5 cars in a roundabout trafficHow to lock a shared artefactMaximum time for ants to fall off stickCross-road optimization - what is the proper way to solve this type of puzzle?Whose lock is lock-ier?Make 11 from five identical digitsQuick!!! You got only 30 secondsHow does the Kangaroo cross the Highway?Journey from Somewhere to ElsewhereGuide the dots to land on the portals at the same timeTwo Users share One Recharge Cord

Using “sparkling” as a diminutive of “spark” in a poem

Impossible darts scores

Should I tell my insurance company I'm making payments on my new car?

No IMPLICIT_CONVERSION warning in this query plan

Animation advice please

Why aren't (poly-)cotton tents more popular?

Why is the Turkish president's surname spelt in Russian as Эрдоган, with г?

Why is the G major to Bb major resolution so strong?

Does ultrasonic bath cleaning damage laboratory volumetric glassware calibration?

What is the line crossing the Pacific Ocean that is shown on maps?

How to split an equation over two lines?

5 cars in a roundabout traffic

What are the benefits of using the X Card safety tool in comparison to plain communication?

Go Get the Six Six-Pack

How often can a PC check with passive perception during a combat turn?

Why is Madam Hooch not a professor?

Dimensions of list used in test

Can the US president have someone sent to jail?

90s (or earlier) cross-world fantasy book with a circular river and character-class tattoos

How to determine what is the correct level of detail when modelling?

Does the posterior necessarily follow the same conditional dependence structure as the prior?

Do flight schools typically have dress codes or expectations?

Did Karl Marx ever use any example that involved cotton and dollars to illustrate the way capital and surplus value were generated?

Is adding a new player (or players) a DM decision, or a group decision?



5 cars in a roundabout traffic


How to lock a shared artefactMaximum time for ants to fall off stickCross-road optimization - what is the proper way to solve this type of puzzle?Whose lock is lock-ier?Make 11 from five identical digitsQuick!!! You got only 30 secondsHow does the Kangaroo cross the Highway?Journey from Somewhere to ElsewhereGuide the dots to land on the portals at the same timeTwo Users share One Recharge Cord






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$



Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




Question:




How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




enter image description here










share|improve this question









New contributor



Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$


















    2












    $begingroup$



    Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




    Question:




    How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




    enter image description here










    share|improve this question









    New contributor



    Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$














      2












      2








      2





      $begingroup$



      Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




      Question:




      How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




      enter image description here










      share|improve this question









      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$





      Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




      Question:




      How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




      enter image description here







      mathematics logical-deduction combinatorics






      share|improve this question









      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|improve this question









      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|improve this question




      share|improve this question








      edited 8 hours ago







      Matti













      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 9 hours ago









      MattiMatti

      2247 bronze badges




      2247 bronze badges




      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$












          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago


















          3












          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$












          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            8 hours ago













          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "559"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Matti is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f85379%2f5-cars-in-a-roundabout-traffic%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$












          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago















          4












          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$












          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago













          4












          4








          4





          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$



          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_S|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 4 hours ago

























          answered 8 hours ago









          Gareth McCaughanGareth McCaughan

          74.9k3 gold badges189 silver badges289 bronze badges




          74.9k3 gold badges189 silver badges289 bronze badges











          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago
















          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago















          $begingroup$
          You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
          $endgroup$
          – RShields
          8 hours ago




          $begingroup$
          You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
          $endgroup$
          – RShields
          8 hours ago












          $begingroup$
          If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
          $endgroup$
          – Gareth McCaughan
          8 hours ago




          $begingroup$
          If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
          $endgroup$
          – Gareth McCaughan
          8 hours ago












          $begingroup$
          The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
          $endgroup$
          – RShields
          8 hours ago




          $begingroup$
          The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
          $endgroup$
          – RShields
          8 hours ago












          $begingroup$
          Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
          $endgroup$
          – Matti
          8 hours ago





          $begingroup$
          Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
          $endgroup$
          – Matti
          8 hours ago













          $begingroup$
          Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
          $endgroup$
          – Gareth McCaughan
          4 hours ago




          $begingroup$
          Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
          $endgroup$
          – Gareth McCaughan
          4 hours ago













          3












          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$












          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            8 hours ago















          3












          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$












          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            8 hours ago













          3












          3








          3





          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$



          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.








          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.








          share|improve this answer



          share|improve this answer








          edited 8 hours ago





















          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.








          answered 8 hours ago









          AxiomaticSystemAxiomaticSystem

          512 bronze badges




          512 bronze badges




          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.




          New contributor




          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.













          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            8 hours ago
















          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            8 hours ago















          $begingroup$
          Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
          $endgroup$
          – RShields
          8 hours ago





          $begingroup$
          Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
          $endgroup$
          – RShields
          8 hours ago













          $begingroup$
          So the cars aren't arriving at the same time?
          $endgroup$
          – AxiomaticSystem
          8 hours ago




          $begingroup$
          So the cars aren't arriving at the same time?
          $endgroup$
          – AxiomaticSystem
          8 hours ago












          $begingroup$
          They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
          $endgroup$
          – RShields
          8 hours ago




          $begingroup$
          They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
          $endgroup$
          – RShields
          8 hours ago












          $begingroup$
          If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
          $endgroup$
          – Jaap Scherphuis
          8 hours ago




          $begingroup$
          If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
          $endgroup$
          – Jaap Scherphuis
          8 hours ago










          Matti is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Matti is a new contributor. Be nice, and check out our Code of Conduct.












          Matti is a new contributor. Be nice, and check out our Code of Conduct.











          Matti is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f85379%2f5-cars-in-a-roundabout-traffic%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

          Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

          Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)