Getting representations of the Lie group out of representations of its Lie algebra Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric algebra approach to Lorentz group representationsIsomorphisms of the Lorentz group and algebraIrreducible representations of the Lorentz Lie algebraRepresentation of Lie groups as exponentiations of algebra representations.Reference for rigorous treatment of the representation theory of the Lorentz groupClassification of representations of the lie algebra $mathfraku(2)$.Relation between representations of Lie Group and Lie AlgebraCorrespondence between representations of a Lie group and Lie algebra.Representations of $sl(2,C)$ as a real Lie algebraDifference between infinitesimal parameters of Lie algebra and group generators of Lie group

Pointing to problems without suggesting solutions

Is this Kuo-toa homebrew race balanced?

Where and when has Thucydides been studied?

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

newbie Q : How to read an output file in one command line

How do I say "this must not happen"?

How can I list files in reverse time order by a command and pass them as arguments to another command?

Is the Mordenkainen's Sword spell underpowered?

Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

Is the time—manner—place ordering of adverbials an oversimplification?

Can gravitational waves pass through a black hole?

Table formatting with tabularx?

Russian equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

How does TikZ render an arc?

How to name indistinguishable henchmen in a screenplay?

Should man-made satellites feature an intelligent inverted "cow catcher"?

Short story about astronauts fertilizing soil with their own bodies

Noise in Eigenvalues plot

Is there a spell that can create a permanent fire?

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Meaning of 境 in その日を境に

How to ask rejected full-time candidates to apply to teach individual courses?

Weaponising the Grasp-at-a-Distance spell



Getting representations of the Lie group out of representations of its Lie algebra



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric algebra approach to Lorentz group representationsIsomorphisms of the Lorentz group and algebraIrreducible representations of the Lorentz Lie algebraRepresentation of Lie groups as exponentiations of algebra representations.Reference for rigorous treatment of the representation theory of the Lorentz groupClassification of representations of the lie algebra $mathfraku(2)$.Relation between representations of Lie Group and Lie AlgebraCorrespondence between representations of a Lie group and Lie algebra.Representations of $sl(2,C)$ as a real Lie algebraDifference between infinitesimal parameters of Lie algebra and group generators of Lie group










3












$begingroup$


This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



For instance, in Peskin's QFT book:




It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




The same thing is done in countless other books.



Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



$$mathscrD(exp theta X)=exp theta D(X).$$



Now, this seems to be very subtle.



In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



    In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



    But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



    For instance, in Peskin's QFT book:




    It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




    The same thing is done in countless other books.



    Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



    In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



    $$mathscrD(exp theta X)=exp theta D(X).$$



    Now, this seems to be very subtle.



    In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



    Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



    My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



    Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?










    share|cite|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



      In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



      But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



      For instance, in Peskin's QFT book:




      It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




      The same thing is done in countless other books.



      Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



      In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



      $$mathscrD(exp theta X)=exp theta D(X).$$



      Now, this seems to be very subtle.



      In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



      Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



      My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



      Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?










      share|cite|improve this question









      $endgroup$




      This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



      In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



      But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



      For instance, in Peskin's QFT book:




      It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




      The same thing is done in countless other books.



      Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



      In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



      $$mathscrD(exp theta X)=exp theta D(X).$$



      Now, this seems to be very subtle.



      In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



      Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



      My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



      Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?







      representation-theory lie-groups lie-algebras mathematical-physics quantum-field-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      user1620696user1620696

      11.8k742119




      11.8k742119




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196500%2fgetting-representations-of-the-lie-group-out-of-representations-of-its-lie-algeb%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago















          5












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago













          5












          5








          5





          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$



          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Qiaochu YuanQiaochu Yuan

          282k32599946




          282k32599946











          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago
















          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            1 hour ago















          $begingroup$
          There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
          $endgroup$
          – paul garrett
          1 hour ago




          $begingroup$
          There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
          $endgroup$
          – paul garrett
          1 hour ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196500%2fgetting-representations-of-the-lie-group-out-of-representations-of-its-lie-algeb%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

          Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

          Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거