Calculation of line of sight system gain Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Assumptions for Hurst exponent calculationGain function calculation (frequency response)Magnitude-squared Coherence calculation inconsistenceCalculation of the correlation of two sinusoidalsSystem invertabilityDominant eigenvectors of an unknown matrixhow do you compute the channel gain from path loss index in wireless communication?Causal system, order of numerator and denominatorCalculation of actual analog input from bipolar ADC's outputcoding gain and shaping gain in SCMA

What are some likely causes to domain member PC losing contact to domain controller?

calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle

By what mechanism was the 2017 UK General Election called?

How do I say "this must not happen"?

Problem with display of presentation

NIntegrate on a solution of a matrix ODE

How does TikZ render an arc?

malloc in main() or malloc in another function: allocating memory for a struct and its members

Where and when has Thucydides been studied?

Why not use the yoke to control yaw, as well as pitch and roll?

Short story about astronauts fertilizing soil with their own bodies

Did any compiler fully use 80-bit floating point?

Does the universe have a fixed centre of mass?

Besides transaction validation, are there any other uses of the Script language in Bitcoin

Inverse square law not accurate for non-point masses?

Improvising over quartal voicings

How to make an animal which can only breed for a certain number of generations?

First paper to introduce the "principal-agent problem"

Table formatting with tabularx?

Random body shuffle every night—can we still function?

Calculation of line of sight system gain

Russian equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

How to ask rejected full-time candidates to apply to teach individual courses?

How do you cope with tons of web fonts when copying and pasting from web pages?



Calculation of line of sight system gain



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Assumptions for Hurst exponent calculationGain function calculation (frequency response)Magnitude-squared Coherence calculation inconsistenceCalculation of the correlation of two sinusoidalsSystem invertabilityDominant eigenvectors of an unknown matrixhow do you compute the channel gain from path loss index in wireless communication?Causal system, order of numerator and denominatorCalculation of actual analog input from bipolar ADC's outputcoding gain and shaping gain in SCMA










1












$begingroup$


I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



  • A carrier frequency of 0.5GHz

  • A distance between the transmitter and receiver antennas of 2Km

  • A parabolic antenna in the transmitter with a face area of 0.8m2

  • An infinitesimal dipole in the receiver


From what I can understand/determine the equation for calculating gain is:



G = 4π*effective area/carrier wavelength/carrier wavelength OR



G = 4π*carrier frequency2*effective area/speed of light2




My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?










share|improve this question







New contributor




Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    1












    $begingroup$


    I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



    • A carrier frequency of 0.5GHz

    • A distance between the transmitter and receiver antennas of 2Km

    • A parabolic antenna in the transmitter with a face area of 0.8m2

    • An infinitesimal dipole in the receiver


    From what I can understand/determine the equation for calculating gain is:



    G = 4π*effective area/carrier wavelength/carrier wavelength OR



    G = 4π*carrier frequency2*effective area/speed of light2




    My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?










    share|improve this question







    New contributor




    Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      1












      1








      1





      $begingroup$


      I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



      • A carrier frequency of 0.5GHz

      • A distance between the transmitter and receiver antennas of 2Km

      • A parabolic antenna in the transmitter with a face area of 0.8m2

      • An infinitesimal dipole in the receiver


      From what I can understand/determine the equation for calculating gain is:



      G = 4π*effective area/carrier wavelength/carrier wavelength OR



      G = 4π*carrier frequency2*effective area/speed of light2




      My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?










      share|improve this question







      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I'm trying to calculate the overall gain of the transmitter-receiver system for a line-of-sight wireless transmission with the following properties:



      • A carrier frequency of 0.5GHz

      • A distance between the transmitter and receiver antennas of 2Km

      • A parabolic antenna in the transmitter with a face area of 0.8m2

      • An infinitesimal dipole in the receiver


      From what I can understand/determine the equation for calculating gain is:



      G = 4π*effective area/carrier wavelength/carrier wavelength OR



      G = 4π*carrier frequency2*effective area/speed of light2




      My question is how to calculate the overall gain of the system. Is it as simple as calculating the gain of the transmitter and receiver separately and then adding them together?







      signal-analysis






      share|improve this question







      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 4 hours ago









      Lily HaynesLily Haynes

      61




      61




      New contributor




      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Lily Haynes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            2 hours ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            1 hour ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            1 hour ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "295"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56847%2fcalculation-of-line-of-sight-system-gain%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            2 hours ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            1 hour ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            1 hour ago















          1












          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            2 hours ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            1 hour ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            1 hour ago













          1












          1








          1





          $begingroup$

          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$






          share|improve this answer









          $endgroup$



          You need to multiply the antenna gains, not add them. Specifically, if the free-space loss (attenuation) is $L_FS$, the transmitter antenna has gain $G_T$, and the receiver antenna has gain $G_R$, then the total system loss $L$ is $$ L = fracL_FSG_T G_R. $$ The system gain $G$ is $$G = frac1L = G_FSG _T G_R, $$ where $G_FS$ is the free-space gain.



          Of course, if you're doing the calculation in decibels, then the antenna gains are added: $$ G_dB = G_FS,dB + G_T,dB + G_R,dB. $$







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 3 hours ago









          MBazMBaz

          9,08041733




          9,08041733











          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            2 hours ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            1 hour ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            1 hour ago
















          • $begingroup$
            Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
            $endgroup$
            – Lily Haynes
            2 hours ago










          • $begingroup$
            I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
            $endgroup$
            – MBaz
            1 hour ago










          • $begingroup$
            Perfect, I understand now, thank you for your help!
            $endgroup$
            – Lily Haynes
            1 hour ago










          • $begingroup$
            You're welcome; glad to be of help!
            $endgroup$
            – MBaz
            1 hour ago















          $begingroup$
          Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
          $endgroup$
          – Lily Haynes
          2 hours ago




          $begingroup$
          Thank you that's really helpful but I'm a bit confused as to how to calculate the free-space gain that you talked about. I understand how to calculate the free-space loss, but I can't seem to find any information about free-space gain?
          $endgroup$
          – Lily Haynes
          2 hours ago












          $begingroup$
          I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
          $endgroup$
          – MBaz
          1 hour ago




          $begingroup$
          I focused on the gain since that is what you mention in your question. The gain is just the reciprocal of the loss: $G = 1/L$. If all you need is the loss, you can use the first formula in my answer; in decibels, it'd be $L_dB = L_FS,dB - G_T,dB - G_R,dB$.
          $endgroup$
          – MBaz
          1 hour ago












          $begingroup$
          Perfect, I understand now, thank you for your help!
          $endgroup$
          – Lily Haynes
          1 hour ago




          $begingroup$
          Perfect, I understand now, thank you for your help!
          $endgroup$
          – Lily Haynes
          1 hour ago












          $begingroup$
          You're welcome; glad to be of help!
          $endgroup$
          – MBaz
          1 hour ago




          $begingroup$
          You're welcome; glad to be of help!
          $endgroup$
          – MBaz
          1 hour ago










          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.












          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.











          Lily Haynes is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Signal Processing Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56847%2fcalculation-of-line-of-sight-system-gain%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

          Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

          19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу