Why constant symbols in a language? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why does $phi,(phiRightarrowpsi)$ not semantically entail $psi$ if $phi$ has a free variable and $psi$ doesn't?satisfiability in a structure implies satisfiability in a substructure?Eventually constant variable assignmentsTerm models in group theoryLanguage structure of $mathbbR$ and $L_mathbbR$Structure/Model for first order languageExtending a language by adding a constant symbolDo we really need constant symbols in first-order theories?Logic: one vs many structures for a given languageIntuition behind a structure of a language in mathematical logic [long read but simple]

How to deal with a team lead who never gives me credit?

What would be the ideal power source for a cybernetic eye?

Is there a Spanish version of "dot your i's and cross your t's" that includes the letter 'ñ'?

What is the longest distance a 13th-level monk can jump while attacking on the same turn?

What are the pros and cons of Aerospike nosecones?

When is phishing education going too far?

Why one of virtual NICs called bond0?

How to find all the available tools in macOS terminal?

When -s is used with third person singular. What's its use in this context?

ListPlot join points by nearest neighbor rather than order

I am not a queen, who am I?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Models of set theory where not every set can be linearly ordered

What's the purpose of writing one's academic bio in 3rd person?

Gastric acid as a weapon

How can I fade player when goes inside or outside of the area?

Why was the term "discrete" used in discrete logarithm?

Antler Helmet: Can it work?

Single word antonym of "flightless"

How to motivate offshore teams and trust them to deliver?

How do I stop a creek from eroding my steep embankment?

Why aren't air breathing engines used as small first stages

Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?



Why constant symbols in a language?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why does $phi,(phiRightarrowpsi)$ not semantically entail $psi$ if $phi$ has a free variable and $psi$ doesn't?satisfiability in a structure implies satisfiability in a substructure?Eventually constant variable assignmentsTerm models in group theoryLanguage structure of $mathbbR$ and $L_mathbbR$Structure/Model for first order languageExtending a language by adding a constant symbolDo we really need constant symbols in first-order theories?Logic: one vs many structures for a given languageIntuition behind a structure of a language in mathematical logic [long read but simple]










1












$begingroup$


What is the point of constant symbols in a language?



For example we take the language of rings $(0,1,+,-,cdot)$.
What is so special about $0,1$ now? What is the difference between 0 and 1 besides some other element of the ring?



I am aware, that you want to have some elements, that you call 0 and 1 which have the desired properties, like $x+0=0+x=x$ or $1cdot x = xcdot 1=x$.



Is there something else, which makes constants 'special'?



Other example: Suppose we have the language $L=c$ where $c$ is a constant symbol.
Now we observe the L-structure $mathfrakS_n$ over the set $mathbbZ$, where $c$ gets interpreted by $n$.



Is there any difference, between $c$ and $n$?
Or are they just the same and you can view it as some sort of substitution?



For $mathfrakS_0$ we would understand $c$ as $0$.
Since there are no relation- or functionsymbols, we just have the set $mathbbZ$ and could note them as



$dotso, -1, c, 1, dotso$



If we take the usual function $+$ and add it $L=c,+$ now $mathfrakS_0$ has the property, that $c+c=c$ for example.



I hope you understand what I am asking for.



I think it boils down to:




Is there a difference between the structure $mathfrakS_n$ as L-structure and $mathfrakS_n$ as $L_emptyset$-structure, where $L_emptyset=emptyset$ (so does not contain a constant symbol).




But I want to get as much insight here as possible. So if you do not understand what I am asking for, it might be best, if you just take a guess. :)



Thanks in advance.










share|cite|improve this question









$endgroup$











  • $begingroup$
    In the empty language, given any structure with more than one element, then there are no definable members in your structure. But once you add a constant, you add a definable element.
    $endgroup$
    – Asaf Karagila
    4 hours ago















1












$begingroup$


What is the point of constant symbols in a language?



For example we take the language of rings $(0,1,+,-,cdot)$.
What is so special about $0,1$ now? What is the difference between 0 and 1 besides some other element of the ring?



I am aware, that you want to have some elements, that you call 0 and 1 which have the desired properties, like $x+0=0+x=x$ or $1cdot x = xcdot 1=x$.



Is there something else, which makes constants 'special'?



Other example: Suppose we have the language $L=c$ where $c$ is a constant symbol.
Now we observe the L-structure $mathfrakS_n$ over the set $mathbbZ$, where $c$ gets interpreted by $n$.



Is there any difference, between $c$ and $n$?
Or are they just the same and you can view it as some sort of substitution?



For $mathfrakS_0$ we would understand $c$ as $0$.
Since there are no relation- or functionsymbols, we just have the set $mathbbZ$ and could note them as



$dotso, -1, c, 1, dotso$



If we take the usual function $+$ and add it $L=c,+$ now $mathfrakS_0$ has the property, that $c+c=c$ for example.



I hope you understand what I am asking for.



I think it boils down to:




Is there a difference between the structure $mathfrakS_n$ as L-structure and $mathfrakS_n$ as $L_emptyset$-structure, where $L_emptyset=emptyset$ (so does not contain a constant symbol).




But I want to get as much insight here as possible. So if you do not understand what I am asking for, it might be best, if you just take a guess. :)



Thanks in advance.










share|cite|improve this question









$endgroup$











  • $begingroup$
    In the empty language, given any structure with more than one element, then there are no definable members in your structure. But once you add a constant, you add a definable element.
    $endgroup$
    – Asaf Karagila
    4 hours ago













1












1








1





$begingroup$


What is the point of constant symbols in a language?



For example we take the language of rings $(0,1,+,-,cdot)$.
What is so special about $0,1$ now? What is the difference between 0 and 1 besides some other element of the ring?



I am aware, that you want to have some elements, that you call 0 and 1 which have the desired properties, like $x+0=0+x=x$ or $1cdot x = xcdot 1=x$.



Is there something else, which makes constants 'special'?



Other example: Suppose we have the language $L=c$ where $c$ is a constant symbol.
Now we observe the L-structure $mathfrakS_n$ over the set $mathbbZ$, where $c$ gets interpreted by $n$.



Is there any difference, between $c$ and $n$?
Or are they just the same and you can view it as some sort of substitution?



For $mathfrakS_0$ we would understand $c$ as $0$.
Since there are no relation- or functionsymbols, we just have the set $mathbbZ$ and could note them as



$dotso, -1, c, 1, dotso$



If we take the usual function $+$ and add it $L=c,+$ now $mathfrakS_0$ has the property, that $c+c=c$ for example.



I hope you understand what I am asking for.



I think it boils down to:




Is there a difference between the structure $mathfrakS_n$ as L-structure and $mathfrakS_n$ as $L_emptyset$-structure, where $L_emptyset=emptyset$ (so does not contain a constant symbol).




But I want to get as much insight here as possible. So if you do not understand what I am asking for, it might be best, if you just take a guess. :)



Thanks in advance.










share|cite|improve this question









$endgroup$




What is the point of constant symbols in a language?



For example we take the language of rings $(0,1,+,-,cdot)$.
What is so special about $0,1$ now? What is the difference between 0 and 1 besides some other element of the ring?



I am aware, that you want to have some elements, that you call 0 and 1 which have the desired properties, like $x+0=0+x=x$ or $1cdot x = xcdot 1=x$.



Is there something else, which makes constants 'special'?



Other example: Suppose we have the language $L=c$ where $c$ is a constant symbol.
Now we observe the L-structure $mathfrakS_n$ over the set $mathbbZ$, where $c$ gets interpreted by $n$.



Is there any difference, between $c$ and $n$?
Or are they just the same and you can view it as some sort of substitution?



For $mathfrakS_0$ we would understand $c$ as $0$.
Since there are no relation- or functionsymbols, we just have the set $mathbbZ$ and could note them as



$dotso, -1, c, 1, dotso$



If we take the usual function $+$ and add it $L=c,+$ now $mathfrakS_0$ has the property, that $c+c=c$ for example.



I hope you understand what I am asking for.



I think it boils down to:




Is there a difference between the structure $mathfrakS_n$ as L-structure and $mathfrakS_n$ as $L_emptyset$-structure, where $L_emptyset=emptyset$ (so does not contain a constant symbol).




But I want to get as much insight here as possible. So if you do not understand what I am asking for, it might be best, if you just take a guess. :)



Thanks in advance.







logic first-order-logic






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 5 hours ago









CornmanCornman

3,74821233




3,74821233











  • $begingroup$
    In the empty language, given any structure with more than one element, then there are no definable members in your structure. But once you add a constant, you add a definable element.
    $endgroup$
    – Asaf Karagila
    4 hours ago
















  • $begingroup$
    In the empty language, given any structure with more than one element, then there are no definable members in your structure. But once you add a constant, you add a definable element.
    $endgroup$
    – Asaf Karagila
    4 hours ago















$begingroup$
In the empty language, given any structure with more than one element, then there are no definable members in your structure. But once you add a constant, you add a definable element.
$endgroup$
– Asaf Karagila
4 hours ago




$begingroup$
In the empty language, given any structure with more than one element, then there are no definable members in your structure. But once you add a constant, you add a definable element.
$endgroup$
– Asaf Karagila
4 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

An $L$-structure is not just a set, it is a set together with interpretations of the constant symbols, function symbols and relation symbols in $L$. You need to keep track of the interpretations as additional data so that you can do things like define homomorphisms of $L$-structures: namely, they're those functions that respect the interpretations of the symbols.



For example, "$mathbbZ$ as a group" and "$mathbbZ$ as a set" have the same underlying set, but the former additionally has (at least) a binary operation $+ : mathbbZ times mathbbZ to mathbbZ$, which must be preserved by group homomorphisms.



In your example, a homomorphism of $L$-structures $f : mathfrakS_n to mathfrakS_m$ would be required to satisfy $f(n) = m$, since $n$ and $m$ are the respective interpretations of the constant $c$, but a homomorphism of $L_varnothing$-structures would not.



So while "$mathfrakS_n$ as an $L$-structure" and "$mathfrakS_n$ as an $L_varnothing$-structure" have the same underlying set, they are not the same object.



Fun fact: the assignment from "$mathfrakS_n$ as an $L$-structure" to "$mathfrakS_n$ as an $L_varnothing$-structure" is an example of a forgetful functor.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Now I wonder, if structures $mathfrakS_n, mathfrakS_m$ can be isomorphic (for $nneq m$) when you take $L=c,<$. Then it has to be $n<mLeftrightarrow f(n)<f(m)$. But such an isomorphism must preserve the constant symbols. So $f(n)=m$ and $f(m)=n$ and for every other $zneq m,n$ it is $f(z)=z$. But then you get $n<mLeftrightarrow f(n)<f(m)$ so $n<mLeftrightarrow m<n$?
    $endgroup$
    – Cornman
    4 hours ago






  • 1




    $begingroup$
    @Cornman: Right, so what that tells you is that if $m ne n$ then there is no isomorphism of $ c, < $-structures between $mathfrakS_n$ and $mathfrakS_m$ (assuming that $<$ is interpreted as the usual order relation on $mathbbZ$ in both $mathfrakS_n$ and $mathfrakS_m$).
    $endgroup$
    – Clive Newstead
    4 hours ago



















1












$begingroup$

Clive's answer is already a good one, I just wanted to add another important point about constants. They give us the power to say infinitely many things about one element.



For example, if we consider Peano Arithmetic then obviously $mathbb N$ is a model. Now, add a constant $c$ to our language and add sentences $c > bar n$ for all $n in mathbb N$ (where $bar n$ stands for 1 added $n$ times: $1 + 1 + ldots + 1$). This new theory is consistent by compactness, so it has a model $M$. In $M$ we have an interpretation for $c$, which is bigger than all natural numbers. So we obtain a nonstandard model of arithmetic. Something similar can be done to create a model that looks like the reals, but has infinitesimals.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189303%2fwhy-constant-symbols-in-a-language%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    An $L$-structure is not just a set, it is a set together with interpretations of the constant symbols, function symbols and relation symbols in $L$. You need to keep track of the interpretations as additional data so that you can do things like define homomorphisms of $L$-structures: namely, they're those functions that respect the interpretations of the symbols.



    For example, "$mathbbZ$ as a group" and "$mathbbZ$ as a set" have the same underlying set, but the former additionally has (at least) a binary operation $+ : mathbbZ times mathbbZ to mathbbZ$, which must be preserved by group homomorphisms.



    In your example, a homomorphism of $L$-structures $f : mathfrakS_n to mathfrakS_m$ would be required to satisfy $f(n) = m$, since $n$ and $m$ are the respective interpretations of the constant $c$, but a homomorphism of $L_varnothing$-structures would not.



    So while "$mathfrakS_n$ as an $L$-structure" and "$mathfrakS_n$ as an $L_varnothing$-structure" have the same underlying set, they are not the same object.



    Fun fact: the assignment from "$mathfrakS_n$ as an $L$-structure" to "$mathfrakS_n$ as an $L_varnothing$-structure" is an example of a forgetful functor.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Now I wonder, if structures $mathfrakS_n, mathfrakS_m$ can be isomorphic (for $nneq m$) when you take $L=c,<$. Then it has to be $n<mLeftrightarrow f(n)<f(m)$. But such an isomorphism must preserve the constant symbols. So $f(n)=m$ and $f(m)=n$ and for every other $zneq m,n$ it is $f(z)=z$. But then you get $n<mLeftrightarrow f(n)<f(m)$ so $n<mLeftrightarrow m<n$?
      $endgroup$
      – Cornman
      4 hours ago






    • 1




      $begingroup$
      @Cornman: Right, so what that tells you is that if $m ne n$ then there is no isomorphism of $ c, < $-structures between $mathfrakS_n$ and $mathfrakS_m$ (assuming that $<$ is interpreted as the usual order relation on $mathbbZ$ in both $mathfrakS_n$ and $mathfrakS_m$).
      $endgroup$
      – Clive Newstead
      4 hours ago
















    4












    $begingroup$

    An $L$-structure is not just a set, it is a set together with interpretations of the constant symbols, function symbols and relation symbols in $L$. You need to keep track of the interpretations as additional data so that you can do things like define homomorphisms of $L$-structures: namely, they're those functions that respect the interpretations of the symbols.



    For example, "$mathbbZ$ as a group" and "$mathbbZ$ as a set" have the same underlying set, but the former additionally has (at least) a binary operation $+ : mathbbZ times mathbbZ to mathbbZ$, which must be preserved by group homomorphisms.



    In your example, a homomorphism of $L$-structures $f : mathfrakS_n to mathfrakS_m$ would be required to satisfy $f(n) = m$, since $n$ and $m$ are the respective interpretations of the constant $c$, but a homomorphism of $L_varnothing$-structures would not.



    So while "$mathfrakS_n$ as an $L$-structure" and "$mathfrakS_n$ as an $L_varnothing$-structure" have the same underlying set, they are not the same object.



    Fun fact: the assignment from "$mathfrakS_n$ as an $L$-structure" to "$mathfrakS_n$ as an $L_varnothing$-structure" is an example of a forgetful functor.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Now I wonder, if structures $mathfrakS_n, mathfrakS_m$ can be isomorphic (for $nneq m$) when you take $L=c,<$. Then it has to be $n<mLeftrightarrow f(n)<f(m)$. But such an isomorphism must preserve the constant symbols. So $f(n)=m$ and $f(m)=n$ and for every other $zneq m,n$ it is $f(z)=z$. But then you get $n<mLeftrightarrow f(n)<f(m)$ so $n<mLeftrightarrow m<n$?
      $endgroup$
      – Cornman
      4 hours ago






    • 1




      $begingroup$
      @Cornman: Right, so what that tells you is that if $m ne n$ then there is no isomorphism of $ c, < $-structures between $mathfrakS_n$ and $mathfrakS_m$ (assuming that $<$ is interpreted as the usual order relation on $mathbbZ$ in both $mathfrakS_n$ and $mathfrakS_m$).
      $endgroup$
      – Clive Newstead
      4 hours ago














    4












    4








    4





    $begingroup$

    An $L$-structure is not just a set, it is a set together with interpretations of the constant symbols, function symbols and relation symbols in $L$. You need to keep track of the interpretations as additional data so that you can do things like define homomorphisms of $L$-structures: namely, they're those functions that respect the interpretations of the symbols.



    For example, "$mathbbZ$ as a group" and "$mathbbZ$ as a set" have the same underlying set, but the former additionally has (at least) a binary operation $+ : mathbbZ times mathbbZ to mathbbZ$, which must be preserved by group homomorphisms.



    In your example, a homomorphism of $L$-structures $f : mathfrakS_n to mathfrakS_m$ would be required to satisfy $f(n) = m$, since $n$ and $m$ are the respective interpretations of the constant $c$, but a homomorphism of $L_varnothing$-structures would not.



    So while "$mathfrakS_n$ as an $L$-structure" and "$mathfrakS_n$ as an $L_varnothing$-structure" have the same underlying set, they are not the same object.



    Fun fact: the assignment from "$mathfrakS_n$ as an $L$-structure" to "$mathfrakS_n$ as an $L_varnothing$-structure" is an example of a forgetful functor.






    share|cite|improve this answer









    $endgroup$



    An $L$-structure is not just a set, it is a set together with interpretations of the constant symbols, function symbols and relation symbols in $L$. You need to keep track of the interpretations as additional data so that you can do things like define homomorphisms of $L$-structures: namely, they're those functions that respect the interpretations of the symbols.



    For example, "$mathbbZ$ as a group" and "$mathbbZ$ as a set" have the same underlying set, but the former additionally has (at least) a binary operation $+ : mathbbZ times mathbbZ to mathbbZ$, which must be preserved by group homomorphisms.



    In your example, a homomorphism of $L$-structures $f : mathfrakS_n to mathfrakS_m$ would be required to satisfy $f(n) = m$, since $n$ and $m$ are the respective interpretations of the constant $c$, but a homomorphism of $L_varnothing$-structures would not.



    So while "$mathfrakS_n$ as an $L$-structure" and "$mathfrakS_n$ as an $L_varnothing$-structure" have the same underlying set, they are not the same object.



    Fun fact: the assignment from "$mathfrakS_n$ as an $L$-structure" to "$mathfrakS_n$ as an $L_varnothing$-structure" is an example of a forgetful functor.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 5 hours ago









    Clive NewsteadClive Newstead

    52.2k474137




    52.2k474137











    • $begingroup$
      Now I wonder, if structures $mathfrakS_n, mathfrakS_m$ can be isomorphic (for $nneq m$) when you take $L=c,<$. Then it has to be $n<mLeftrightarrow f(n)<f(m)$. But such an isomorphism must preserve the constant symbols. So $f(n)=m$ and $f(m)=n$ and for every other $zneq m,n$ it is $f(z)=z$. But then you get $n<mLeftrightarrow f(n)<f(m)$ so $n<mLeftrightarrow m<n$?
      $endgroup$
      – Cornman
      4 hours ago






    • 1




      $begingroup$
      @Cornman: Right, so what that tells you is that if $m ne n$ then there is no isomorphism of $ c, < $-structures between $mathfrakS_n$ and $mathfrakS_m$ (assuming that $<$ is interpreted as the usual order relation on $mathbbZ$ in both $mathfrakS_n$ and $mathfrakS_m$).
      $endgroup$
      – Clive Newstead
      4 hours ago

















    • $begingroup$
      Now I wonder, if structures $mathfrakS_n, mathfrakS_m$ can be isomorphic (for $nneq m$) when you take $L=c,<$. Then it has to be $n<mLeftrightarrow f(n)<f(m)$. But such an isomorphism must preserve the constant symbols. So $f(n)=m$ and $f(m)=n$ and for every other $zneq m,n$ it is $f(z)=z$. But then you get $n<mLeftrightarrow f(n)<f(m)$ so $n<mLeftrightarrow m<n$?
      $endgroup$
      – Cornman
      4 hours ago






    • 1




      $begingroup$
      @Cornman: Right, so what that tells you is that if $m ne n$ then there is no isomorphism of $ c, < $-structures between $mathfrakS_n$ and $mathfrakS_m$ (assuming that $<$ is interpreted as the usual order relation on $mathbbZ$ in both $mathfrakS_n$ and $mathfrakS_m$).
      $endgroup$
      – Clive Newstead
      4 hours ago
















    $begingroup$
    Now I wonder, if structures $mathfrakS_n, mathfrakS_m$ can be isomorphic (for $nneq m$) when you take $L=c,<$. Then it has to be $n<mLeftrightarrow f(n)<f(m)$. But such an isomorphism must preserve the constant symbols. So $f(n)=m$ and $f(m)=n$ and for every other $zneq m,n$ it is $f(z)=z$. But then you get $n<mLeftrightarrow f(n)<f(m)$ so $n<mLeftrightarrow m<n$?
    $endgroup$
    – Cornman
    4 hours ago




    $begingroup$
    Now I wonder, if structures $mathfrakS_n, mathfrakS_m$ can be isomorphic (for $nneq m$) when you take $L=c,<$. Then it has to be $n<mLeftrightarrow f(n)<f(m)$. But such an isomorphism must preserve the constant symbols. So $f(n)=m$ and $f(m)=n$ and for every other $zneq m,n$ it is $f(z)=z$. But then you get $n<mLeftrightarrow f(n)<f(m)$ so $n<mLeftrightarrow m<n$?
    $endgroup$
    – Cornman
    4 hours ago




    1




    1




    $begingroup$
    @Cornman: Right, so what that tells you is that if $m ne n$ then there is no isomorphism of $ c, < $-structures between $mathfrakS_n$ and $mathfrakS_m$ (assuming that $<$ is interpreted as the usual order relation on $mathbbZ$ in both $mathfrakS_n$ and $mathfrakS_m$).
    $endgroup$
    – Clive Newstead
    4 hours ago





    $begingroup$
    @Cornman: Right, so what that tells you is that if $m ne n$ then there is no isomorphism of $ c, < $-structures between $mathfrakS_n$ and $mathfrakS_m$ (assuming that $<$ is interpreted as the usual order relation on $mathbbZ$ in both $mathfrakS_n$ and $mathfrakS_m$).
    $endgroup$
    – Clive Newstead
    4 hours ago












    1












    $begingroup$

    Clive's answer is already a good one, I just wanted to add another important point about constants. They give us the power to say infinitely many things about one element.



    For example, if we consider Peano Arithmetic then obviously $mathbb N$ is a model. Now, add a constant $c$ to our language and add sentences $c > bar n$ for all $n in mathbb N$ (where $bar n$ stands for 1 added $n$ times: $1 + 1 + ldots + 1$). This new theory is consistent by compactness, so it has a model $M$. In $M$ we have an interpretation for $c$, which is bigger than all natural numbers. So we obtain a nonstandard model of arithmetic. Something similar can be done to create a model that looks like the reals, but has infinitesimals.






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      Clive's answer is already a good one, I just wanted to add another important point about constants. They give us the power to say infinitely many things about one element.



      For example, if we consider Peano Arithmetic then obviously $mathbb N$ is a model. Now, add a constant $c$ to our language and add sentences $c > bar n$ for all $n in mathbb N$ (where $bar n$ stands for 1 added $n$ times: $1 + 1 + ldots + 1$). This new theory is consistent by compactness, so it has a model $M$. In $M$ we have an interpretation for $c$, which is bigger than all natural numbers. So we obtain a nonstandard model of arithmetic. Something similar can be done to create a model that looks like the reals, but has infinitesimals.






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        Clive's answer is already a good one, I just wanted to add another important point about constants. They give us the power to say infinitely many things about one element.



        For example, if we consider Peano Arithmetic then obviously $mathbb N$ is a model. Now, add a constant $c$ to our language and add sentences $c > bar n$ for all $n in mathbb N$ (where $bar n$ stands for 1 added $n$ times: $1 + 1 + ldots + 1$). This new theory is consistent by compactness, so it has a model $M$. In $M$ we have an interpretation for $c$, which is bigger than all natural numbers. So we obtain a nonstandard model of arithmetic. Something similar can be done to create a model that looks like the reals, but has infinitesimals.






        share|cite|improve this answer









        $endgroup$



        Clive's answer is already a good one, I just wanted to add another important point about constants. They give us the power to say infinitely many things about one element.



        For example, if we consider Peano Arithmetic then obviously $mathbb N$ is a model. Now, add a constant $c$ to our language and add sentences $c > bar n$ for all $n in mathbb N$ (where $bar n$ stands for 1 added $n$ times: $1 + 1 + ldots + 1$). This new theory is consistent by compactness, so it has a model $M$. In $M$ we have an interpretation for $c$, which is bigger than all natural numbers. So we obtain a nonstandard model of arithmetic. Something similar can be done to create a model that looks like the reals, but has infinitesimals.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        Mark KamsmaMark Kamsma

        3818




        3818



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189303%2fwhy-constant-symbols-in-a-language%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

            Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

            Черчино Становништво Референце Спољашње везе Мени за навигацију46°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.5081446°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.508143179111„The GeoNames geographical database”„Istituto Nazionale di Statistica”Званични веб-сајтпроширитиуу