Adding things to bunches of things vs multiplicationWhat are the arguments for and against learning multiplication table by heart?Is it advisable to avoid teaching “multiplication as repeated addition”?Traditional “long” method of multiplication versus grid and partial products — evidence of better outcomes?Looking for a tool to create a digital multiplication quizWhen should a kid have memorized the multiplication table?Why is multiplication taught using cross notation at first?How to present the order of factors and summands for the usual multiplication procedureHow to explain the motivation of parentheses in addition, subtraction and multiplication?Best practices in teaching math to future elementary teachers

A man in the desert is bitten by a skeletal animal, its skull gets stuck on his arm

Why do my bicycle brakes get worse and feel more 'squishy" over time?

How to get locks that are keyed alike?

Adding things to bunches of things vs multiplication

How can I find an old paper when the usual methods fail?

How much can I judge a company based on a phone screening?

How to measure if Scrum Master is making a difference and when to give up

How do figure out how powerful I am, when my abilities far exceed my knowledge?

Is there a fallacy about "appeal to 'big words'"?

How to use Palatino font for text and what about maths?

Some pads on a PCB are marked in clusters and I can't understand which one is which

When did Bilbo and Frodo learn that Gandalf was a Maia?

Is this bar slide trick shown on Cheers real or a visual effect?

Solving pricing problem heuristically in column generation algorithm for VRP

What allows us to use imaginary numbers?

Who is the controller of a Pacifism enchanting my creature?

Sums of binomial coefficients weighted by incomplete gamma

What should I do with the stock I own if I anticipate there will be a recession?

Why does this Jet Provost strikemaster have a textured leading edge?

What is a "soap"?

What's the point of writing that I know will never be used or read?

How to gracefully leave a company you helped start?

What is the farthest a camera can see?

Why won't the Republicans use a superdelegate system like the DNC in their nomination process?



Adding things to bunches of things vs multiplication


What are the arguments for and against learning multiplication table by heart?Is it advisable to avoid teaching “multiplication as repeated addition”?Traditional “long” method of multiplication versus grid and partial products — evidence of better outcomes?Looking for a tool to create a digital multiplication quizWhen should a kid have memorized the multiplication table?Why is multiplication taught using cross notation at first?How to present the order of factors and summands for the usual multiplication procedureHow to explain the motivation of parentheses in addition, subtraction and multiplication?Best practices in teaching math to future elementary teachers






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$



"Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?










share|improve this question









$endgroup$




















    1












    $begingroup$



    "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




    Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



    I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



    Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



    Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?










    share|improve this question









    $endgroup$
















      1












      1








      1





      $begingroup$



      "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




      Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



      I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



      Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



      Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?










      share|improve this question









      $endgroup$





      "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




      Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



      I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



      Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



      Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?







      primary-education arithmetic






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 10 hours ago









      Rusty CoreRusty Core

      3732 silver badges10 bronze badges




      3732 silver badges10 bronze badges























          5 Answers
          5






          active

          oldest

          votes


















          4












          $begingroup$


          Why you can multiply boxes and pencils, but cannot add?




          In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






          share|improve this answer











          $endgroup$










          • 1




            $begingroup$
            Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
            $endgroup$
            – Nick C
            10 hours ago






          • 2




            $begingroup$
            I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
            $endgroup$
            – Rusty Core
            10 hours ago


















          1












          $begingroup$

          Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



          To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






          share|improve this answer









          $endgroup$






















            1












            $begingroup$

            You can add, though it's more tedious.




            "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




            First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
            textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
            pencils.



            Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




            What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






            share|improve this answer











            $endgroup$






















              0












              $begingroup$

              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






              share|improve this answer









              $endgroup$














              • $begingroup$
                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                $endgroup$
                – Rusty Core
                1 hour ago










              • $begingroup$
                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                $endgroup$
                – Joel Reyes Noche
                33 mins ago



















              0












              $begingroup$

              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






              share|improve this answer








              New contributor



              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.





              $endgroup$














              • $begingroup$
                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                $endgroup$
                – Rusty Core
                55 mins ago










              • $begingroup$
                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                $endgroup$
                – guest
                24 mins ago














              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "548"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmatheducators.stackexchange.com%2fquestions%2f16941%2fadding-things-to-bunches-of-things-vs-multiplication%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              5 Answers
              5






              active

              oldest

              votes








              5 Answers
              5






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$


              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






              share|improve this answer











              $endgroup$










              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                10 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago















              4












              $begingroup$


              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






              share|improve this answer











              $endgroup$










              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                10 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago













              4












              4








              4





              $begingroup$


              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






              share|improve this answer











              $endgroup$




              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited 8 hours ago









              Namaste

              6951 gold badge6 silver badges20 bronze badges




              6951 gold badge6 silver badges20 bronze badges










              answered 10 hours ago









              Nick CNick C

              2,7398 silver badges29 bronze badges




              2,7398 silver badges29 bronze badges










              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                10 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago












              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                10 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago







              1




              1




              $begingroup$
              Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
              $endgroup$
              – Nick C
              10 hours ago




              $begingroup$
              Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
              $endgroup$
              – Nick C
              10 hours ago




              2




              2




              $begingroup$
              I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
              $endgroup$
              – Rusty Core
              10 hours ago




              $begingroup$
              I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
              $endgroup$
              – Rusty Core
              10 hours ago













              1












              $begingroup$

              Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



              To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






              share|improve this answer









              $endgroup$



















                1












                $begingroup$

                Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



                To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






                share|improve this answer









                $endgroup$

















                  1












                  1








                  1





                  $begingroup$

                  Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



                  To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






                  share|improve this answer









                  $endgroup$



                  Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



                  To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 9 hours ago









                  Opal EOpal E

                  1,5168 silver badges26 bronze badges




                  1,5168 silver badges26 bronze badges
























                      1












                      $begingroup$

                      You can add, though it's more tedious.




                      "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                      First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                      textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                      pencils.



                      Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                      What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






                      share|improve this answer











                      $endgroup$



















                        1












                        $begingroup$

                        You can add, though it's more tedious.




                        "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                        First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                        textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                        pencils.



                        Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                        What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






                        share|improve this answer











                        $endgroup$

















                          1












                          1








                          1





                          $begingroup$

                          You can add, though it's more tedious.




                          "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                          First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                          textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                          pencils.



                          Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                          What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






                          share|improve this answer











                          $endgroup$



                          You can add, though it's more tedious.




                          "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                          First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                          textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                          pencils.



                          Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                          What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 8 hours ago

























                          answered 8 hours ago









                          NamasteNamaste

                          6951 gold badge6 silver badges20 bronze badges




                          6951 gold badge6 silver badges20 bronze badges
























                              0












                              $begingroup$

                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






                              share|improve this answer









                              $endgroup$














                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                33 mins ago
















                              0












                              $begingroup$

                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






                              share|improve this answer









                              $endgroup$














                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                33 mins ago














                              0












                              0








                              0





                              $begingroup$

                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






                              share|improve this answer









                              $endgroup$



                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 1 hour ago









                              Sue VanHattumSue VanHattum

                              10.1k1 gold badge22 silver badges64 bronze badges




                              10.1k1 gold badge22 silver badges64 bronze badges














                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                33 mins ago

















                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                33 mins ago
















                              $begingroup$
                              "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                              $endgroup$
                              – Rusty Core
                              1 hour ago




                              $begingroup$
                              "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                              $endgroup$
                              – Rusty Core
                              1 hour ago












                              $begingroup$
                              @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                              $endgroup$
                              – Joel Reyes Noche
                              33 mins ago





                              $begingroup$
                              @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                              $endgroup$
                              – Joel Reyes Noche
                              33 mins ago












                              0












                              $begingroup$

                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.





                              $endgroup$














                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                55 mins ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                24 mins ago
















                              0












                              $begingroup$

                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.





                              $endgroup$














                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                55 mins ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                24 mins ago














                              0












                              0








                              0





                              $begingroup$

                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.





                              $endgroup$



                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)







                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.








                              share|improve this answer



                              share|improve this answer






                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.








                              answered 1 hour ago









                              guestguest

                              1




                              1




                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.




                              New contributor




                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.
















                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                55 mins ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                24 mins ago

















                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                55 mins ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                24 mins ago
















                              $begingroup$
                              You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                              $endgroup$
                              – Rusty Core
                              55 mins ago




                              $begingroup$
                              You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                              $endgroup$
                              – Rusty Core
                              55 mins ago












                              $begingroup$
                              Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                              $endgroup$
                              – guest
                              24 mins ago





                              $begingroup$
                              Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                              $endgroup$
                              – guest
                              24 mins ago


















                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Educators Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmatheducators.stackexchange.com%2fquestions%2f16941%2fadding-things-to-bunches-of-things-vs-multiplication%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                              Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                              Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)