^1 fracln(1-x)ln(1+x+x^2)xdx=-2sum_n=1^infty fraccosleft(frac2n pi3right)nint_0^1 ln(1-x) x^n-1dx $$
$$=-2sum_n=1^infty fraccosleft(frac2n pi3right)n^2H_n=-2Re left(sum_n=1^infty fracz^nn^2H_nright),quad z=e^frac2pi i3$$
Now using the following generating function:
$$sum_n=1^infty fracx^nn^2H_n=operatornameLi_3(x)-operatornameLi_3(1-x)+operatornameLi_2(1-x)ln(1-x)+frac12ln x ln^2(1-x)+zeta(3)$$
And simplifying should give the value for the integral, but I don't really know how to obtain the values for the real part of the polylogarithms.
Some can be found here.
Yet another idea: $$mathcal J=int_0^1 fracln (1-x)ln(1+x+x^2)xdxoversetxto 1-x=int_0^1 fracln xln(3-3x+x^2)1-xdx$$
Now consider the following integral (quite a weird one) and derivate under the integral sign:
$$I(t)=int_0^1 fracln xln[(1-x)colorblue(2(1+cos t))+x^2]1-xdxRightarrow I'(t)=-2sin tint_0^1 fracln x2(1-x)(1+cos t)+x^2dx$$
$$overset1-xto x=-2int_0^1 fracsin tln(1-x)x^2+(2cos t )x+1dx=2sum_n=1^infty (-1)^n sin (nt)int_0^1 x^n-1ln(1-x)dx$$
$$=2sum_n=1^infty (-1)^n sin (nt)fracH_nn=2Imsum_n=1^infty frac(-1)^n e^in tnH_n=2Im sum_n=1^infty fracz^nnH_n,quad z=-e^it $$
Also, using the generating function:
$$sum_n =1^infty fracH_nnz^n=operatornameLi_2(z)+frac12ln^2(1-z)Rightarrow I'(t)=Imleft(2 operatornameLi_2(z)+ln^2(1-z)right)$$
We are looking to find $I(0)$ since $cos 0=1$, but we have:
$$Ileft(piright)=int_0^1 fracln xln(x^2)1-xdx=2 sum_n=0^infty int_0^1 x^n ln ^2 xdx=8sum_n=1^infty frac1n^3=8zeta(3)$$
$$mathcal J=-(I(0)-I(pi)+8zeta(3))=-int_0^pi Im(2operatornameLi_2(z)+ln^2(1-z))dt+8zeta(3)$$
Maybe noticing that: $Im operatornameLi(e^ix)=operatornameCl_2(x)$ can help here, although I have a strong feeling it's going to the approach from above.
$endgroup$
add a comment |
$begingroup$
Not a full answer, but another interesting expression for the series.
Let's introduce a function:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m (3n +m)$$
Assuming $|x|<1$ and $|y|<1$ we avoid any convergence problems, and can use partial fractions:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m^2-sum_n=1^infty sum_m=1^infty fracx^n y^m m^2(n+ frac13 m)$$
$$S(x,y)=-log(1-x) textLi_2(y) -x sum_m=1^infty fracy^m m^2 Phi left(x,1,frac13 m+1 right)$$
Let's use the integral representation of the Lerch transcendent:
$$Phi left(x,1,frac13 m+1 right)= int_0^infty frace^-(1+frac13 m)t ~dt1-x e^-t$$
Summation under the integral gives us:
$$S(x,y)=-log(1-x) textLi_2(y) -x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x$$
So we can assume:
$$S=lim_x to 1 left[-log(1-x) textLi_2(x) -x int_0^infty textLi_2 left(x e^-t/3 right) fracdte^t-x right]$$
Which does seem to work numerically, though of course is quite hard to evaluate symbolically.
Numerical check:
In[22]:= x=9999999/10000000;
y=9999999/10000000;
N[-Log[1-x]PolyLog[2,y],10]-x NIntegrate[PolyLog[2,y Exp[-t/3]]/(Exp[t]-x),t,0,Infinity,WorkingPrecision->10]
Out[24]= 1.29484017
Compare to exact expression:
In[25]:= N[(1/216)*(-15*Pi^2*Log[3] + 9*Log[3]^3 + 4*Sqrt[3]*Pi*(-PolyGamma[1, 1/3] +
PolyGamma[1, 2/3]) - 216*(PolyLog[3, (-1)^(1/6)/Sqrt[3]] +
PolyLog[3, -((-1)^(5/6)/Sqrt[3])]) + 672*Zeta[3]), 10]
Out[25]= 1.2948652620+0.*10^-11 I
It may be that $x=y$ is not the best choice for the limit. For example, we can assume $x=y^a$ where $a$ is some real number. A good choice may lead to a better numerical convergence or even a closed form.
Using the dilogarithm properties, we have:
$$F(x,y)=-x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x=x int_0^infty int_0^1 fraclog(1-e^-t/3 y u) du dtu (e^t-x)$$
Let's change the variable:
$$e^-t=v \ t=- log v$$
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- y u v^1/3) du dvu (1-x v)$$
Let's take:
$$y=x^1/3$$
We have:
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- u (xv)^1/3) du dvu (1-x v)$$
$$v=w/x$$
$$F(x,y)=int_0^x int_0^1 fraclog(1- u w^1/3) du dwu (1-w)$$
$$F(x,y)=-int_0^x fractextLi_2 (w^1/3) dw1-w$$
So, there's a neater expression for the limit:
$$ colorblueS=lim_x to 1 left[-log(1-x) textLi_2(x^1/3) -int_0^x fractextLi_2 (w^1/3) dw1-w right]$$
This allows a simple generalization:
$$sum_n=1^infty sum_m=1^infty fracx^n y^m n m (an +m)=lim_x to 1 left[-log(1-x) textLi_2(x^1/a) -int_0^x fractextLi_2 (w^1/a) dw1-w right]$$
Which checks out numerically with the examples from the OP.
I wonder if we can somehow use L'Hospital here to deal with the integral and get a closed form for the limit.
Integration by parts could also work.
$endgroup$
$begingroup$
In fact, integration by parts will immediately give us the same integral as in the OP
$endgroup$
– Yuriy S
6 hours ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3294203%2fa-difficult-double-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$boxedI=int_0^1 fracln(1-x) ln(1-x^3)xdx=frac53zeta(3) +frac2pi^327sqrt 3 -fracpi9sqrt 3psi_1left(frac13right)$$
Where the value of the integral can be extracted from here, since using $2ab=a^2+b^2-(a-b)^2$ we have:
$$2I=underbraceint_0^1 fracln^2(1-x)+ln^2(1-x^3)xdx_=frac83zeta(3)-int_0^1 fracln^2(1+x+x^2)xdx$$
Alternatively we can make use of the following series:
$$ln(1+x+x^2)=-2sum_n=1^infty fraccosleft(frac2n pi3right)n x^n $$
$$mathcal J =int_0^1 fracln(1-x)ln(1+x+x^2)xdx=-2sum_n=1^infty fraccosleft(frac2n pi3right)nint_0^1 ln(1-x) x^n-1dx $$
$$=-2sum_n=1^infty fraccosleft(frac2n pi3right)n^2H_n=-2Re left(sum_n=1^infty fracz^nn^2H_nright),quad z=e^frac2pi i3$$
Now using the following generating function:
$$sum_n=1^infty fracx^nn^2H_n=operatornameLi_3(x)-operatornameLi_3(1-x)+operatornameLi_2(1-x)ln(1-x)+frac12ln x ln^2(1-x)+zeta(3)$$
And simplifying should give the value for the integral, but I don't really know how to obtain the values for the real part of the polylogarithms.
Some can be found here.
Yet another idea: $$mathcal J=int_0^1 fracln (1-x)ln(1+x+x^2)xdxoversetxto 1-x=int_0^1 fracln xln(3-3x+x^2)1-xdx$$
Now consider the following integral (quite a weird one) and derivate under the integral sign:
$$I(t)=int_0^1 fracln xln[(1-x)colorblue(2(1+cos t))+x^2]1-xdxRightarrow I'(t)=-2sin tint_0^1 fracln x2(1-x)(1+cos t)+x^2dx$$
$$overset1-xto x=-2int_0^1 fracsin tln(1-x)x^2+(2cos t )x+1dx=2sum_n=1^infty (-1)^n sin (nt)int_0^1 x^n-1ln(1-x)dx$$
$$=2sum_n=1^infty (-1)^n sin (nt)fracH_nn=2Imsum_n=1^infty frac(-1)^n e^in tnH_n=2Im sum_n=1^infty fracz^nnH_n,quad z=-e^it $$
Also, using the generating function:
$$sum_n =1^infty fracH_nnz^n=operatornameLi_2(z)+frac12ln^2(1-z)Rightarrow I'(t)=Imleft(2 operatornameLi_2(z)+ln^2(1-z)right)$$
We are looking to find $I(0)$ since $cos 0=1$, but we have:
$$Ileft(piright)=int_0^1 fracln xln(x^2)1-xdx=2 sum_n=0^infty int_0^1 x^n ln ^2 xdx=8sum_n=1^infty frac1n^3=8zeta(3)$$
$$mathcal J=-(I(0)-I(pi)+8zeta(3))=-int_0^pi Im(2operatornameLi_2(z)+ln^2(1-z))dt+8zeta(3)$$
Maybe noticing that: $Im operatornameLi(e^ix)=operatornameCl_2(x)$ can help here, although I have a strong feeling it's going to the approach from above.
$endgroup$
add a comment |
$begingroup$
$$boxedI=int_0^1 fracln(1-x) ln(1-x^3)xdx=frac53zeta(3) +frac2pi^327sqrt 3 -fracpi9sqrt 3psi_1left(frac13right)$$
Where the value of the integral can be extracted from here, since using $2ab=a^2+b^2-(a-b)^2$ we have:
$$2I=underbraceint_0^1 fracln^2(1-x)+ln^2(1-x^3)xdx_=frac83zeta(3)-int_0^1 fracln^2(1+x+x^2)xdx$$
Alternatively we can make use of the following series:
$$ln(1+x+x^2)=-2sum_n=1^infty fraccosleft(frac2n pi3right)n x^n $$
$$mathcal J =int_0^1 fracln(1-x)ln(1+x+x^2)xdx=-2sum_n=1^infty fraccosleft(frac2n pi3right)nint_0^1 ln(1-x) x^n-1dx $$
$$=-2sum_n=1^infty fraccosleft(frac2n pi3right)n^2H_n=-2Re left(sum_n=1^infty fracz^nn^2H_nright),quad z=e^frac2pi i3$$
Now using the following generating function:
$$sum_n=1^infty fracx^nn^2H_n=operatornameLi_3(x)-operatornameLi_3(1-x)+operatornameLi_2(1-x)ln(1-x)+frac12ln x ln^2(1-x)+zeta(3)$$
And simplifying should give the value for the integral, but I don't really know how to obtain the values for the real part of the polylogarithms.
Some can be found here.
Yet another idea: $$mathcal J=int_0^1 fracln (1-x)ln(1+x+x^2)xdxoversetxto 1-x=int_0^1 fracln xln(3-3x+x^2)1-xdx$$
Now consider the following integral (quite a weird one) and derivate under the integral sign:
$$I(t)=int_0^1 fracln xln[(1-x)colorblue(2(1+cos t))+x^2]1-xdxRightarrow I'(t)=-2sin tint_0^1 fracln x2(1-x)(1+cos t)+x^2dx$$
$$overset1-xto x=-2int_0^1 fracsin tln(1-x)x^2+(2cos t )x+1dx=2sum_n=1^infty (-1)^n sin (nt)int_0^1 x^n-1ln(1-x)dx$$
$$=2sum_n=1^infty (-1)^n sin (nt)fracH_nn=2Imsum_n=1^infty frac(-1)^n e^in tnH_n=2Im sum_n=1^infty fracz^nnH_n,quad z=-e^it $$
Also, using the generating function:
$$sum_n =1^infty fracH_nnz^n=operatornameLi_2(z)+frac12ln^2(1-z)Rightarrow I'(t)=Imleft(2 operatornameLi_2(z)+ln^2(1-z)right)$$
We are looking to find $I(0)$ since $cos 0=1$, but we have:
$$Ileft(piright)=int_0^1 fracln xln(x^2)1-xdx=2 sum_n=0^infty int_0^1 x^n ln ^2 xdx=8sum_n=1^infty frac1n^3=8zeta(3)$$
$$mathcal J=-(I(0)-I(pi)+8zeta(3))=-int_0^pi Im(2operatornameLi_2(z)+ln^2(1-z))dt+8zeta(3)$$
Maybe noticing that: $Im operatornameLi(e^ix)=operatornameCl_2(x)$ can help here, although I have a strong feeling it's going to the approach from above.
$endgroup$
add a comment |
$begingroup$
$$boxedI=int_0^1 fracln(1-x) ln(1-x^3)xdx=frac53zeta(3) +frac2pi^327sqrt 3 -fracpi9sqrt 3psi_1left(frac13right)$$
Where the value of the integral can be extracted from here, since using $2ab=a^2+b^2-(a-b)^2$ we have:
$$2I=underbraceint_0^1 fracln^2(1-x)+ln^2(1-x^3)xdx_=frac83zeta(3)-int_0^1 fracln^2(1+x+x^2)xdx$$
Alternatively we can make use of the following series:
$$ln(1+x+x^2)=-2sum_n=1^infty fraccosleft(frac2n pi3right)n x^n $$
$$mathcal J =int_0^1 fracln(1-x)ln(1+x+x^2)xdx=-2sum_n=1^infty fraccosleft(frac2n pi3right)nint_0^1 ln(1-x) x^n-1dx $$
$$=-2sum_n=1^infty fraccosleft(frac2n pi3right)n^2H_n=-2Re left(sum_n=1^infty fracz^nn^2H_nright),quad z=e^frac2pi i3$$
Now using the following generating function:
$$sum_n=1^infty fracx^nn^2H_n=operatornameLi_3(x)-operatornameLi_3(1-x)+operatornameLi_2(1-x)ln(1-x)+frac12ln x ln^2(1-x)+zeta(3)$$
And simplifying should give the value for the integral, but I don't really know how to obtain the values for the real part of the polylogarithms.
Some can be found here.
Yet another idea: $$mathcal J=int_0^1 fracln (1-x)ln(1+x+x^2)xdxoversetxto 1-x=int_0^1 fracln xln(3-3x+x^2)1-xdx$$
Now consider the following integral (quite a weird one) and derivate under the integral sign:
$$I(t)=int_0^1 fracln xln[(1-x)colorblue(2(1+cos t))+x^2]1-xdxRightarrow I'(t)=-2sin tint_0^1 fracln x2(1-x)(1+cos t)+x^2dx$$
$$overset1-xto x=-2int_0^1 fracsin tln(1-x)x^2+(2cos t )x+1dx=2sum_n=1^infty (-1)^n sin (nt)int_0^1 x^n-1ln(1-x)dx$$
$$=2sum_n=1^infty (-1)^n sin (nt)fracH_nn=2Imsum_n=1^infty frac(-1)^n e^in tnH_n=2Im sum_n=1^infty fracz^nnH_n,quad z=-e^it $$
Also, using the generating function:
$$sum_n =1^infty fracH_nnz^n=operatornameLi_2(z)+frac12ln^2(1-z)Rightarrow I'(t)=Imleft(2 operatornameLi_2(z)+ln^2(1-z)right)$$
We are looking to find $I(0)$ since $cos 0=1$, but we have:
$$Ileft(piright)=int_0^1 fracln xln(x^2)1-xdx=2 sum_n=0^infty int_0^1 x^n ln ^2 xdx=8sum_n=1^infty frac1n^3=8zeta(3)$$
$$mathcal J=-(I(0)-I(pi)+8zeta(3))=-int_0^pi Im(2operatornameLi_2(z)+ln^2(1-z))dt+8zeta(3)$$
Maybe noticing that: $Im operatornameLi(e^ix)=operatornameCl_2(x)$ can help here, although I have a strong feeling it's going to the approach from above.
$endgroup$
$$boxedI=int_0^1 fracln(1-x) ln(1-x^3)xdx=frac53zeta(3) +frac2pi^327sqrt 3 -fracpi9sqrt 3psi_1left(frac13right)$$
Where the value of the integral can be extracted from here, since using $2ab=a^2+b^2-(a-b)^2$ we have:
$$2I=underbraceint_0^1 fracln^2(1-x)+ln^2(1-x^3)xdx_=frac83zeta(3)-int_0^1 fracln^2(1+x+x^2)xdx$$
Alternatively we can make use of the following series:
$$ln(1+x+x^2)=-2sum_n=1^infty fraccosleft(frac2n pi3right)n x^n $$
$$mathcal J =int_0^1 fracln(1-x)ln(1+x+x^2)xdx=-2sum_n=1^infty fraccosleft(frac2n pi3right)nint_0^1 ln(1-x) x^n-1dx $$
$$=-2sum_n=1^infty fraccosleft(frac2n pi3right)n^2H_n=-2Re left(sum_n=1^infty fracz^nn^2H_nright),quad z=e^frac2pi i3$$
Now using the following generating function:
$$sum_n=1^infty fracx^nn^2H_n=operatornameLi_3(x)-operatornameLi_3(1-x)+operatornameLi_2(1-x)ln(1-x)+frac12ln x ln^2(1-x)+zeta(3)$$
And simplifying should give the value for the integral, but I don't really know how to obtain the values for the real part of the polylogarithms.
Some can be found here.
Yet another idea: $$mathcal J=int_0^1 fracln (1-x)ln(1+x+x^2)xdxoversetxto 1-x=int_0^1 fracln xln(3-3x+x^2)1-xdx$$
Now consider the following integral (quite a weird one) and derivate under the integral sign:
$$I(t)=int_0^1 fracln xln[(1-x)colorblue(2(1+cos t))+x^2]1-xdxRightarrow I'(t)=-2sin tint_0^1 fracln x2(1-x)(1+cos t)+x^2dx$$
$$overset1-xto x=-2int_0^1 fracsin tln(1-x)x^2+(2cos t )x+1dx=2sum_n=1^infty (-1)^n sin (nt)int_0^1 x^n-1ln(1-x)dx$$
$$=2sum_n=1^infty (-1)^n sin (nt)fracH_nn=2Imsum_n=1^infty frac(-1)^n e^in tnH_n=2Im sum_n=1^infty fracz^nnH_n,quad z=-e^it $$
Also, using the generating function:
$$sum_n =1^infty fracH_nnz^n=operatornameLi_2(z)+frac12ln^2(1-z)Rightarrow I'(t)=Imleft(2 operatornameLi_2(z)+ln^2(1-z)right)$$
We are looking to find $I(0)$ since $cos 0=1$, but we have:
$$Ileft(piright)=int_0^1 fracln xln(x^2)1-xdx=2 sum_n=0^infty int_0^1 x^n ln ^2 xdx=8sum_n=1^infty frac1n^3=8zeta(3)$$
$$mathcal J=-(I(0)-I(pi)+8zeta(3))=-int_0^pi Im(2operatornameLi_2(z)+ln^2(1-z))dt+8zeta(3)$$
Maybe noticing that: $Im operatornameLi(e^ix)=operatornameCl_2(x)$ can help here, although I have a strong feeling it's going to the approach from above.
edited 38 mins ago
answered 1 hour ago


ZackyZacky
11.7k1 gold badge18 silver badges81 bronze badges
11.7k1 gold badge18 silver badges81 bronze badges
add a comment |
add a comment |
$begingroup$
Not a full answer, but another interesting expression for the series.
Let's introduce a function:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m (3n +m)$$
Assuming $|x|<1$ and $|y|<1$ we avoid any convergence problems, and can use partial fractions:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m^2-sum_n=1^infty sum_m=1^infty fracx^n y^m m^2(n+ frac13 m)$$
$$S(x,y)=-log(1-x) textLi_2(y) -x sum_m=1^infty fracy^m m^2 Phi left(x,1,frac13 m+1 right)$$
Let's use the integral representation of the Lerch transcendent:
$$Phi left(x,1,frac13 m+1 right)= int_0^infty frace^-(1+frac13 m)t ~dt1-x e^-t$$
Summation under the integral gives us:
$$S(x,y)=-log(1-x) textLi_2(y) -x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x$$
So we can assume:
$$S=lim_x to 1 left[-log(1-x) textLi_2(x) -x int_0^infty textLi_2 left(x e^-t/3 right) fracdte^t-x right]$$
Which does seem to work numerically, though of course is quite hard to evaluate symbolically.
Numerical check:
In[22]:= x=9999999/10000000;
y=9999999/10000000;
N[-Log[1-x]PolyLog[2,y],10]-x NIntegrate[PolyLog[2,y Exp[-t/3]]/(Exp[t]-x),t,0,Infinity,WorkingPrecision->10]
Out[24]= 1.29484017
Compare to exact expression:
In[25]:= N[(1/216)*(-15*Pi^2*Log[3] + 9*Log[3]^3 + 4*Sqrt[3]*Pi*(-PolyGamma[1, 1/3] +
PolyGamma[1, 2/3]) - 216*(PolyLog[3, (-1)^(1/6)/Sqrt[3]] +
PolyLog[3, -((-1)^(5/6)/Sqrt[3])]) + 672*Zeta[3]), 10]
Out[25]= 1.2948652620+0.*10^-11 I
It may be that $x=y$ is not the best choice for the limit. For example, we can assume $x=y^a$ where $a$ is some real number. A good choice may lead to a better numerical convergence or even a closed form.
Using the dilogarithm properties, we have:
$$F(x,y)=-x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x=x int_0^infty int_0^1 fraclog(1-e^-t/3 y u) du dtu (e^t-x)$$
Let's change the variable:
$$e^-t=v \ t=- log v$$
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- y u v^1/3) du dvu (1-x v)$$
Let's take:
$$y=x^1/3$$
We have:
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- u (xv)^1/3) du dvu (1-x v)$$
$$v=w/x$$
$$F(x,y)=int_0^x int_0^1 fraclog(1- u w^1/3) du dwu (1-w)$$
$$F(x,y)=-int_0^x fractextLi_2 (w^1/3) dw1-w$$
So, there's a neater expression for the limit:
$$ colorblueS=lim_x to 1 left[-log(1-x) textLi_2(x^1/3) -int_0^x fractextLi_2 (w^1/3) dw1-w right]$$
This allows a simple generalization:
$$sum_n=1^infty sum_m=1^infty fracx^n y^m n m (an +m)=lim_x to 1 left[-log(1-x) textLi_2(x^1/a) -int_0^x fractextLi_2 (w^1/a) dw1-w right]$$
Which checks out numerically with the examples from the OP.
I wonder if we can somehow use L'Hospital here to deal with the integral and get a closed form for the limit.
Integration by parts could also work.
$endgroup$
$begingroup$
In fact, integration by parts will immediately give us the same integral as in the OP
$endgroup$
– Yuriy S
6 hours ago
add a comment |
$begingroup$
Not a full answer, but another interesting expression for the series.
Let's introduce a function:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m (3n +m)$$
Assuming $|x|<1$ and $|y|<1$ we avoid any convergence problems, and can use partial fractions:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m^2-sum_n=1^infty sum_m=1^infty fracx^n y^m m^2(n+ frac13 m)$$
$$S(x,y)=-log(1-x) textLi_2(y) -x sum_m=1^infty fracy^m m^2 Phi left(x,1,frac13 m+1 right)$$
Let's use the integral representation of the Lerch transcendent:
$$Phi left(x,1,frac13 m+1 right)= int_0^infty frace^-(1+frac13 m)t ~dt1-x e^-t$$
Summation under the integral gives us:
$$S(x,y)=-log(1-x) textLi_2(y) -x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x$$
So we can assume:
$$S=lim_x to 1 left[-log(1-x) textLi_2(x) -x int_0^infty textLi_2 left(x e^-t/3 right) fracdte^t-x right]$$
Which does seem to work numerically, though of course is quite hard to evaluate symbolically.
Numerical check:
In[22]:= x=9999999/10000000;
y=9999999/10000000;
N[-Log[1-x]PolyLog[2,y],10]-x NIntegrate[PolyLog[2,y Exp[-t/3]]/(Exp[t]-x),t,0,Infinity,WorkingPrecision->10]
Out[24]= 1.29484017
Compare to exact expression:
In[25]:= N[(1/216)*(-15*Pi^2*Log[3] + 9*Log[3]^3 + 4*Sqrt[3]*Pi*(-PolyGamma[1, 1/3] +
PolyGamma[1, 2/3]) - 216*(PolyLog[3, (-1)^(1/6)/Sqrt[3]] +
PolyLog[3, -((-1)^(5/6)/Sqrt[3])]) + 672*Zeta[3]), 10]
Out[25]= 1.2948652620+0.*10^-11 I
It may be that $x=y$ is not the best choice for the limit. For example, we can assume $x=y^a$ where $a$ is some real number. A good choice may lead to a better numerical convergence or even a closed form.
Using the dilogarithm properties, we have:
$$F(x,y)=-x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x=x int_0^infty int_0^1 fraclog(1-e^-t/3 y u) du dtu (e^t-x)$$
Let's change the variable:
$$e^-t=v \ t=- log v$$
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- y u v^1/3) du dvu (1-x v)$$
Let's take:
$$y=x^1/3$$
We have:
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- u (xv)^1/3) du dvu (1-x v)$$
$$v=w/x$$
$$F(x,y)=int_0^x int_0^1 fraclog(1- u w^1/3) du dwu (1-w)$$
$$F(x,y)=-int_0^x fractextLi_2 (w^1/3) dw1-w$$
So, there's a neater expression for the limit:
$$ colorblueS=lim_x to 1 left[-log(1-x) textLi_2(x^1/3) -int_0^x fractextLi_2 (w^1/3) dw1-w right]$$
This allows a simple generalization:
$$sum_n=1^infty sum_m=1^infty fracx^n y^m n m (an +m)=lim_x to 1 left[-log(1-x) textLi_2(x^1/a) -int_0^x fractextLi_2 (w^1/a) dw1-w right]$$
Which checks out numerically with the examples from the OP.
I wonder if we can somehow use L'Hospital here to deal with the integral and get a closed form for the limit.
Integration by parts could also work.
$endgroup$
$begingroup$
In fact, integration by parts will immediately give us the same integral as in the OP
$endgroup$
– Yuriy S
6 hours ago
add a comment |
$begingroup$
Not a full answer, but another interesting expression for the series.
Let's introduce a function:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m (3n +m)$$
Assuming $|x|<1$ and $|y|<1$ we avoid any convergence problems, and can use partial fractions:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m^2-sum_n=1^infty sum_m=1^infty fracx^n y^m m^2(n+ frac13 m)$$
$$S(x,y)=-log(1-x) textLi_2(y) -x sum_m=1^infty fracy^m m^2 Phi left(x,1,frac13 m+1 right)$$
Let's use the integral representation of the Lerch transcendent:
$$Phi left(x,1,frac13 m+1 right)= int_0^infty frace^-(1+frac13 m)t ~dt1-x e^-t$$
Summation under the integral gives us:
$$S(x,y)=-log(1-x) textLi_2(y) -x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x$$
So we can assume:
$$S=lim_x to 1 left[-log(1-x) textLi_2(x) -x int_0^infty textLi_2 left(x e^-t/3 right) fracdte^t-x right]$$
Which does seem to work numerically, though of course is quite hard to evaluate symbolically.
Numerical check:
In[22]:= x=9999999/10000000;
y=9999999/10000000;
N[-Log[1-x]PolyLog[2,y],10]-x NIntegrate[PolyLog[2,y Exp[-t/3]]/(Exp[t]-x),t,0,Infinity,WorkingPrecision->10]
Out[24]= 1.29484017
Compare to exact expression:
In[25]:= N[(1/216)*(-15*Pi^2*Log[3] + 9*Log[3]^3 + 4*Sqrt[3]*Pi*(-PolyGamma[1, 1/3] +
PolyGamma[1, 2/3]) - 216*(PolyLog[3, (-1)^(1/6)/Sqrt[3]] +
PolyLog[3, -((-1)^(5/6)/Sqrt[3])]) + 672*Zeta[3]), 10]
Out[25]= 1.2948652620+0.*10^-11 I
It may be that $x=y$ is not the best choice for the limit. For example, we can assume $x=y^a$ where $a$ is some real number. A good choice may lead to a better numerical convergence or even a closed form.
Using the dilogarithm properties, we have:
$$F(x,y)=-x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x=x int_0^infty int_0^1 fraclog(1-e^-t/3 y u) du dtu (e^t-x)$$
Let's change the variable:
$$e^-t=v \ t=- log v$$
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- y u v^1/3) du dvu (1-x v)$$
Let's take:
$$y=x^1/3$$
We have:
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- u (xv)^1/3) du dvu (1-x v)$$
$$v=w/x$$
$$F(x,y)=int_0^x int_0^1 fraclog(1- u w^1/3) du dwu (1-w)$$
$$F(x,y)=-int_0^x fractextLi_2 (w^1/3) dw1-w$$
So, there's a neater expression for the limit:
$$ colorblueS=lim_x to 1 left[-log(1-x) textLi_2(x^1/3) -int_0^x fractextLi_2 (w^1/3) dw1-w right]$$
This allows a simple generalization:
$$sum_n=1^infty sum_m=1^infty fracx^n y^m n m (an +m)=lim_x to 1 left[-log(1-x) textLi_2(x^1/a) -int_0^x fractextLi_2 (w^1/a) dw1-w right]$$
Which checks out numerically with the examples from the OP.
I wonder if we can somehow use L'Hospital here to deal with the integral and get a closed form for the limit.
Integration by parts could also work.
$endgroup$
Not a full answer, but another interesting expression for the series.
Let's introduce a function:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m (3n +m)$$
Assuming $|x|<1$ and $|y|<1$ we avoid any convergence problems, and can use partial fractions:
$$S(x,y)=sum_n=1^infty sum_m=1^infty fracx^n y^m n m^2-sum_n=1^infty sum_m=1^infty fracx^n y^m m^2(n+ frac13 m)$$
$$S(x,y)=-log(1-x) textLi_2(y) -x sum_m=1^infty fracy^m m^2 Phi left(x,1,frac13 m+1 right)$$
Let's use the integral representation of the Lerch transcendent:
$$Phi left(x,1,frac13 m+1 right)= int_0^infty frace^-(1+frac13 m)t ~dt1-x e^-t$$
Summation under the integral gives us:
$$S(x,y)=-log(1-x) textLi_2(y) -x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x$$
So we can assume:
$$S=lim_x to 1 left[-log(1-x) textLi_2(x) -x int_0^infty textLi_2 left(x e^-t/3 right) fracdte^t-x right]$$
Which does seem to work numerically, though of course is quite hard to evaluate symbolically.
Numerical check:
In[22]:= x=9999999/10000000;
y=9999999/10000000;
N[-Log[1-x]PolyLog[2,y],10]-x NIntegrate[PolyLog[2,y Exp[-t/3]]/(Exp[t]-x),t,0,Infinity,WorkingPrecision->10]
Out[24]= 1.29484017
Compare to exact expression:
In[25]:= N[(1/216)*(-15*Pi^2*Log[3] + 9*Log[3]^3 + 4*Sqrt[3]*Pi*(-PolyGamma[1, 1/3] +
PolyGamma[1, 2/3]) - 216*(PolyLog[3, (-1)^(1/6)/Sqrt[3]] +
PolyLog[3, -((-1)^(5/6)/Sqrt[3])]) + 672*Zeta[3]), 10]
Out[25]= 1.2948652620+0.*10^-11 I
It may be that $x=y$ is not the best choice for the limit. For example, we can assume $x=y^a$ where $a$ is some real number. A good choice may lead to a better numerical convergence or even a closed form.
Using the dilogarithm properties, we have:
$$F(x,y)=-x int_0^infty textLi_2 left(y e^-t/3 right) fracdte^t-x=x int_0^infty int_0^1 fraclog(1-e^-t/3 y u) du dtu (e^t-x)$$
Let's change the variable:
$$e^-t=v \ t=- log v$$
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- y u v^1/3) du dvu (1-x v)$$
Let's take:
$$y=x^1/3$$
We have:
$$F(x,y)=x int_0^1 int_0^1 fraclog(1- u (xv)^1/3) du dvu (1-x v)$$
$$v=w/x$$
$$F(x,y)=int_0^x int_0^1 fraclog(1- u w^1/3) du dwu (1-w)$$
$$F(x,y)=-int_0^x fractextLi_2 (w^1/3) dw1-w$$
So, there's a neater expression for the limit:
$$ colorblueS=lim_x to 1 left[-log(1-x) textLi_2(x^1/3) -int_0^x fractextLi_2 (w^1/3) dw1-w right]$$
This allows a simple generalization:
$$sum_n=1^infty sum_m=1^infty fracx^n y^m n m (an +m)=lim_x to 1 left[-log(1-x) textLi_2(x^1/a) -int_0^x fractextLi_2 (w^1/a) dw1-w right]$$
Which checks out numerically with the examples from the OP.
I wonder if we can somehow use L'Hospital here to deal with the integral and get a closed form for the limit.
Integration by parts could also work.
edited 7 hours ago
answered 7 hours ago


Yuriy SYuriy S
16.9k4 gold badges34 silver badges121 bronze badges
16.9k4 gold badges34 silver badges121 bronze badges
$begingroup$
In fact, integration by parts will immediately give us the same integral as in the OP
$endgroup$
– Yuriy S
6 hours ago
add a comment |
$begingroup$
In fact, integration by parts will immediately give us the same integral as in the OP
$endgroup$
– Yuriy S
6 hours ago
$begingroup$
In fact, integration by parts will immediately give us the same integral as in the OP
$endgroup$
– Yuriy S
6 hours ago
$begingroup$
In fact, integration by parts will immediately give us the same integral as in the OP
$endgroup$
– Yuriy S
6 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3294203%2fa-difficult-double-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Double plum, did you say??
$endgroup$
– Bernard
9 hours ago
3
$begingroup$
Ooops ... have I muddled my sums with my plums ?
$endgroup$
– Donald Splutterwit
9 hours ago
4
$begingroup$
Double plummation!
$endgroup$
– Zubin Mukerjee
9 hours ago
4
$begingroup$
$$sqrt-1 qquad 2^3 qquad displaystylesum qquad pi$$ I ate plum pie.
$endgroup$
– Zubin Mukerjee
8 hours ago
2
$begingroup$
Mathematica gives for the integral $$I=frac1216 left(-216 left(textLi_3left(fracsqrt[6]-1sqrt3right)+textLi_3left(-frac(-1)^5/6sqrt3right)right)+672 zeta (3)+9 log ^3(3)-15 pi ^2 log (3)+4 pi sqrt3 left(psi ^(1)left(frac23right)-psi ^(1)left(frac13right)right)right)$$
$endgroup$
– Yuriy S
8 hours ago