Efficiently pathfinding many flocking enemies around obstaclesWhat algorithm to use for path mapping?pathfinding with obstacles in a Warcraft 3 like gameHow can I generate a 2d navigation mesh in a dynamic environment at runtime?Influence Maps for Pathfinding?Pathfinding for fleeingPathfinding in non tile-based 2d map (maybe potential field)A* in 2D grid with obstacles in between graph nodesAn algorithm for forming unit groupsHow do I implement A* pathfinding for enemies to follow the player?

What professions would a medieval village with a population of 100 need?

Why don't politicians push for fossil fuel reduction by pointing out their scarcity?

How should I think about joining a company whose business I do not understand?

Should my "average" PC be able to discern the potential of encountering a gelatinous cube from subtle clues?

Co-author responds to email by mistake cc'ing the EiC

Church Booleans

!I!n!s!e!r!t! !n!b!e!t!w!e!e!n!

Why doesn't mathematics collapse even though humans quite often make mistakes in their proofs?

What does it mean to have a subnet mask /32?

In an emergency, how do I find and share my position?

Does Git delete empty folders?

Don't understand MOSFET as amplifier

Are required indicators necessary for radio buttons?

Does adding the 'precise' tag to daggers break anything?

Can we save the word "unique"?

Is "stainless" a bulk or a surface property of stainless steel?

Is there such a thing as too inconvenient?

Potential new partner angry about first collaboration - how to answer email to close up this encounter in a graceful manner

How to create a summation symbol with a vertical bar?

What is the hex versus octal timeline?

Are illustrations in novels frowned upon?

Vacuum collapse -- why do strong metals implode but glass doesn't?

To "hit home" in German

How to avoid using System.String with Rfc2898DeriveBytes in C#



Efficiently pathfinding many flocking enemies around obstacles


What algorithm to use for path mapping?pathfinding with obstacles in a Warcraft 3 like gameHow can I generate a 2d navigation mesh in a dynamic environment at runtime?Influence Maps for Pathfinding?Pathfinding for fleeingPathfinding in non tile-based 2d map (maybe potential field)A* in 2D grid with obstacles in between graph nodesAn algorithm for forming unit groupsHow do I implement A* pathfinding for enemies to follow the player?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I'm working on trying to improve the pathfinding for my game's enemies. Right now, they basically just constantly move towards the player's exact position by calculating the angle between themselves and the players and moving in that direction. I also have a flocking algorithm which prevents the enemies from stacking on top of each other, so they will form up into groups rather than clip through each other.



However, now that I've added a tile-based map, I need the enemies to also be able to path around obstacles and walls for example. I initially tried adding a separation value to "non-walkable" tiles so that the flocking algorithm would consider the walls and obstacles as objects to move away from. I have yet to work out whether or not this is feasible because my initial test showed the enemies hitting an invisible "wall" where there are no non-walkable tiles, yet for some reason, they hit it and start spazzing out.



I was wondering if it might be too performance heavy to calculate a path to the player using A* and then use the flocking algorithm to prevent clumping. Originally my game was going to be a wave-based shooter, but I've decided instead to make it level-based in the vein of Hotline Miami, so it's likely I'll have fewer enemies, with the occasional horde, and just make them stronger.



Is this a viable solution? I'm using Java with Slick2D as my game engine. Or is there a better solution / algorithm that tackles both these problems?










share|improve this question











$endgroup$









  • 2




    $begingroup$
    As I described in the edit, "is this too heavy" is a question to ask your profiler, because it will depend on your implementation, target hardware, performance budget, and the context of your game — all stuff that you and your profiler know intimately but Internet strangers do not. If you want to get flocks pathfinding efficiently, we can suggest strategies to help with that, but only your own profiling can answer what's efficient enough for your needs. If you profile and identify a specific performance problem, we can also help you find how to solve that problem.
    $endgroup$
    – DMGregory
    12 hours ago










  • $begingroup$
    How you implement them affects performance. For instance, only running A* on leaders & relying on flocking for followers.
    $endgroup$
    – Pikalek
    12 hours ago

















2












$begingroup$


I'm working on trying to improve the pathfinding for my game's enemies. Right now, they basically just constantly move towards the player's exact position by calculating the angle between themselves and the players and moving in that direction. I also have a flocking algorithm which prevents the enemies from stacking on top of each other, so they will form up into groups rather than clip through each other.



However, now that I've added a tile-based map, I need the enemies to also be able to path around obstacles and walls for example. I initially tried adding a separation value to "non-walkable" tiles so that the flocking algorithm would consider the walls and obstacles as objects to move away from. I have yet to work out whether or not this is feasible because my initial test showed the enemies hitting an invisible "wall" where there are no non-walkable tiles, yet for some reason, they hit it and start spazzing out.



I was wondering if it might be too performance heavy to calculate a path to the player using A* and then use the flocking algorithm to prevent clumping. Originally my game was going to be a wave-based shooter, but I've decided instead to make it level-based in the vein of Hotline Miami, so it's likely I'll have fewer enemies, with the occasional horde, and just make them stronger.



Is this a viable solution? I'm using Java with Slick2D as my game engine. Or is there a better solution / algorithm that tackles both these problems?










share|improve this question











$endgroup$









  • 2




    $begingroup$
    As I described in the edit, "is this too heavy" is a question to ask your profiler, because it will depend on your implementation, target hardware, performance budget, and the context of your game — all stuff that you and your profiler know intimately but Internet strangers do not. If you want to get flocks pathfinding efficiently, we can suggest strategies to help with that, but only your own profiling can answer what's efficient enough for your needs. If you profile and identify a specific performance problem, we can also help you find how to solve that problem.
    $endgroup$
    – DMGregory
    12 hours ago










  • $begingroup$
    How you implement them affects performance. For instance, only running A* on leaders & relying on flocking for followers.
    $endgroup$
    – Pikalek
    12 hours ago













2












2








2


1



$begingroup$


I'm working on trying to improve the pathfinding for my game's enemies. Right now, they basically just constantly move towards the player's exact position by calculating the angle between themselves and the players and moving in that direction. I also have a flocking algorithm which prevents the enemies from stacking on top of each other, so they will form up into groups rather than clip through each other.



However, now that I've added a tile-based map, I need the enemies to also be able to path around obstacles and walls for example. I initially tried adding a separation value to "non-walkable" tiles so that the flocking algorithm would consider the walls and obstacles as objects to move away from. I have yet to work out whether or not this is feasible because my initial test showed the enemies hitting an invisible "wall" where there are no non-walkable tiles, yet for some reason, they hit it and start spazzing out.



I was wondering if it might be too performance heavy to calculate a path to the player using A* and then use the flocking algorithm to prevent clumping. Originally my game was going to be a wave-based shooter, but I've decided instead to make it level-based in the vein of Hotline Miami, so it's likely I'll have fewer enemies, with the occasional horde, and just make them stronger.



Is this a viable solution? I'm using Java with Slick2D as my game engine. Or is there a better solution / algorithm that tackles both these problems?










share|improve this question











$endgroup$




I'm working on trying to improve the pathfinding for my game's enemies. Right now, they basically just constantly move towards the player's exact position by calculating the angle between themselves and the players and moving in that direction. I also have a flocking algorithm which prevents the enemies from stacking on top of each other, so they will form up into groups rather than clip through each other.



However, now that I've added a tile-based map, I need the enemies to also be able to path around obstacles and walls for example. I initially tried adding a separation value to "non-walkable" tiles so that the flocking algorithm would consider the walls and obstacles as objects to move away from. I have yet to work out whether or not this is feasible because my initial test showed the enemies hitting an invisible "wall" where there are no non-walkable tiles, yet for some reason, they hit it and start spazzing out.



I was wondering if it might be too performance heavy to calculate a path to the player using A* and then use the flocking algorithm to prevent clumping. Originally my game was going to be a wave-based shooter, but I've decided instead to make it level-based in the vein of Hotline Miami, so it's likely I'll have fewer enemies, with the occasional horde, and just make them stronger.



Is this a viable solution? I'm using Java with Slick2D as my game engine. Or is there a better solution / algorithm that tackles both these problems?







java algorithm ai path-finding






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 19 mins ago









DMGregory

71k16 gold badges126 silver badges199 bronze badges




71k16 gold badges126 silver badges199 bronze badges










asked 14 hours ago









Darin BeaudreauDarin Beaudreau

2099 bronze badges




2099 bronze badges










  • 2




    $begingroup$
    As I described in the edit, "is this too heavy" is a question to ask your profiler, because it will depend on your implementation, target hardware, performance budget, and the context of your game — all stuff that you and your profiler know intimately but Internet strangers do not. If you want to get flocks pathfinding efficiently, we can suggest strategies to help with that, but only your own profiling can answer what's efficient enough for your needs. If you profile and identify a specific performance problem, we can also help you find how to solve that problem.
    $endgroup$
    – DMGregory
    12 hours ago










  • $begingroup$
    How you implement them affects performance. For instance, only running A* on leaders & relying on flocking for followers.
    $endgroup$
    – Pikalek
    12 hours ago












  • 2




    $begingroup$
    As I described in the edit, "is this too heavy" is a question to ask your profiler, because it will depend on your implementation, target hardware, performance budget, and the context of your game — all stuff that you and your profiler know intimately but Internet strangers do not. If you want to get flocks pathfinding efficiently, we can suggest strategies to help with that, but only your own profiling can answer what's efficient enough for your needs. If you profile and identify a specific performance problem, we can also help you find how to solve that problem.
    $endgroup$
    – DMGregory
    12 hours ago










  • $begingroup$
    How you implement them affects performance. For instance, only running A* on leaders & relying on flocking for followers.
    $endgroup$
    – Pikalek
    12 hours ago







2




2




$begingroup$
As I described in the edit, "is this too heavy" is a question to ask your profiler, because it will depend on your implementation, target hardware, performance budget, and the context of your game — all stuff that you and your profiler know intimately but Internet strangers do not. If you want to get flocks pathfinding efficiently, we can suggest strategies to help with that, but only your own profiling can answer what's efficient enough for your needs. If you profile and identify a specific performance problem, we can also help you find how to solve that problem.
$endgroup$
– DMGregory
12 hours ago




$begingroup$
As I described in the edit, "is this too heavy" is a question to ask your profiler, because it will depend on your implementation, target hardware, performance budget, and the context of your game — all stuff that you and your profiler know intimately but Internet strangers do not. If you want to get flocks pathfinding efficiently, we can suggest strategies to help with that, but only your own profiling can answer what's efficient enough for your needs. If you profile and identify a specific performance problem, we can also help you find how to solve that problem.
$endgroup$
– DMGregory
12 hours ago












$begingroup$
How you implement them affects performance. For instance, only running A* on leaders & relying on flocking for followers.
$endgroup$
– Pikalek
12 hours ago




$begingroup$
How you implement them affects performance. For instance, only running A* on leaders & relying on flocking for followers.
$endgroup$
– Pikalek
12 hours ago










3 Answers
3






active

oldest

votes


















11












$begingroup$

This sounds like a use case for Flow Fields.



In this technique, you do a single pathfinding query outward from your player object(s), marking each cell you encounter with the cell you reached it from.



If all your tiles/edges have equal traversal cost, then you can use a simple breadth-first search for this. Otherwise, Dijkstra's algorithm (like A* with no goal/heuristic) works.



This creates a flow field: a lookup table that associates each cell with the next step toward the closest player object from that position.



Now your enemies can each look up their current position in the flow field to find the next step in their shortest obstacle-avoiding path to the closest player object, without each doing their own pathfinding query.



This scales better and better the more enemies you have in your flock. For a single enemy, it's more expensive than A* because it searches the whole map (though you can early-out once you've reached all pathfinding agents). But as you add more enemies, they get to share more and more of the pathfinding cost by computing shared path segments once rather than over and over. You also gain an edge from the fact that BFS/Dijkdtra's are simpler than A*, and typically cheaper to evaluate per cell inspected.



Exactly where the break-even point hits, from individual A* being cheaper, to A* with memoization being cheaper (where you re-use some of the results for a past pathfinding query to speed up the next one), to flow fields being cheaper, will depend on your implementation, the number of agents, and the size of your map. But if you ever plan a big swarm of enemies approaching from multiple directions in a confined area, one flow field will almost certainly be cheaper than iterated A*.



As an extreme example, you can see a video here with 20 000 agents all simultaneously pathfinding on a reasonably small grid.






share|improve this answer











$endgroup$














  • $begingroup$
    This technique sounds really neat. I'll check it out.
    $endgroup$
    – Darin Beaudreau
    11 hours ago






  • 3




    $begingroup$
    It's possible to use a hybrid algorithm that constructs a partial flow field without searching more of the map than repeated calls to A* would, and never searching the same position twice. The basic idea is to pick an arbitrary enemy and start an A* search from the player towards that enemy, marking cells as you encounter them just like in normal flow field generation. Once the search finds that enemy, pick another enemy (that you haven't found yet) as the target, re-sort the open set according to the new heuristic and continue searching. Stop when you've found all enemies.
    $endgroup$
    – Ilmari Karonen
    5 hours ago



















3












$begingroup$

A* is not performance heavy. I would approach this situation by varying the algorithms. Do A* from time to time and in between check whether the next step is free to step onto or you need evasion.



For example, track the players distance from the A* target location, if it's above a threshold recalculate a* and then just do update movements. Most games use a combination of way points, e.g. a simplified grid for path finding and a logic that handles the movement between waypoints with evasion steering algorithms using raycasts. The agents try to run to a distant waypoint by maneuvering around obstacles in their proximity is the best approach in my opinion.



It's best to work with finite state machines here and read the book "Programming Game AI By Example" by Mat Buckland. The book offers proven techniques for your problem and details the math required. Source code from the book is available on the web; the book is in C++ but some translations (including Java) are available.






share|improve this answer











$endgroup$














  • $begingroup$
    With an infrequently-updating A* approach, it may be helpful to stagger your updates, maintaining a budget for how many enemies are allowed to re-path on a single frame. That way you can keep your peak pathfinding cost per frame capped, and more robustly handle many AI pathing by amortizing their total cost over several frames. An AI using a stale path for a frame or two when the budget for the frame has been exceeded, or falling back on dead reckoning if close, usually won't be disruptive.
    $endgroup$
    – DMGregory
    11 hours ago



















0












$begingroup$

Not only is it feasible, I believe it was done in a commercial game in the 90s - BattleZone (1998).



That game had 3D units with free non-tile-based movement, and tile-based base construction.



This is how it seemed to work:



First, A* or something similar (likely a variation of A* with strict limits on how long a path it can find, so it never takes too many resources to run but doesn't always find a path all the way to the destination) would be used to find a path for a hovertank to get to its destination without getting stuck in tile-based obstacles.



Then the tank would fly around untiled space as if it was attracted to the centre of a nearby tile in its path, and repulsed by obstacles, other nearby tanks, etc.






share|improve this answer











$endgroup$

















    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "53"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgamedev.stackexchange.com%2fquestions%2f174801%2fefficiently-pathfinding-many-flocking-enemies-around-obstacles%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    This sounds like a use case for Flow Fields.



    In this technique, you do a single pathfinding query outward from your player object(s), marking each cell you encounter with the cell you reached it from.



    If all your tiles/edges have equal traversal cost, then you can use a simple breadth-first search for this. Otherwise, Dijkstra's algorithm (like A* with no goal/heuristic) works.



    This creates a flow field: a lookup table that associates each cell with the next step toward the closest player object from that position.



    Now your enemies can each look up their current position in the flow field to find the next step in their shortest obstacle-avoiding path to the closest player object, without each doing their own pathfinding query.



    This scales better and better the more enemies you have in your flock. For a single enemy, it's more expensive than A* because it searches the whole map (though you can early-out once you've reached all pathfinding agents). But as you add more enemies, they get to share more and more of the pathfinding cost by computing shared path segments once rather than over and over. You also gain an edge from the fact that BFS/Dijkdtra's are simpler than A*, and typically cheaper to evaluate per cell inspected.



    Exactly where the break-even point hits, from individual A* being cheaper, to A* with memoization being cheaper (where you re-use some of the results for a past pathfinding query to speed up the next one), to flow fields being cheaper, will depend on your implementation, the number of agents, and the size of your map. But if you ever plan a big swarm of enemies approaching from multiple directions in a confined area, one flow field will almost certainly be cheaper than iterated A*.



    As an extreme example, you can see a video here with 20 000 agents all simultaneously pathfinding on a reasonably small grid.






    share|improve this answer











    $endgroup$














    • $begingroup$
      This technique sounds really neat. I'll check it out.
      $endgroup$
      – Darin Beaudreau
      11 hours ago






    • 3




      $begingroup$
      It's possible to use a hybrid algorithm that constructs a partial flow field without searching more of the map than repeated calls to A* would, and never searching the same position twice. The basic idea is to pick an arbitrary enemy and start an A* search from the player towards that enemy, marking cells as you encounter them just like in normal flow field generation. Once the search finds that enemy, pick another enemy (that you haven't found yet) as the target, re-sort the open set according to the new heuristic and continue searching. Stop when you've found all enemies.
      $endgroup$
      – Ilmari Karonen
      5 hours ago
















    11












    $begingroup$

    This sounds like a use case for Flow Fields.



    In this technique, you do a single pathfinding query outward from your player object(s), marking each cell you encounter with the cell you reached it from.



    If all your tiles/edges have equal traversal cost, then you can use a simple breadth-first search for this. Otherwise, Dijkstra's algorithm (like A* with no goal/heuristic) works.



    This creates a flow field: a lookup table that associates each cell with the next step toward the closest player object from that position.



    Now your enemies can each look up their current position in the flow field to find the next step in their shortest obstacle-avoiding path to the closest player object, without each doing their own pathfinding query.



    This scales better and better the more enemies you have in your flock. For a single enemy, it's more expensive than A* because it searches the whole map (though you can early-out once you've reached all pathfinding agents). But as you add more enemies, they get to share more and more of the pathfinding cost by computing shared path segments once rather than over and over. You also gain an edge from the fact that BFS/Dijkdtra's are simpler than A*, and typically cheaper to evaluate per cell inspected.



    Exactly where the break-even point hits, from individual A* being cheaper, to A* with memoization being cheaper (where you re-use some of the results for a past pathfinding query to speed up the next one), to flow fields being cheaper, will depend on your implementation, the number of agents, and the size of your map. But if you ever plan a big swarm of enemies approaching from multiple directions in a confined area, one flow field will almost certainly be cheaper than iterated A*.



    As an extreme example, you can see a video here with 20 000 agents all simultaneously pathfinding on a reasonably small grid.






    share|improve this answer











    $endgroup$














    • $begingroup$
      This technique sounds really neat. I'll check it out.
      $endgroup$
      – Darin Beaudreau
      11 hours ago






    • 3




      $begingroup$
      It's possible to use a hybrid algorithm that constructs a partial flow field without searching more of the map than repeated calls to A* would, and never searching the same position twice. The basic idea is to pick an arbitrary enemy and start an A* search from the player towards that enemy, marking cells as you encounter them just like in normal flow field generation. Once the search finds that enemy, pick another enemy (that you haven't found yet) as the target, re-sort the open set according to the new heuristic and continue searching. Stop when you've found all enemies.
      $endgroup$
      – Ilmari Karonen
      5 hours ago














    11












    11








    11





    $begingroup$

    This sounds like a use case for Flow Fields.



    In this technique, you do a single pathfinding query outward from your player object(s), marking each cell you encounter with the cell you reached it from.



    If all your tiles/edges have equal traversal cost, then you can use a simple breadth-first search for this. Otherwise, Dijkstra's algorithm (like A* with no goal/heuristic) works.



    This creates a flow field: a lookup table that associates each cell with the next step toward the closest player object from that position.



    Now your enemies can each look up their current position in the flow field to find the next step in their shortest obstacle-avoiding path to the closest player object, without each doing their own pathfinding query.



    This scales better and better the more enemies you have in your flock. For a single enemy, it's more expensive than A* because it searches the whole map (though you can early-out once you've reached all pathfinding agents). But as you add more enemies, they get to share more and more of the pathfinding cost by computing shared path segments once rather than over and over. You also gain an edge from the fact that BFS/Dijkdtra's are simpler than A*, and typically cheaper to evaluate per cell inspected.



    Exactly where the break-even point hits, from individual A* being cheaper, to A* with memoization being cheaper (where you re-use some of the results for a past pathfinding query to speed up the next one), to flow fields being cheaper, will depend on your implementation, the number of agents, and the size of your map. But if you ever plan a big swarm of enemies approaching from multiple directions in a confined area, one flow field will almost certainly be cheaper than iterated A*.



    As an extreme example, you can see a video here with 20 000 agents all simultaneously pathfinding on a reasonably small grid.






    share|improve this answer











    $endgroup$



    This sounds like a use case for Flow Fields.



    In this technique, you do a single pathfinding query outward from your player object(s), marking each cell you encounter with the cell you reached it from.



    If all your tiles/edges have equal traversal cost, then you can use a simple breadth-first search for this. Otherwise, Dijkstra's algorithm (like A* with no goal/heuristic) works.



    This creates a flow field: a lookup table that associates each cell with the next step toward the closest player object from that position.



    Now your enemies can each look up their current position in the flow field to find the next step in their shortest obstacle-avoiding path to the closest player object, without each doing their own pathfinding query.



    This scales better and better the more enemies you have in your flock. For a single enemy, it's more expensive than A* because it searches the whole map (though you can early-out once you've reached all pathfinding agents). But as you add more enemies, they get to share more and more of the pathfinding cost by computing shared path segments once rather than over and over. You also gain an edge from the fact that BFS/Dijkdtra's are simpler than A*, and typically cheaper to evaluate per cell inspected.



    Exactly where the break-even point hits, from individual A* being cheaper, to A* with memoization being cheaper (where you re-use some of the results for a past pathfinding query to speed up the next one), to flow fields being cheaper, will depend on your implementation, the number of agents, and the size of your map. But if you ever plan a big swarm of enemies approaching from multiple directions in a confined area, one flow field will almost certainly be cheaper than iterated A*.



    As an extreme example, you can see a video here with 20 000 agents all simultaneously pathfinding on a reasonably small grid.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 24 mins ago

























    answered 13 hours ago









    DMGregoryDMGregory

    71k16 gold badges126 silver badges199 bronze badges




    71k16 gold badges126 silver badges199 bronze badges














    • $begingroup$
      This technique sounds really neat. I'll check it out.
      $endgroup$
      – Darin Beaudreau
      11 hours ago






    • 3




      $begingroup$
      It's possible to use a hybrid algorithm that constructs a partial flow field without searching more of the map than repeated calls to A* would, and never searching the same position twice. The basic idea is to pick an arbitrary enemy and start an A* search from the player towards that enemy, marking cells as you encounter them just like in normal flow field generation. Once the search finds that enemy, pick another enemy (that you haven't found yet) as the target, re-sort the open set according to the new heuristic and continue searching. Stop when you've found all enemies.
      $endgroup$
      – Ilmari Karonen
      5 hours ago

















    • $begingroup$
      This technique sounds really neat. I'll check it out.
      $endgroup$
      – Darin Beaudreau
      11 hours ago






    • 3




      $begingroup$
      It's possible to use a hybrid algorithm that constructs a partial flow field without searching more of the map than repeated calls to A* would, and never searching the same position twice. The basic idea is to pick an arbitrary enemy and start an A* search from the player towards that enemy, marking cells as you encounter them just like in normal flow field generation. Once the search finds that enemy, pick another enemy (that you haven't found yet) as the target, re-sort the open set according to the new heuristic and continue searching. Stop when you've found all enemies.
      $endgroup$
      – Ilmari Karonen
      5 hours ago
















    $begingroup$
    This technique sounds really neat. I'll check it out.
    $endgroup$
    – Darin Beaudreau
    11 hours ago




    $begingroup$
    This technique sounds really neat. I'll check it out.
    $endgroup$
    – Darin Beaudreau
    11 hours ago




    3




    3




    $begingroup$
    It's possible to use a hybrid algorithm that constructs a partial flow field without searching more of the map than repeated calls to A* would, and never searching the same position twice. The basic idea is to pick an arbitrary enemy and start an A* search from the player towards that enemy, marking cells as you encounter them just like in normal flow field generation. Once the search finds that enemy, pick another enemy (that you haven't found yet) as the target, re-sort the open set according to the new heuristic and continue searching. Stop when you've found all enemies.
    $endgroup$
    – Ilmari Karonen
    5 hours ago





    $begingroup$
    It's possible to use a hybrid algorithm that constructs a partial flow field without searching more of the map than repeated calls to A* would, and never searching the same position twice. The basic idea is to pick an arbitrary enemy and start an A* search from the player towards that enemy, marking cells as you encounter them just like in normal flow field generation. Once the search finds that enemy, pick another enemy (that you haven't found yet) as the target, re-sort the open set according to the new heuristic and continue searching. Stop when you've found all enemies.
    $endgroup$
    – Ilmari Karonen
    5 hours ago














    3












    $begingroup$

    A* is not performance heavy. I would approach this situation by varying the algorithms. Do A* from time to time and in between check whether the next step is free to step onto or you need evasion.



    For example, track the players distance from the A* target location, if it's above a threshold recalculate a* and then just do update movements. Most games use a combination of way points, e.g. a simplified grid for path finding and a logic that handles the movement between waypoints with evasion steering algorithms using raycasts. The agents try to run to a distant waypoint by maneuvering around obstacles in their proximity is the best approach in my opinion.



    It's best to work with finite state machines here and read the book "Programming Game AI By Example" by Mat Buckland. The book offers proven techniques for your problem and details the math required. Source code from the book is available on the web; the book is in C++ but some translations (including Java) are available.






    share|improve this answer











    $endgroup$














    • $begingroup$
      With an infrequently-updating A* approach, it may be helpful to stagger your updates, maintaining a budget for how many enemies are allowed to re-path on a single frame. That way you can keep your peak pathfinding cost per frame capped, and more robustly handle many AI pathing by amortizing their total cost over several frames. An AI using a stale path for a frame or two when the budget for the frame has been exceeded, or falling back on dead reckoning if close, usually won't be disruptive.
      $endgroup$
      – DMGregory
      11 hours ago
















    3












    $begingroup$

    A* is not performance heavy. I would approach this situation by varying the algorithms. Do A* from time to time and in between check whether the next step is free to step onto or you need evasion.



    For example, track the players distance from the A* target location, if it's above a threshold recalculate a* and then just do update movements. Most games use a combination of way points, e.g. a simplified grid for path finding and a logic that handles the movement between waypoints with evasion steering algorithms using raycasts. The agents try to run to a distant waypoint by maneuvering around obstacles in their proximity is the best approach in my opinion.



    It's best to work with finite state machines here and read the book "Programming Game AI By Example" by Mat Buckland. The book offers proven techniques for your problem and details the math required. Source code from the book is available on the web; the book is in C++ but some translations (including Java) are available.






    share|improve this answer











    $endgroup$














    • $begingroup$
      With an infrequently-updating A* approach, it may be helpful to stagger your updates, maintaining a budget for how many enemies are allowed to re-path on a single frame. That way you can keep your peak pathfinding cost per frame capped, and more robustly handle many AI pathing by amortizing their total cost over several frames. An AI using a stale path for a frame or two when the budget for the frame has been exceeded, or falling back on dead reckoning if close, usually won't be disruptive.
      $endgroup$
      – DMGregory
      11 hours ago














    3












    3








    3





    $begingroup$

    A* is not performance heavy. I would approach this situation by varying the algorithms. Do A* from time to time and in between check whether the next step is free to step onto or you need evasion.



    For example, track the players distance from the A* target location, if it's above a threshold recalculate a* and then just do update movements. Most games use a combination of way points, e.g. a simplified grid for path finding and a logic that handles the movement between waypoints with evasion steering algorithms using raycasts. The agents try to run to a distant waypoint by maneuvering around obstacles in their proximity is the best approach in my opinion.



    It's best to work with finite state machines here and read the book "Programming Game AI By Example" by Mat Buckland. The book offers proven techniques for your problem and details the math required. Source code from the book is available on the web; the book is in C++ but some translations (including Java) are available.






    share|improve this answer











    $endgroup$



    A* is not performance heavy. I would approach this situation by varying the algorithms. Do A* from time to time and in between check whether the next step is free to step onto or you need evasion.



    For example, track the players distance from the A* target location, if it's above a threshold recalculate a* and then just do update movements. Most games use a combination of way points, e.g. a simplified grid for path finding and a logic that handles the movement between waypoints with evasion steering algorithms using raycasts. The agents try to run to a distant waypoint by maneuvering around obstacles in their proximity is the best approach in my opinion.



    It's best to work with finite state machines here and read the book "Programming Game AI By Example" by Mat Buckland. The book offers proven techniques for your problem and details the math required. Source code from the book is available on the web; the book is in C++ but some translations (including Java) are available.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 12 hours ago









    Pikalek

    7,2732 gold badges26 silver badges39 bronze badges




    7,2732 gold badges26 silver badges39 bronze badges










    answered 13 hours ago









    D3d_devD3d_dev

    1236 bronze badges




    1236 bronze badges














    • $begingroup$
      With an infrequently-updating A* approach, it may be helpful to stagger your updates, maintaining a budget for how many enemies are allowed to re-path on a single frame. That way you can keep your peak pathfinding cost per frame capped, and more robustly handle many AI pathing by amortizing their total cost over several frames. An AI using a stale path for a frame or two when the budget for the frame has been exceeded, or falling back on dead reckoning if close, usually won't be disruptive.
      $endgroup$
      – DMGregory
      11 hours ago

















    • $begingroup$
      With an infrequently-updating A* approach, it may be helpful to stagger your updates, maintaining a budget for how many enemies are allowed to re-path on a single frame. That way you can keep your peak pathfinding cost per frame capped, and more robustly handle many AI pathing by amortizing their total cost over several frames. An AI using a stale path for a frame or two when the budget for the frame has been exceeded, or falling back on dead reckoning if close, usually won't be disruptive.
      $endgroup$
      – DMGregory
      11 hours ago
















    $begingroup$
    With an infrequently-updating A* approach, it may be helpful to stagger your updates, maintaining a budget for how many enemies are allowed to re-path on a single frame. That way you can keep your peak pathfinding cost per frame capped, and more robustly handle many AI pathing by amortizing their total cost over several frames. An AI using a stale path for a frame or two when the budget for the frame has been exceeded, or falling back on dead reckoning if close, usually won't be disruptive.
    $endgroup$
    – DMGregory
    11 hours ago





    $begingroup$
    With an infrequently-updating A* approach, it may be helpful to stagger your updates, maintaining a budget for how many enemies are allowed to re-path on a single frame. That way you can keep your peak pathfinding cost per frame capped, and more robustly handle many AI pathing by amortizing their total cost over several frames. An AI using a stale path for a frame or two when the budget for the frame has been exceeded, or falling back on dead reckoning if close, usually won't be disruptive.
    $endgroup$
    – DMGregory
    11 hours ago












    0












    $begingroup$

    Not only is it feasible, I believe it was done in a commercial game in the 90s - BattleZone (1998).



    That game had 3D units with free non-tile-based movement, and tile-based base construction.



    This is how it seemed to work:



    First, A* or something similar (likely a variation of A* with strict limits on how long a path it can find, so it never takes too many resources to run but doesn't always find a path all the way to the destination) would be used to find a path for a hovertank to get to its destination without getting stuck in tile-based obstacles.



    Then the tank would fly around untiled space as if it was attracted to the centre of a nearby tile in its path, and repulsed by obstacles, other nearby tanks, etc.






    share|improve this answer











    $endgroup$



















      0












      $begingroup$

      Not only is it feasible, I believe it was done in a commercial game in the 90s - BattleZone (1998).



      That game had 3D units with free non-tile-based movement, and tile-based base construction.



      This is how it seemed to work:



      First, A* or something similar (likely a variation of A* with strict limits on how long a path it can find, so it never takes too many resources to run but doesn't always find a path all the way to the destination) would be used to find a path for a hovertank to get to its destination without getting stuck in tile-based obstacles.



      Then the tank would fly around untiled space as if it was attracted to the centre of a nearby tile in its path, and repulsed by obstacles, other nearby tanks, etc.






      share|improve this answer











      $endgroup$

















        0












        0








        0





        $begingroup$

        Not only is it feasible, I believe it was done in a commercial game in the 90s - BattleZone (1998).



        That game had 3D units with free non-tile-based movement, and tile-based base construction.



        This is how it seemed to work:



        First, A* or something similar (likely a variation of A* with strict limits on how long a path it can find, so it never takes too many resources to run but doesn't always find a path all the way to the destination) would be used to find a path for a hovertank to get to its destination without getting stuck in tile-based obstacles.



        Then the tank would fly around untiled space as if it was attracted to the centre of a nearby tile in its path, and repulsed by obstacles, other nearby tanks, etc.






        share|improve this answer











        $endgroup$



        Not only is it feasible, I believe it was done in a commercial game in the 90s - BattleZone (1998).



        That game had 3D units with free non-tile-based movement, and tile-based base construction.



        This is how it seemed to work:



        First, A* or something similar (likely a variation of A* with strict limits on how long a path it can find, so it never takes too many resources to run but doesn't always find a path all the way to the destination) would be used to find a path for a hovertank to get to its destination without getting stuck in tile-based obstacles.



        Then the tank would fly around untiled space as if it was attracted to the centre of a nearby tile in its path, and repulsed by obstacles, other nearby tanks, etc.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 36 mins ago

























        answered 2 hours ago









        RobynRobyn

        1214 bronze badges




        1214 bronze badges






























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Game Development Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fgamedev.stackexchange.com%2fquestions%2f174801%2fefficiently-pathfinding-many-flocking-enemies-around-obstacles%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

            Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

            Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거