A question about the degree of an extension field Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)two Non isomorphic root field-extension of the field.determine degree of field extensionMinimal polynomial and field extensionDegree of the field extension.Field extension of degree 3 and polynomial rootsFinding the degree of the splitting fieldDegree of an extension fieldAn irreducible polynomial of degree n over field is irreducible over extension of degree m if m and n are coprimeA question about extension fieldA question about finite field extension of a finite field

What criticisms of Wittgenstein's philosophy of language have been offered?

Is it OK to use the testing sample to compare algorithms?

Did John Wesley plagiarize Matthew Henry...?

Twin's vs. Twins'

Weaponising the Grasp-at-a-Distance spell

What are some likely causes to domain member PC losing contact to domain controller?

How does the body cool itself in a stillsuit?

Can gravitational waves pass through a black hole?

Any stored/leased 737s that could substitute for grounded MAXs?

Table formatting with tabularx?

Should man-made satellites feature an intelligent inverted "cow catcher"?

Short story about astronauts fertilizing soil with their own bodies

Why not use the yoke to control yaw, as well as pitch and roll?

How to ask rejected full-time candidates to apply to teach individual courses?

How do I say "this must not happen"?

Can two people see the same photon?

An isoperimetric-type inequality inside a cube

Problem with display of presentation

Random body shuffle every night—can we still function?

First paper to introduce the "principal-agent problem"

How do Java 8 default methods hеlp with lambdas?

Baking rewards as operations

By what mechanism was the 2017 UK General Election called?

Where did Ptolemy compare the Earth to the distance of fixed stars?



A question about the degree of an extension field



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)two Non isomorphic root field-extension of the field.determine degree of field extensionMinimal polynomial and field extensionDegree of the field extension.Field extension of degree 3 and polynomial rootsFinding the degree of the splitting fieldDegree of an extension fieldAn irreducible polynomial of degree n over field is irreducible over extension of degree m if m and n are coprimeA question about extension fieldA question about finite field extension of a finite field










1












$begingroup$


Consider $f(x) := x^3+2x+2$ and the field $mathbbZ_3$. $f(x)$ is obviously irreducible over $mathbbZ_3$. Let $a$ be a root in an extension field of $mathbbZ_3$, then why is it that $[mathbbZ_3(a):mathbbZ_3] = 3$? What is the basis of $mathbbZ_3(a)$ over $mathbbZ_3$?



I know that $mathbbZ_3(a) simeq mathbbZ_3[x]/<f(x)>$ and since $f(x)$ is irreducible in $mathbbZ_3$, any polynomial in $mathbbZ_3[x]$ can have degree atmost 2. But I don't understand how that ties to $[mathbbZ_3(a):mathbbZ_3] = 3$? And how does that imply $mathbbZ_3(a)simeq GF(3^3)$? Thanks.










share|cite|improve this question









$endgroup$











  • $begingroup$
    See "Field and Galois Theory, Patrick Morandi, chapter 1, proposition 1.15".
    $endgroup$
    – Lucas Corrêa
    3 hours ago















1












$begingroup$


Consider $f(x) := x^3+2x+2$ and the field $mathbbZ_3$. $f(x)$ is obviously irreducible over $mathbbZ_3$. Let $a$ be a root in an extension field of $mathbbZ_3$, then why is it that $[mathbbZ_3(a):mathbbZ_3] = 3$? What is the basis of $mathbbZ_3(a)$ over $mathbbZ_3$?



I know that $mathbbZ_3(a) simeq mathbbZ_3[x]/<f(x)>$ and since $f(x)$ is irreducible in $mathbbZ_3$, any polynomial in $mathbbZ_3[x]$ can have degree atmost 2. But I don't understand how that ties to $[mathbbZ_3(a):mathbbZ_3] = 3$? And how does that imply $mathbbZ_3(a)simeq GF(3^3)$? Thanks.










share|cite|improve this question









$endgroup$











  • $begingroup$
    See "Field and Galois Theory, Patrick Morandi, chapter 1, proposition 1.15".
    $endgroup$
    – Lucas Corrêa
    3 hours ago













1












1








1





$begingroup$


Consider $f(x) := x^3+2x+2$ and the field $mathbbZ_3$. $f(x)$ is obviously irreducible over $mathbbZ_3$. Let $a$ be a root in an extension field of $mathbbZ_3$, then why is it that $[mathbbZ_3(a):mathbbZ_3] = 3$? What is the basis of $mathbbZ_3(a)$ over $mathbbZ_3$?



I know that $mathbbZ_3(a) simeq mathbbZ_3[x]/<f(x)>$ and since $f(x)$ is irreducible in $mathbbZ_3$, any polynomial in $mathbbZ_3[x]$ can have degree atmost 2. But I don't understand how that ties to $[mathbbZ_3(a):mathbbZ_3] = 3$? And how does that imply $mathbbZ_3(a)simeq GF(3^3)$? Thanks.










share|cite|improve this question









$endgroup$




Consider $f(x) := x^3+2x+2$ and the field $mathbbZ_3$. $f(x)$ is obviously irreducible over $mathbbZ_3$. Let $a$ be a root in an extension field of $mathbbZ_3$, then why is it that $[mathbbZ_3(a):mathbbZ_3] = 3$? What is the basis of $mathbbZ_3(a)$ over $mathbbZ_3$?



I know that $mathbbZ_3(a) simeq mathbbZ_3[x]/<f(x)>$ and since $f(x)$ is irreducible in $mathbbZ_3$, any polynomial in $mathbbZ_3[x]$ can have degree atmost 2. But I don't understand how that ties to $[mathbbZ_3(a):mathbbZ_3] = 3$? And how does that imply $mathbbZ_3(a)simeq GF(3^3)$? Thanks.







abstract-algebra galois-theory finite-fields






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









manifoldedmanifolded

53019




53019











  • $begingroup$
    See "Field and Galois Theory, Patrick Morandi, chapter 1, proposition 1.15".
    $endgroup$
    – Lucas Corrêa
    3 hours ago
















  • $begingroup$
    See "Field and Galois Theory, Patrick Morandi, chapter 1, proposition 1.15".
    $endgroup$
    – Lucas Corrêa
    3 hours ago















$begingroup$
See "Field and Galois Theory, Patrick Morandi, chapter 1, proposition 1.15".
$endgroup$
– Lucas Corrêa
3 hours ago




$begingroup$
See "Field and Galois Theory, Patrick Morandi, chapter 1, proposition 1.15".
$endgroup$
– Lucas Corrêa
3 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

In general, the degree of $F(alpha)$ over $F$ is the degree of the minimal polynomial of $alpha$. In this case, the minimal polynomial is $f(x)=x^3+2x+2$ which has degree $3$. The basis is $1,alpha,alpha^2$.



Think of it this way: $F(alpha)$ should consist of elements of the form $p(alpha)/q(alpha)$, where $p,q$ are polynomials. But using the relation $alpha^3=-2alpha-2$, you can see that every polynomial in $alpha$ can be written as a linear combinations of $1,alpha,alpha^2$. And even $alpha^-1$ can be written as such. That means every element of $F(alpha)$ is a linear combination of $1,alpha,alpha^2$.



Let $K=mathbbF_3(alpha)$. To see why $Ksimeq mathbbF_9$, it's just a cardinality argument: since $K$ is a $3$-dimensional $mathbbF_3$-vector space, we know from linear algebra that $Ksimeq mathbbF_3^3$ as vector spaces. The right hand side has 27 elements. So $K$ is the field of 27 elements.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I see, thanks. Why is $f(x)$ the minimal polynomial for $alpha$? Why can't we have a polynomial of degree, say 2, whose zero is $alpha$?
    $endgroup$
    – manifolded
    3 hours ago










  • $begingroup$
    Thanks @egreg, my arithmetic is suspect.
    $endgroup$
    – Ehsaan
    2 hours ago











  • $begingroup$
    @manifolded: The minimal polynomial of $alpha$ has the property that it generates the ideal of all polynomials which vanish at $alpha$. It is the unique (monic) irreducible polynomial with $alpha$ as a root.
    $endgroup$
    – Ehsaan
    2 hours ago


















1












$begingroup$

Look at the situation from a more abstract point of view. Let $F$ be a field and $f(x)in F[x]$ an irreducible monic polynomial.



If $a$ is a root of $f(x)$ in some extension field $K$ of $F$, then, if $F(a)$ denotes the smallest subfield of $K$ containing $F$ and $a$, we have
$$
F(a)cong F[x]/langle f(x)rangle
$$

and moreover $F[a]$, the smallest subring of $K$ containing $F$ and $a$ is the same as $F(a)$. Therefore we can see $F(a)=F[a]=g(a):g(x)in F[x]$.



On the other hand, as $f(a)=0$, given $g(x)in F[x]$, we can perform the division and write $g(x)=f(x)q(x)+r(x)$, where $r$ has degree less than the degree of $f$. Thus we also have
$$
F(a)=F[a]=g(a):g(x)in F[x],deg g<deg f tag*
$$

which is probably what you refer to by saying “any polynomial in $mathbbZ_3[x]$ can have degree at most $2$” (which isn't a good way to express the fact).



Now, suppose $g(x)$ is a monic polynomial satisfying $g(a)=0$. Take $g$ of minimal degree. Since we can perform the division $f(x)=g(x)q(x)+r(x)$, the assumptions give us that $r(a)=0$; by minimality of $deg g$, we infer that $r(x)=0$. Therefore $g$ divides $f$. Since $f$ is irreducible, we deduce that $g(x)=f(x)$ (they can differ up to a nonzero multiplicative constant, but being both monic, the constant is $1$).



Hence $f(x)$ is the minimal polynomial of $a$.



Now we can see that the set $1,a,a^2,dots,a^n-1$ (where $n=deg f$) is a basis of $F[a]$ as a vector space over $F$. The fact it is a spanning set follows from (*); it is linearly independent because $f$ is the minimal polynomial and a linear combination of those elements is the value of a polynomial of lesser degree than $f$, so it cannot vanish unless all the coefficients are zero.



Finally apply this to your particular case: $mathbbZ_3[a]$ is a three-dimensional vector space over $mathbbZ_3$, so it has $3^3=27$ elements.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196381%2fa-question-about-the-degree-of-an-extension-field%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    In general, the degree of $F(alpha)$ over $F$ is the degree of the minimal polynomial of $alpha$. In this case, the minimal polynomial is $f(x)=x^3+2x+2$ which has degree $3$. The basis is $1,alpha,alpha^2$.



    Think of it this way: $F(alpha)$ should consist of elements of the form $p(alpha)/q(alpha)$, where $p,q$ are polynomials. But using the relation $alpha^3=-2alpha-2$, you can see that every polynomial in $alpha$ can be written as a linear combinations of $1,alpha,alpha^2$. And even $alpha^-1$ can be written as such. That means every element of $F(alpha)$ is a linear combination of $1,alpha,alpha^2$.



    Let $K=mathbbF_3(alpha)$. To see why $Ksimeq mathbbF_9$, it's just a cardinality argument: since $K$ is a $3$-dimensional $mathbbF_3$-vector space, we know from linear algebra that $Ksimeq mathbbF_3^3$ as vector spaces. The right hand side has 27 elements. So $K$ is the field of 27 elements.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      I see, thanks. Why is $f(x)$ the minimal polynomial for $alpha$? Why can't we have a polynomial of degree, say 2, whose zero is $alpha$?
      $endgroup$
      – manifolded
      3 hours ago










    • $begingroup$
      Thanks @egreg, my arithmetic is suspect.
      $endgroup$
      – Ehsaan
      2 hours ago











    • $begingroup$
      @manifolded: The minimal polynomial of $alpha$ has the property that it generates the ideal of all polynomials which vanish at $alpha$. It is the unique (monic) irreducible polynomial with $alpha$ as a root.
      $endgroup$
      – Ehsaan
      2 hours ago















    2












    $begingroup$

    In general, the degree of $F(alpha)$ over $F$ is the degree of the minimal polynomial of $alpha$. In this case, the minimal polynomial is $f(x)=x^3+2x+2$ which has degree $3$. The basis is $1,alpha,alpha^2$.



    Think of it this way: $F(alpha)$ should consist of elements of the form $p(alpha)/q(alpha)$, where $p,q$ are polynomials. But using the relation $alpha^3=-2alpha-2$, you can see that every polynomial in $alpha$ can be written as a linear combinations of $1,alpha,alpha^2$. And even $alpha^-1$ can be written as such. That means every element of $F(alpha)$ is a linear combination of $1,alpha,alpha^2$.



    Let $K=mathbbF_3(alpha)$. To see why $Ksimeq mathbbF_9$, it's just a cardinality argument: since $K$ is a $3$-dimensional $mathbbF_3$-vector space, we know from linear algebra that $Ksimeq mathbbF_3^3$ as vector spaces. The right hand side has 27 elements. So $K$ is the field of 27 elements.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      I see, thanks. Why is $f(x)$ the minimal polynomial for $alpha$? Why can't we have a polynomial of degree, say 2, whose zero is $alpha$?
      $endgroup$
      – manifolded
      3 hours ago










    • $begingroup$
      Thanks @egreg, my arithmetic is suspect.
      $endgroup$
      – Ehsaan
      2 hours ago











    • $begingroup$
      @manifolded: The minimal polynomial of $alpha$ has the property that it generates the ideal of all polynomials which vanish at $alpha$. It is the unique (monic) irreducible polynomial with $alpha$ as a root.
      $endgroup$
      – Ehsaan
      2 hours ago













    2












    2








    2





    $begingroup$

    In general, the degree of $F(alpha)$ over $F$ is the degree of the minimal polynomial of $alpha$. In this case, the minimal polynomial is $f(x)=x^3+2x+2$ which has degree $3$. The basis is $1,alpha,alpha^2$.



    Think of it this way: $F(alpha)$ should consist of elements of the form $p(alpha)/q(alpha)$, where $p,q$ are polynomials. But using the relation $alpha^3=-2alpha-2$, you can see that every polynomial in $alpha$ can be written as a linear combinations of $1,alpha,alpha^2$. And even $alpha^-1$ can be written as such. That means every element of $F(alpha)$ is a linear combination of $1,alpha,alpha^2$.



    Let $K=mathbbF_3(alpha)$. To see why $Ksimeq mathbbF_9$, it's just a cardinality argument: since $K$ is a $3$-dimensional $mathbbF_3$-vector space, we know from linear algebra that $Ksimeq mathbbF_3^3$ as vector spaces. The right hand side has 27 elements. So $K$ is the field of 27 elements.






    share|cite|improve this answer











    $endgroup$



    In general, the degree of $F(alpha)$ over $F$ is the degree of the minimal polynomial of $alpha$. In this case, the minimal polynomial is $f(x)=x^3+2x+2$ which has degree $3$. The basis is $1,alpha,alpha^2$.



    Think of it this way: $F(alpha)$ should consist of elements of the form $p(alpha)/q(alpha)$, where $p,q$ are polynomials. But using the relation $alpha^3=-2alpha-2$, you can see that every polynomial in $alpha$ can be written as a linear combinations of $1,alpha,alpha^2$. And even $alpha^-1$ can be written as such. That means every element of $F(alpha)$ is a linear combination of $1,alpha,alpha^2$.



    Let $K=mathbbF_3(alpha)$. To see why $Ksimeq mathbbF_9$, it's just a cardinality argument: since $K$ is a $3$-dimensional $mathbbF_3$-vector space, we know from linear algebra that $Ksimeq mathbbF_3^3$ as vector spaces. The right hand side has 27 elements. So $K$ is the field of 27 elements.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 2 hours ago

























    answered 3 hours ago









    EhsaanEhsaan

    1,040514




    1,040514











    • $begingroup$
      I see, thanks. Why is $f(x)$ the minimal polynomial for $alpha$? Why can't we have a polynomial of degree, say 2, whose zero is $alpha$?
      $endgroup$
      – manifolded
      3 hours ago










    • $begingroup$
      Thanks @egreg, my arithmetic is suspect.
      $endgroup$
      – Ehsaan
      2 hours ago











    • $begingroup$
      @manifolded: The minimal polynomial of $alpha$ has the property that it generates the ideal of all polynomials which vanish at $alpha$. It is the unique (monic) irreducible polynomial with $alpha$ as a root.
      $endgroup$
      – Ehsaan
      2 hours ago
















    • $begingroup$
      I see, thanks. Why is $f(x)$ the minimal polynomial for $alpha$? Why can't we have a polynomial of degree, say 2, whose zero is $alpha$?
      $endgroup$
      – manifolded
      3 hours ago










    • $begingroup$
      Thanks @egreg, my arithmetic is suspect.
      $endgroup$
      – Ehsaan
      2 hours ago











    • $begingroup$
      @manifolded: The minimal polynomial of $alpha$ has the property that it generates the ideal of all polynomials which vanish at $alpha$. It is the unique (monic) irreducible polynomial with $alpha$ as a root.
      $endgroup$
      – Ehsaan
      2 hours ago















    $begingroup$
    I see, thanks. Why is $f(x)$ the minimal polynomial for $alpha$? Why can't we have a polynomial of degree, say 2, whose zero is $alpha$?
    $endgroup$
    – manifolded
    3 hours ago




    $begingroup$
    I see, thanks. Why is $f(x)$ the minimal polynomial for $alpha$? Why can't we have a polynomial of degree, say 2, whose zero is $alpha$?
    $endgroup$
    – manifolded
    3 hours ago












    $begingroup$
    Thanks @egreg, my arithmetic is suspect.
    $endgroup$
    – Ehsaan
    2 hours ago





    $begingroup$
    Thanks @egreg, my arithmetic is suspect.
    $endgroup$
    – Ehsaan
    2 hours ago













    $begingroup$
    @manifolded: The minimal polynomial of $alpha$ has the property that it generates the ideal of all polynomials which vanish at $alpha$. It is the unique (monic) irreducible polynomial with $alpha$ as a root.
    $endgroup$
    – Ehsaan
    2 hours ago




    $begingroup$
    @manifolded: The minimal polynomial of $alpha$ has the property that it generates the ideal of all polynomials which vanish at $alpha$. It is the unique (monic) irreducible polynomial with $alpha$ as a root.
    $endgroup$
    – Ehsaan
    2 hours ago











    1












    $begingroup$

    Look at the situation from a more abstract point of view. Let $F$ be a field and $f(x)in F[x]$ an irreducible monic polynomial.



    If $a$ is a root of $f(x)$ in some extension field $K$ of $F$, then, if $F(a)$ denotes the smallest subfield of $K$ containing $F$ and $a$, we have
    $$
    F(a)cong F[x]/langle f(x)rangle
    $$

    and moreover $F[a]$, the smallest subring of $K$ containing $F$ and $a$ is the same as $F(a)$. Therefore we can see $F(a)=F[a]=g(a):g(x)in F[x]$.



    On the other hand, as $f(a)=0$, given $g(x)in F[x]$, we can perform the division and write $g(x)=f(x)q(x)+r(x)$, where $r$ has degree less than the degree of $f$. Thus we also have
    $$
    F(a)=F[a]=g(a):g(x)in F[x],deg g<deg f tag*
    $$

    which is probably what you refer to by saying “any polynomial in $mathbbZ_3[x]$ can have degree at most $2$” (which isn't a good way to express the fact).



    Now, suppose $g(x)$ is a monic polynomial satisfying $g(a)=0$. Take $g$ of minimal degree. Since we can perform the division $f(x)=g(x)q(x)+r(x)$, the assumptions give us that $r(a)=0$; by minimality of $deg g$, we infer that $r(x)=0$. Therefore $g$ divides $f$. Since $f$ is irreducible, we deduce that $g(x)=f(x)$ (they can differ up to a nonzero multiplicative constant, but being both monic, the constant is $1$).



    Hence $f(x)$ is the minimal polynomial of $a$.



    Now we can see that the set $1,a,a^2,dots,a^n-1$ (where $n=deg f$) is a basis of $F[a]$ as a vector space over $F$. The fact it is a spanning set follows from (*); it is linearly independent because $f$ is the minimal polynomial and a linear combination of those elements is the value of a polynomial of lesser degree than $f$, so it cannot vanish unless all the coefficients are zero.



    Finally apply this to your particular case: $mathbbZ_3[a]$ is a three-dimensional vector space over $mathbbZ_3$, so it has $3^3=27$ elements.






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      Look at the situation from a more abstract point of view. Let $F$ be a field and $f(x)in F[x]$ an irreducible monic polynomial.



      If $a$ is a root of $f(x)$ in some extension field $K$ of $F$, then, if $F(a)$ denotes the smallest subfield of $K$ containing $F$ and $a$, we have
      $$
      F(a)cong F[x]/langle f(x)rangle
      $$

      and moreover $F[a]$, the smallest subring of $K$ containing $F$ and $a$ is the same as $F(a)$. Therefore we can see $F(a)=F[a]=g(a):g(x)in F[x]$.



      On the other hand, as $f(a)=0$, given $g(x)in F[x]$, we can perform the division and write $g(x)=f(x)q(x)+r(x)$, where $r$ has degree less than the degree of $f$. Thus we also have
      $$
      F(a)=F[a]=g(a):g(x)in F[x],deg g<deg f tag*
      $$

      which is probably what you refer to by saying “any polynomial in $mathbbZ_3[x]$ can have degree at most $2$” (which isn't a good way to express the fact).



      Now, suppose $g(x)$ is a monic polynomial satisfying $g(a)=0$. Take $g$ of minimal degree. Since we can perform the division $f(x)=g(x)q(x)+r(x)$, the assumptions give us that $r(a)=0$; by minimality of $deg g$, we infer that $r(x)=0$. Therefore $g$ divides $f$. Since $f$ is irreducible, we deduce that $g(x)=f(x)$ (they can differ up to a nonzero multiplicative constant, but being both monic, the constant is $1$).



      Hence $f(x)$ is the minimal polynomial of $a$.



      Now we can see that the set $1,a,a^2,dots,a^n-1$ (where $n=deg f$) is a basis of $F[a]$ as a vector space over $F$. The fact it is a spanning set follows from (*); it is linearly independent because $f$ is the minimal polynomial and a linear combination of those elements is the value of a polynomial of lesser degree than $f$, so it cannot vanish unless all the coefficients are zero.



      Finally apply this to your particular case: $mathbbZ_3[a]$ is a three-dimensional vector space over $mathbbZ_3$, so it has $3^3=27$ elements.






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        Look at the situation from a more abstract point of view. Let $F$ be a field and $f(x)in F[x]$ an irreducible monic polynomial.



        If $a$ is a root of $f(x)$ in some extension field $K$ of $F$, then, if $F(a)$ denotes the smallest subfield of $K$ containing $F$ and $a$, we have
        $$
        F(a)cong F[x]/langle f(x)rangle
        $$

        and moreover $F[a]$, the smallest subring of $K$ containing $F$ and $a$ is the same as $F(a)$. Therefore we can see $F(a)=F[a]=g(a):g(x)in F[x]$.



        On the other hand, as $f(a)=0$, given $g(x)in F[x]$, we can perform the division and write $g(x)=f(x)q(x)+r(x)$, where $r$ has degree less than the degree of $f$. Thus we also have
        $$
        F(a)=F[a]=g(a):g(x)in F[x],deg g<deg f tag*
        $$

        which is probably what you refer to by saying “any polynomial in $mathbbZ_3[x]$ can have degree at most $2$” (which isn't a good way to express the fact).



        Now, suppose $g(x)$ is a monic polynomial satisfying $g(a)=0$. Take $g$ of minimal degree. Since we can perform the division $f(x)=g(x)q(x)+r(x)$, the assumptions give us that $r(a)=0$; by minimality of $deg g$, we infer that $r(x)=0$. Therefore $g$ divides $f$. Since $f$ is irreducible, we deduce that $g(x)=f(x)$ (they can differ up to a nonzero multiplicative constant, but being both monic, the constant is $1$).



        Hence $f(x)$ is the minimal polynomial of $a$.



        Now we can see that the set $1,a,a^2,dots,a^n-1$ (where $n=deg f$) is a basis of $F[a]$ as a vector space over $F$. The fact it is a spanning set follows from (*); it is linearly independent because $f$ is the minimal polynomial and a linear combination of those elements is the value of a polynomial of lesser degree than $f$, so it cannot vanish unless all the coefficients are zero.



        Finally apply this to your particular case: $mathbbZ_3[a]$ is a three-dimensional vector space over $mathbbZ_3$, so it has $3^3=27$ elements.






        share|cite|improve this answer









        $endgroup$



        Look at the situation from a more abstract point of view. Let $F$ be a field and $f(x)in F[x]$ an irreducible monic polynomial.



        If $a$ is a root of $f(x)$ in some extension field $K$ of $F$, then, if $F(a)$ denotes the smallest subfield of $K$ containing $F$ and $a$, we have
        $$
        F(a)cong F[x]/langle f(x)rangle
        $$

        and moreover $F[a]$, the smallest subring of $K$ containing $F$ and $a$ is the same as $F(a)$. Therefore we can see $F(a)=F[a]=g(a):g(x)in F[x]$.



        On the other hand, as $f(a)=0$, given $g(x)in F[x]$, we can perform the division and write $g(x)=f(x)q(x)+r(x)$, where $r$ has degree less than the degree of $f$. Thus we also have
        $$
        F(a)=F[a]=g(a):g(x)in F[x],deg g<deg f tag*
        $$

        which is probably what you refer to by saying “any polynomial in $mathbbZ_3[x]$ can have degree at most $2$” (which isn't a good way to express the fact).



        Now, suppose $g(x)$ is a monic polynomial satisfying $g(a)=0$. Take $g$ of minimal degree. Since we can perform the division $f(x)=g(x)q(x)+r(x)$, the assumptions give us that $r(a)=0$; by minimality of $deg g$, we infer that $r(x)=0$. Therefore $g$ divides $f$. Since $f$ is irreducible, we deduce that $g(x)=f(x)$ (they can differ up to a nonzero multiplicative constant, but being both monic, the constant is $1$).



        Hence $f(x)$ is the minimal polynomial of $a$.



        Now we can see that the set $1,a,a^2,dots,a^n-1$ (where $n=deg f$) is a basis of $F[a]$ as a vector space over $F$. The fact it is a spanning set follows from (*); it is linearly independent because $f$ is the minimal polynomial and a linear combination of those elements is the value of a polynomial of lesser degree than $f$, so it cannot vanish unless all the coefficients are zero.



        Finally apply this to your particular case: $mathbbZ_3[a]$ is a three-dimensional vector space over $mathbbZ_3$, so it has $3^3=27$ elements.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        egregegreg

        186k1486209




        186k1486209



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196381%2fa-question-about-the-degree-of-an-extension-field%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

            Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

            Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거