Quasar RedshiftsWhy do we have the cosmological constant?Conundrum involving distance to object, universal expansion, age of universe, etcDifference between quasar and Active Galactic Nuclei?Black hole darkness a result of gravity or temporal distortion?Are all planets/galaxies moving away from *us*?“True” motionlessness - red shifts and CMBIs there an official list of objects in the sky?Could a contracting Universe create the redshift effect observed by Hubble?Are quasars simply AGNs that are viewed from a particular angle?Using emission lines to determine redshift of a quasar

Realistic, logical way for men with medieval-era weaponry to compete with much larger and physically stronger foes

How (un)safe is it to ride barefoot?

Oil draining out shortly after turbo hose detached/broke

How can I find out about the game world without meta-influencing it?

What plausible reason could I give for my FTL drive only working in space

What is this object?

Finding diameter of a circle using two chords and angle between them

Prove that the infinite series equals 1

What did the 8086 (and 8088) do upon encountering an illegal instruction?

What would the consequences be of a high number of solar systems being within close proximity to one another?

What's the best way to quit a job mostly because of money?

A life of PhD: is it feasible?

Mathematica 12 has gotten worse at solving simple equations?

Linked novellas where humans are engineered to adapt to a variety of environments

What exactly "triggers an additional time" in the interaction between Afterlife and Teysa Karlov?

Quasar Redshifts

Are the guests in Westworld forbidden to tell the hosts that they are robots?

If the pressure inside and outside a balloon balance, then why does air leave when it pops?

Attempt to de-reference a null object when calling class method from Test class

Why do the TIE Fighter pilot helmets have similar ridges as the rebels?

How can I list the different hex characters between two files?

Do Veracrypt encrypted volumes have any kind of brute force protection?

In American Politics, why is the Justice Department under the President?

Am I allowed to determine tenets of my contract as a warlock?



Quasar Redshifts


Why do we have the cosmological constant?Conundrum involving distance to object, universal expansion, age of universe, etcDifference between quasar and Active Galactic Nuclei?Black hole darkness a result of gravity or temporal distortion?Are all planets/galaxies moving away from *us*?“True” motionlessness - red shifts and CMBIs there an official list of objects in the sky?Could a contracting Universe create the redshift effect observed by Hubble?Are quasars simply AGNs that are viewed from a particular angle?Using emission lines to determine redshift of a quasar













1












$begingroup$


How can the gravitational redshift of a very distant quasar be distinguished from its cosmological redshift? Quasars are very massive objects,thought to be supermassive black holes,so therefore must have substantial gravitational red shift,but they are so far away they must also have a cosmological redshift. Is it possible to distinguish one from the other?










share|improve this question









$endgroup$
















    1












    $begingroup$


    How can the gravitational redshift of a very distant quasar be distinguished from its cosmological redshift? Quasars are very massive objects,thought to be supermassive black holes,so therefore must have substantial gravitational red shift,but they are so far away they must also have a cosmological redshift. Is it possible to distinguish one from the other?










    share|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      How can the gravitational redshift of a very distant quasar be distinguished from its cosmological redshift? Quasars are very massive objects,thought to be supermassive black holes,so therefore must have substantial gravitational red shift,but they are so far away they must also have a cosmological redshift. Is it possible to distinguish one from the other?










      share|improve this question









      $endgroup$




      How can the gravitational redshift of a very distant quasar be distinguished from its cosmological redshift? Quasars are very massive objects,thought to be supermassive black holes,so therefore must have substantial gravitational red shift,but they are so far away they must also have a cosmological redshift. Is it possible to distinguish one from the other?







      redshift quasars






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 10 hours ago









      Michael WalsbyMichael Walsby

      654




      654




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          The optical emission lines of quasars do not come from sufficiently close the the central supermassive black hole to be appreciably gravitationally redshifted.



          If they did arise from gas near the "innermost stable circular orbit", then the maximum gravitational redshift would be about 0.2. In addition, the lines would have a characteristic profile caused by a combination of gravitational redshift and the blue/redshift and Doppler boosting caused by the fast-moving gas (such line profiles are sometimes seen at X-ray wavelengths). Of course many if not most quasars have redshifts that far exceed 0.2 and can only be explained by cosmic expansion.






          share|improve this answer









          $endgroup$




















            2












            $begingroup$

            Both cosmological redshifts, and gravitational redshifts, can be thought of as coming from the same source-- the equations of general relativity. In that sense, the distinction between them is somewhat artificial, though useful, but they are redshifts that affect all the lines in the same way. So there is no way to disentangle their effects, other than to model both of their sources. This is not so unusual-- if you have normal Doppler shifts in a reference frame where you don't know the motion of either the source or the detector, then the Doppler shift registered will represent a combination of those motions that you cannot disentangle simply from what you observe-- you will have to model the effects of all contributing effects.



            That generally means you need to bring in more independent information, such that you can test your models. In the case of quasars, you could look for quasars that appear to be similar except for their distance from you, and then you can assume their gravitational redshift is similar but their cosmological redshift is very different. In particular, you can have relatively nearby quasars that do not have a lot of cosmological redshift, perhaps even comparable to their gravitational redshift. And you can have very distant ones that are predominantly cosmological redshifts. You can also use the fact that the cosmological redshift is the same for all the lines of a given quasar, but gravitational redshifts will depend on how deep in the gravity well each line forms. There is also a connection between where a line forms and what its Doppler shift is, because the gas is generally moving, so we even have a third source of frequency shift, but it connects with gravitational redshift in ways that alter the line shape. So we have new information from line shape, that allows the models to be tested, even though we must combine no less than three separate sources of frequency shift (special relativistic, general relativistic due to local gravity, general relativistic due to global effects of the expanding universe).



            You have other information also, such as temperatures and Doppler shifts, and time dependence, so you put all that together and you try to model the quasar. That's the only way to disentangle the redshifts, you need self-consistent models that succeed at producing a wide range of observables. Remember that we had quasar spectra for many years before we were even able to figure out what they were, and debate still continues about the sources of the various spectral components.






            share|improve this answer











            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "514"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f32237%2fquasar-redshifts%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              The optical emission lines of quasars do not come from sufficiently close the the central supermassive black hole to be appreciably gravitationally redshifted.



              If they did arise from gas near the "innermost stable circular orbit", then the maximum gravitational redshift would be about 0.2. In addition, the lines would have a characteristic profile caused by a combination of gravitational redshift and the blue/redshift and Doppler boosting caused by the fast-moving gas (such line profiles are sometimes seen at X-ray wavelengths). Of course many if not most quasars have redshifts that far exceed 0.2 and can only be explained by cosmic expansion.






              share|improve this answer









              $endgroup$

















                4












                $begingroup$

                The optical emission lines of quasars do not come from sufficiently close the the central supermassive black hole to be appreciably gravitationally redshifted.



                If they did arise from gas near the "innermost stable circular orbit", then the maximum gravitational redshift would be about 0.2. In addition, the lines would have a characteristic profile caused by a combination of gravitational redshift and the blue/redshift and Doppler boosting caused by the fast-moving gas (such line profiles are sometimes seen at X-ray wavelengths). Of course many if not most quasars have redshifts that far exceed 0.2 and can only be explained by cosmic expansion.






                share|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  The optical emission lines of quasars do not come from sufficiently close the the central supermassive black hole to be appreciably gravitationally redshifted.



                  If they did arise from gas near the "innermost stable circular orbit", then the maximum gravitational redshift would be about 0.2. In addition, the lines would have a characteristic profile caused by a combination of gravitational redshift and the blue/redshift and Doppler boosting caused by the fast-moving gas (such line profiles are sometimes seen at X-ray wavelengths). Of course many if not most quasars have redshifts that far exceed 0.2 and can only be explained by cosmic expansion.






                  share|improve this answer









                  $endgroup$



                  The optical emission lines of quasars do not come from sufficiently close the the central supermassive black hole to be appreciably gravitationally redshifted.



                  If they did arise from gas near the "innermost stable circular orbit", then the maximum gravitational redshift would be about 0.2. In addition, the lines would have a characteristic profile caused by a combination of gravitational redshift and the blue/redshift and Doppler boosting caused by the fast-moving gas (such line profiles are sometimes seen at X-ray wavelengths). Of course many if not most quasars have redshifts that far exceed 0.2 and can only be explained by cosmic expansion.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 9 hours ago









                  Rob JeffriesRob Jeffries

                  55.9k4116184




                  55.9k4116184





















                      2












                      $begingroup$

                      Both cosmological redshifts, and gravitational redshifts, can be thought of as coming from the same source-- the equations of general relativity. In that sense, the distinction between them is somewhat artificial, though useful, but they are redshifts that affect all the lines in the same way. So there is no way to disentangle their effects, other than to model both of their sources. This is not so unusual-- if you have normal Doppler shifts in a reference frame where you don't know the motion of either the source or the detector, then the Doppler shift registered will represent a combination of those motions that you cannot disentangle simply from what you observe-- you will have to model the effects of all contributing effects.



                      That generally means you need to bring in more independent information, such that you can test your models. In the case of quasars, you could look for quasars that appear to be similar except for their distance from you, and then you can assume their gravitational redshift is similar but their cosmological redshift is very different. In particular, you can have relatively nearby quasars that do not have a lot of cosmological redshift, perhaps even comparable to their gravitational redshift. And you can have very distant ones that are predominantly cosmological redshifts. You can also use the fact that the cosmological redshift is the same for all the lines of a given quasar, but gravitational redshifts will depend on how deep in the gravity well each line forms. There is also a connection between where a line forms and what its Doppler shift is, because the gas is generally moving, so we even have a third source of frequency shift, but it connects with gravitational redshift in ways that alter the line shape. So we have new information from line shape, that allows the models to be tested, even though we must combine no less than three separate sources of frequency shift (special relativistic, general relativistic due to local gravity, general relativistic due to global effects of the expanding universe).



                      You have other information also, such as temperatures and Doppler shifts, and time dependence, so you put all that together and you try to model the quasar. That's the only way to disentangle the redshifts, you need self-consistent models that succeed at producing a wide range of observables. Remember that we had quasar spectra for many years before we were even able to figure out what they were, and debate still continues about the sources of the various spectral components.






                      share|improve this answer











                      $endgroup$

















                        2












                        $begingroup$

                        Both cosmological redshifts, and gravitational redshifts, can be thought of as coming from the same source-- the equations of general relativity. In that sense, the distinction between them is somewhat artificial, though useful, but they are redshifts that affect all the lines in the same way. So there is no way to disentangle their effects, other than to model both of their sources. This is not so unusual-- if you have normal Doppler shifts in a reference frame where you don't know the motion of either the source or the detector, then the Doppler shift registered will represent a combination of those motions that you cannot disentangle simply from what you observe-- you will have to model the effects of all contributing effects.



                        That generally means you need to bring in more independent information, such that you can test your models. In the case of quasars, you could look for quasars that appear to be similar except for their distance from you, and then you can assume their gravitational redshift is similar but their cosmological redshift is very different. In particular, you can have relatively nearby quasars that do not have a lot of cosmological redshift, perhaps even comparable to their gravitational redshift. And you can have very distant ones that are predominantly cosmological redshifts. You can also use the fact that the cosmological redshift is the same for all the lines of a given quasar, but gravitational redshifts will depend on how deep in the gravity well each line forms. There is also a connection between where a line forms and what its Doppler shift is, because the gas is generally moving, so we even have a third source of frequency shift, but it connects with gravitational redshift in ways that alter the line shape. So we have new information from line shape, that allows the models to be tested, even though we must combine no less than three separate sources of frequency shift (special relativistic, general relativistic due to local gravity, general relativistic due to global effects of the expanding universe).



                        You have other information also, such as temperatures and Doppler shifts, and time dependence, so you put all that together and you try to model the quasar. That's the only way to disentangle the redshifts, you need self-consistent models that succeed at producing a wide range of observables. Remember that we had quasar spectra for many years before we were even able to figure out what they were, and debate still continues about the sources of the various spectral components.






                        share|improve this answer











                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Both cosmological redshifts, and gravitational redshifts, can be thought of as coming from the same source-- the equations of general relativity. In that sense, the distinction between them is somewhat artificial, though useful, but they are redshifts that affect all the lines in the same way. So there is no way to disentangle their effects, other than to model both of their sources. This is not so unusual-- if you have normal Doppler shifts in a reference frame where you don't know the motion of either the source or the detector, then the Doppler shift registered will represent a combination of those motions that you cannot disentangle simply from what you observe-- you will have to model the effects of all contributing effects.



                          That generally means you need to bring in more independent information, such that you can test your models. In the case of quasars, you could look for quasars that appear to be similar except for their distance from you, and then you can assume their gravitational redshift is similar but their cosmological redshift is very different. In particular, you can have relatively nearby quasars that do not have a lot of cosmological redshift, perhaps even comparable to their gravitational redshift. And you can have very distant ones that are predominantly cosmological redshifts. You can also use the fact that the cosmological redshift is the same for all the lines of a given quasar, but gravitational redshifts will depend on how deep in the gravity well each line forms. There is also a connection between where a line forms and what its Doppler shift is, because the gas is generally moving, so we even have a third source of frequency shift, but it connects with gravitational redshift in ways that alter the line shape. So we have new information from line shape, that allows the models to be tested, even though we must combine no less than three separate sources of frequency shift (special relativistic, general relativistic due to local gravity, general relativistic due to global effects of the expanding universe).



                          You have other information also, such as temperatures and Doppler shifts, and time dependence, so you put all that together and you try to model the quasar. That's the only way to disentangle the redshifts, you need self-consistent models that succeed at producing a wide range of observables. Remember that we had quasar spectra for many years before we were even able to figure out what they were, and debate still continues about the sources of the various spectral components.






                          share|improve this answer











                          $endgroup$



                          Both cosmological redshifts, and gravitational redshifts, can be thought of as coming from the same source-- the equations of general relativity. In that sense, the distinction between them is somewhat artificial, though useful, but they are redshifts that affect all the lines in the same way. So there is no way to disentangle their effects, other than to model both of their sources. This is not so unusual-- if you have normal Doppler shifts in a reference frame where you don't know the motion of either the source or the detector, then the Doppler shift registered will represent a combination of those motions that you cannot disentangle simply from what you observe-- you will have to model the effects of all contributing effects.



                          That generally means you need to bring in more independent information, such that you can test your models. In the case of quasars, you could look for quasars that appear to be similar except for their distance from you, and then you can assume their gravitational redshift is similar but their cosmological redshift is very different. In particular, you can have relatively nearby quasars that do not have a lot of cosmological redshift, perhaps even comparable to their gravitational redshift. And you can have very distant ones that are predominantly cosmological redshifts. You can also use the fact that the cosmological redshift is the same for all the lines of a given quasar, but gravitational redshifts will depend on how deep in the gravity well each line forms. There is also a connection between where a line forms and what its Doppler shift is, because the gas is generally moving, so we even have a third source of frequency shift, but it connects with gravitational redshift in ways that alter the line shape. So we have new information from line shape, that allows the models to be tested, even though we must combine no less than three separate sources of frequency shift (special relativistic, general relativistic due to local gravity, general relativistic due to global effects of the expanding universe).



                          You have other information also, such as temperatures and Doppler shifts, and time dependence, so you put all that together and you try to model the quasar. That's the only way to disentangle the redshifts, you need self-consistent models that succeed at producing a wide range of observables. Remember that we had quasar spectra for many years before we were even able to figure out what they were, and debate still continues about the sources of the various spectral components.







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 9 hours ago

























                          answered 9 hours ago









                          Ken GKen G

                          4,5531716




                          4,5531716



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Astronomy Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f32237%2fquasar-redshifts%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                              Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                              Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)