Why is the reciprocal used in fraction division?How to make sense of fractions?How do I rewrite -100+1/2 as the mixed number -99 1/2?Fraction exponents in divisionfraction division understandingFraction and Decimal: Reciprocal of x's non-integerWhy was I taught to convert “improper fractions” into mixed numbers?The division of a fraction - Whole or Part?division by fraction proofWhen dividing by a fraction, why can you not take the reciprocal of term involving addition/subtraction?How to tell when a fraction does not end?Basic division problem: dividing a fraction by a fraction

Illustrating that universal optimality is stronger than sphere packing

Surface of the 3x3x3 cube as a graph

Is the default 512 byte physical sector size appropriate for SSD disks under Linux?

Has the wall been repaired?

If I arrive in the UK, and then head to mainland Europe, does my Schengen visa 90 day limit start when I arrived in the UK, or mainland Europe?

Wifi light switch needs neutral wire. Why? AND Can that wire be a skinny one?

How to safely discharge oneself

Proto-Indo-European (PIE) words with IPA

Is it safe to redirect stdout and stderr to the same file without file descriptor copies?

What is this dime sized black bug with white on the segments near Loveland Colorodao?

mmap: effect of other processes writing to a file previously mapped read-only

What is the winged creature on the back of the Mordenkainen's Tome of Foes book?

JavaScript: Access 'this' when calling function stored in variable

Keeping the dodos out of the field

Variable does not Exist: CaseTrigger

Can the Conjure Barrage spell stack with the Disarming Attack or Trip Attack Battle Master maneuvers?

Unary Enumeration

Is it normal to "extract a paper" from a master thesis?

Can someone get a spouse off a deed that never lived together and was incarcerated?

Negative impact of having the launch pad away from the Equator

Does the fact that we can only measure the two-way speed of light undermine the axiom of invariance?

Palindromic Pan digital Special Square wants you to reveal its Root

Computing elements of a 1000 x 60 matrix exhausts RAM

Why do the i8080 I/O instructions take a byte-sized operand to determine the port?



Why is the reciprocal used in fraction division?


How to make sense of fractions?How do I rewrite -100+1/2 as the mixed number -99 1/2?Fraction exponents in divisionfraction division understandingFraction and Decimal: Reciprocal of x's non-integerWhy was I taught to convert “improper fractions” into mixed numbers?The division of a fraction - Whole or Part?division by fraction proofWhen dividing by a fraction, why can you not take the reciprocal of term involving addition/subtraction?How to tell when a fraction does not end?Basic division problem: dividing a fraction by a fraction













2












$begingroup$


I don't know if this is a basic question or whatever, but I can't seem to find an answer.



As far as I understand the reciprocal of a number the inverse of that number, that still doesn't clarify why it is needed.



For many years I've only ever done math like if I were a robot. I just did it and never understood what I was doing. So when I went and divided fractions I just used the reciprocal, because "that was the way to do it". I want to understand math at a deeper level, especially subjects like probability, statistics, calculus, and linear algebra. To do that I have to understand the fundamentals however.



Any response is appreciated.










share|cite|improve this question









$endgroup$











  • $begingroup$
    This may be helpful. math.stackexchange.com/questions/1127483/…
    $endgroup$
    – Ethan Bolker
    2 hours ago










  • $begingroup$
    If you are asking this question, it probably means that you do not have enough experience with algebra
    $endgroup$
    – rash
    2 hours ago










  • $begingroup$
    Also see How to explain the flipping of division by a fraction? on Mathematics Educators, showcasing many attempts at an intuitive and elementary explanation.
    $endgroup$
    – Henning Makholm
    2 hours ago
















2












$begingroup$


I don't know if this is a basic question or whatever, but I can't seem to find an answer.



As far as I understand the reciprocal of a number the inverse of that number, that still doesn't clarify why it is needed.



For many years I've only ever done math like if I were a robot. I just did it and never understood what I was doing. So when I went and divided fractions I just used the reciprocal, because "that was the way to do it". I want to understand math at a deeper level, especially subjects like probability, statistics, calculus, and linear algebra. To do that I have to understand the fundamentals however.



Any response is appreciated.










share|cite|improve this question









$endgroup$











  • $begingroup$
    This may be helpful. math.stackexchange.com/questions/1127483/…
    $endgroup$
    – Ethan Bolker
    2 hours ago










  • $begingroup$
    If you are asking this question, it probably means that you do not have enough experience with algebra
    $endgroup$
    – rash
    2 hours ago










  • $begingroup$
    Also see How to explain the flipping of division by a fraction? on Mathematics Educators, showcasing many attempts at an intuitive and elementary explanation.
    $endgroup$
    – Henning Makholm
    2 hours ago














2












2








2


1



$begingroup$


I don't know if this is a basic question or whatever, but I can't seem to find an answer.



As far as I understand the reciprocal of a number the inverse of that number, that still doesn't clarify why it is needed.



For many years I've only ever done math like if I were a robot. I just did it and never understood what I was doing. So when I went and divided fractions I just used the reciprocal, because "that was the way to do it". I want to understand math at a deeper level, especially subjects like probability, statistics, calculus, and linear algebra. To do that I have to understand the fundamentals however.



Any response is appreciated.










share|cite|improve this question









$endgroup$




I don't know if this is a basic question or whatever, but I can't seem to find an answer.



As far as I understand the reciprocal of a number the inverse of that number, that still doesn't clarify why it is needed.



For many years I've only ever done math like if I were a robot. I just did it and never understood what I was doing. So when I went and divided fractions I just used the reciprocal, because "that was the way to do it". I want to understand math at a deeper level, especially subjects like probability, statistics, calculus, and linear algebra. To do that I have to understand the fundamentals however.



Any response is appreciated.







fractions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









ArgusArgus

20418




20418











  • $begingroup$
    This may be helpful. math.stackexchange.com/questions/1127483/…
    $endgroup$
    – Ethan Bolker
    2 hours ago










  • $begingroup$
    If you are asking this question, it probably means that you do not have enough experience with algebra
    $endgroup$
    – rash
    2 hours ago










  • $begingroup$
    Also see How to explain the flipping of division by a fraction? on Mathematics Educators, showcasing many attempts at an intuitive and elementary explanation.
    $endgroup$
    – Henning Makholm
    2 hours ago

















  • $begingroup$
    This may be helpful. math.stackexchange.com/questions/1127483/…
    $endgroup$
    – Ethan Bolker
    2 hours ago










  • $begingroup$
    If you are asking this question, it probably means that you do not have enough experience with algebra
    $endgroup$
    – rash
    2 hours ago










  • $begingroup$
    Also see How to explain the flipping of division by a fraction? on Mathematics Educators, showcasing many attempts at an intuitive and elementary explanation.
    $endgroup$
    – Henning Makholm
    2 hours ago
















$begingroup$
This may be helpful. math.stackexchange.com/questions/1127483/…
$endgroup$
– Ethan Bolker
2 hours ago




$begingroup$
This may be helpful. math.stackexchange.com/questions/1127483/…
$endgroup$
– Ethan Bolker
2 hours ago












$begingroup$
If you are asking this question, it probably means that you do not have enough experience with algebra
$endgroup$
– rash
2 hours ago




$begingroup$
If you are asking this question, it probably means that you do not have enough experience with algebra
$endgroup$
– rash
2 hours ago












$begingroup$
Also see How to explain the flipping of division by a fraction? on Mathematics Educators, showcasing many attempts at an intuitive and elementary explanation.
$endgroup$
– Henning Makholm
2 hours ago





$begingroup$
Also see How to explain the flipping of division by a fraction? on Mathematics Educators, showcasing many attempts at an intuitive and elementary explanation.
$endgroup$
– Henning Makholm
2 hours ago











2 Answers
2






active

oldest

votes


















3












$begingroup$

I think you're asking why the rule for division of fractions,
$$fracpq div fracrs = fracpq cdot fracsr,$$
works.
And I'm assuming that you're already comfortable with how to multiply fractions.



We need to go back to what division is supposed to achieve in the first place. When we look into that, the answer is that $Adiv B$ means something that gives $A$ when we multiply it by $B$ -- or, written in symbols, $Adiv B$ means the $X$ that solves the equation $$ Xcdot B = A $$



When our $A$ and $B$ are fraction, the "reciprocal" division rule can be regarded as a trick that happens to produce an $X$ that works. It's easy enough to see that it does work: If we're dividing $frac pq div frac rs$ we need to solve the equation
$$ X cdot frac rs = frac pq $$
And indeed setting $X=frac pqcdot frac sr = fracpsqr$ does this:
$$ fracpsqrcdotfrac rs = fracpscdot rqrcdot s = fracpcdot srqcdot sr = frac pq$$
like we want. (I'm also assuming that you're comfortable with cancelling the common factor $sr$ in the middle fraction).



This computation hopefully also gives some ides why it works, at least part way. In $fracpsqr$ the $p$ and $q$ are what we want to end up with, and the $s$ and $r$ are there to "neutralize" the $r$ and $s$ we have but want to discard. By making sure that the product has exactly one $r$ and one $s$ on each side of the fraction bar they make sure we can cancel them away.



Writing the solution $fracpsqr$ as $frac pqcdot frac sr$ might be best understood as just an easy way to remember what goes where. But this memory trick itself then also serves as motivation for considering the reciprocal to be an interesting operation in its own right in higher algebra.






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    Your question isn't completely clear but what I understood is that you don't get why $$fracfracabfraccd= fracab*fracdc$$ the answer it's located in the axioms of the real numbers, a number $b$ it's the reciprocal of a number $d$ if $$ d*b=1$$ now, let's see the definition of fraction $$e/f=e*f^-1$$ with $f^-1$ the reciprocal of $f$, therefore $$fracfracabfraccd=fracab(fraccd)^-1$$ and since $$fraccd*fracdc=1$$ we have $$fracfracabfraccd= fracab*fracdc$$ our result






    share|cite|improve this answer








    New contributor



    Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3232527%2fwhy-is-the-reciprocal-used-in-fraction-division%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      I think you're asking why the rule for division of fractions,
      $$fracpq div fracrs = fracpq cdot fracsr,$$
      works.
      And I'm assuming that you're already comfortable with how to multiply fractions.



      We need to go back to what division is supposed to achieve in the first place. When we look into that, the answer is that $Adiv B$ means something that gives $A$ when we multiply it by $B$ -- or, written in symbols, $Adiv B$ means the $X$ that solves the equation $$ Xcdot B = A $$



      When our $A$ and $B$ are fraction, the "reciprocal" division rule can be regarded as a trick that happens to produce an $X$ that works. It's easy enough to see that it does work: If we're dividing $frac pq div frac rs$ we need to solve the equation
      $$ X cdot frac rs = frac pq $$
      And indeed setting $X=frac pqcdot frac sr = fracpsqr$ does this:
      $$ fracpsqrcdotfrac rs = fracpscdot rqrcdot s = fracpcdot srqcdot sr = frac pq$$
      like we want. (I'm also assuming that you're comfortable with cancelling the common factor $sr$ in the middle fraction).



      This computation hopefully also gives some ides why it works, at least part way. In $fracpsqr$ the $p$ and $q$ are what we want to end up with, and the $s$ and $r$ are there to "neutralize" the $r$ and $s$ we have but want to discard. By making sure that the product has exactly one $r$ and one $s$ on each side of the fraction bar they make sure we can cancel them away.



      Writing the solution $fracpsqr$ as $frac pqcdot frac sr$ might be best understood as just an easy way to remember what goes where. But this memory trick itself then also serves as motivation for considering the reciprocal to be an interesting operation in its own right in higher algebra.






      share|cite|improve this answer











      $endgroup$

















        3












        $begingroup$

        I think you're asking why the rule for division of fractions,
        $$fracpq div fracrs = fracpq cdot fracsr,$$
        works.
        And I'm assuming that you're already comfortable with how to multiply fractions.



        We need to go back to what division is supposed to achieve in the first place. When we look into that, the answer is that $Adiv B$ means something that gives $A$ when we multiply it by $B$ -- or, written in symbols, $Adiv B$ means the $X$ that solves the equation $$ Xcdot B = A $$



        When our $A$ and $B$ are fraction, the "reciprocal" division rule can be regarded as a trick that happens to produce an $X$ that works. It's easy enough to see that it does work: If we're dividing $frac pq div frac rs$ we need to solve the equation
        $$ X cdot frac rs = frac pq $$
        And indeed setting $X=frac pqcdot frac sr = fracpsqr$ does this:
        $$ fracpsqrcdotfrac rs = fracpscdot rqrcdot s = fracpcdot srqcdot sr = frac pq$$
        like we want. (I'm also assuming that you're comfortable with cancelling the common factor $sr$ in the middle fraction).



        This computation hopefully also gives some ides why it works, at least part way. In $fracpsqr$ the $p$ and $q$ are what we want to end up with, and the $s$ and $r$ are there to "neutralize" the $r$ and $s$ we have but want to discard. By making sure that the product has exactly one $r$ and one $s$ on each side of the fraction bar they make sure we can cancel them away.



        Writing the solution $fracpsqr$ as $frac pqcdot frac sr$ might be best understood as just an easy way to remember what goes where. But this memory trick itself then also serves as motivation for considering the reciprocal to be an interesting operation in its own right in higher algebra.






        share|cite|improve this answer











        $endgroup$















          3












          3








          3





          $begingroup$

          I think you're asking why the rule for division of fractions,
          $$fracpq div fracrs = fracpq cdot fracsr,$$
          works.
          And I'm assuming that you're already comfortable with how to multiply fractions.



          We need to go back to what division is supposed to achieve in the first place. When we look into that, the answer is that $Adiv B$ means something that gives $A$ when we multiply it by $B$ -- or, written in symbols, $Adiv B$ means the $X$ that solves the equation $$ Xcdot B = A $$



          When our $A$ and $B$ are fraction, the "reciprocal" division rule can be regarded as a trick that happens to produce an $X$ that works. It's easy enough to see that it does work: If we're dividing $frac pq div frac rs$ we need to solve the equation
          $$ X cdot frac rs = frac pq $$
          And indeed setting $X=frac pqcdot frac sr = fracpsqr$ does this:
          $$ fracpsqrcdotfrac rs = fracpscdot rqrcdot s = fracpcdot srqcdot sr = frac pq$$
          like we want. (I'm also assuming that you're comfortable with cancelling the common factor $sr$ in the middle fraction).



          This computation hopefully also gives some ides why it works, at least part way. In $fracpsqr$ the $p$ and $q$ are what we want to end up with, and the $s$ and $r$ are there to "neutralize" the $r$ and $s$ we have but want to discard. By making sure that the product has exactly one $r$ and one $s$ on each side of the fraction bar they make sure we can cancel them away.



          Writing the solution $fracpsqr$ as $frac pqcdot frac sr$ might be best understood as just an easy way to remember what goes where. But this memory trick itself then also serves as motivation for considering the reciprocal to be an interesting operation in its own right in higher algebra.






          share|cite|improve this answer











          $endgroup$



          I think you're asking why the rule for division of fractions,
          $$fracpq div fracrs = fracpq cdot fracsr,$$
          works.
          And I'm assuming that you're already comfortable with how to multiply fractions.



          We need to go back to what division is supposed to achieve in the first place. When we look into that, the answer is that $Adiv B$ means something that gives $A$ when we multiply it by $B$ -- or, written in symbols, $Adiv B$ means the $X$ that solves the equation $$ Xcdot B = A $$



          When our $A$ and $B$ are fraction, the "reciprocal" division rule can be regarded as a trick that happens to produce an $X$ that works. It's easy enough to see that it does work: If we're dividing $frac pq div frac rs$ we need to solve the equation
          $$ X cdot frac rs = frac pq $$
          And indeed setting $X=frac pqcdot frac sr = fracpsqr$ does this:
          $$ fracpsqrcdotfrac rs = fracpscdot rqrcdot s = fracpcdot srqcdot sr = frac pq$$
          like we want. (I'm also assuming that you're comfortable with cancelling the common factor $sr$ in the middle fraction).



          This computation hopefully also gives some ides why it works, at least part way. In $fracpsqr$ the $p$ and $q$ are what we want to end up with, and the $s$ and $r$ are there to "neutralize" the $r$ and $s$ we have but want to discard. By making sure that the product has exactly one $r$ and one $s$ on each side of the fraction bar they make sure we can cancel them away.



          Writing the solution $fracpsqr$ as $frac pqcdot frac sr$ might be best understood as just an easy way to remember what goes where. But this memory trick itself then also serves as motivation for considering the reciprocal to be an interesting operation in its own right in higher algebra.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 hours ago

























          answered 2 hours ago









          Henning MakholmHenning Makholm

          246k17316561




          246k17316561





















              0












              $begingroup$

              Your question isn't completely clear but what I understood is that you don't get why $$fracfracabfraccd= fracab*fracdc$$ the answer it's located in the axioms of the real numbers, a number $b$ it's the reciprocal of a number $d$ if $$ d*b=1$$ now, let's see the definition of fraction $$e/f=e*f^-1$$ with $f^-1$ the reciprocal of $f$, therefore $$fracfracabfraccd=fracab(fraccd)^-1$$ and since $$fraccd*fracdc=1$$ we have $$fracfracabfraccd= fracab*fracdc$$ our result






              share|cite|improve this answer








              New contributor



              Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.





              $endgroup$

















                0












                $begingroup$

                Your question isn't completely clear but what I understood is that you don't get why $$fracfracabfraccd= fracab*fracdc$$ the answer it's located in the axioms of the real numbers, a number $b$ it's the reciprocal of a number $d$ if $$ d*b=1$$ now, let's see the definition of fraction $$e/f=e*f^-1$$ with $f^-1$ the reciprocal of $f$, therefore $$fracfracabfraccd=fracab(fraccd)^-1$$ and since $$fraccd*fracdc=1$$ we have $$fracfracabfraccd= fracab*fracdc$$ our result






                share|cite|improve this answer








                New contributor



                Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.





                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Your question isn't completely clear but what I understood is that you don't get why $$fracfracabfraccd= fracab*fracdc$$ the answer it's located in the axioms of the real numbers, a number $b$ it's the reciprocal of a number $d$ if $$ d*b=1$$ now, let's see the definition of fraction $$e/f=e*f^-1$$ with $f^-1$ the reciprocal of $f$, therefore $$fracfracabfraccd=fracab(fraccd)^-1$$ and since $$fraccd*fracdc=1$$ we have $$fracfracabfraccd= fracab*fracdc$$ our result






                  share|cite|improve this answer








                  New contributor



                  Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





                  $endgroup$



                  Your question isn't completely clear but what I understood is that you don't get why $$fracfracabfraccd= fracab*fracdc$$ the answer it's located in the axioms of the real numbers, a number $b$ it's the reciprocal of a number $d$ if $$ d*b=1$$ now, let's see the definition of fraction $$e/f=e*f^-1$$ with $f^-1$ the reciprocal of $f$, therefore $$fracfracabfraccd=fracab(fraccd)^-1$$ and since $$fraccd*fracdc=1$$ we have $$fracfracabfraccd= fracab*fracdc$$ our result







                  share|cite|improve this answer








                  New contributor



                  Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.








                  share|cite|improve this answer



                  share|cite|improve this answer






                  New contributor



                  Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.








                  answered 2 hours ago









                  Mario AldeanMario Aldean

                  135




                  135




                  New contributor



                  Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.




                  New contributor




                  Mario Aldean is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3232527%2fwhy-is-the-reciprocal-used-in-fraction-division%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                      Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                      Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)