Conditions when a permutation matrix is symmetric Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Symmetric Permutation Matrixeigendecomposition of a symmetric singular matrix and definition of unitary matrixNot getting the right answer for a matrix in reduced column echelon form.Prove or disprove that trace of matrix $X$ is zeroSpectral radius of the product of a right stochastic matrix and hermitian matrixReducible matrices and strongly connected graphsEigenvalues and eigenspaces in a symmetric matrixbinary indexing matrixMatrix permutation-similarity invariantsMaximal diagonalization of a matrix by permutation matricesA very interesting property of symmetric positive definite matrix. Need proof! (Citation needed)

What does Turing mean by this statement?

Flight departed from the gate 5 min before scheduled departure time. Refund options

What order were files/directories output in dir?

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

If the probability of a dog barking one or more times in a given hour is 84%, then what is the probability of a dog barking in 30 minutes?

What do you call the main part of a joke?

What does 丫 mean? 丫是什么意思?

How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?

Is there any word for a place full of confusion?

How do living politicians protect their readily obtainable signatures from misuse?

Can the Flaming Sphere spell be rammed into multiple Tiny creatures that are in the same 5-foot square?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

How does the math work when buying airline miles?

Why weren't discrete x86 CPUs ever used in game hardware?

Drawing spherical mirrors

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

How to report t statistic from R

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Why are my pictures showing a dark band on one edge?

Do I really need to have a message in a novel to appeal to readers?

What is an "asse" in Elizabethan English?

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

How could we fake a moon landing now?



Conditions when a permutation matrix is symmetric



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Symmetric Permutation Matrixeigendecomposition of a symmetric singular matrix and definition of unitary matrixNot getting the right answer for a matrix in reduced column echelon form.Prove or disprove that trace of matrix $X$ is zeroSpectral radius of the product of a right stochastic matrix and hermitian matrixReducible matrices and strongly connected graphsEigenvalues and eigenspaces in a symmetric matrixbinary indexing matrixMatrix permutation-similarity invariantsMaximal diagonalization of a matrix by permutation matricesA very interesting property of symmetric positive definite matrix. Need proof! (Citation needed)










1












$begingroup$


I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.



Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.



As we know, a permutation matrix is orthogonal, i.e., $E^T=E^-1$. I am interested in when it is symmetric, i.e., $E^T=E^-1 = E$



Suppose



  1. Start from an identity matrix $I_n$.


  2. $n$ can be even or odd number.

  3. Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_ii=E_jj=0$ and $E_ij=E_ji=1$.

  4. Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.

One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get



$$beginbmatrix0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 endbmatrix,$$



which is not symmetric. In this case, I repeat $2$ in each suit.



Is the above correct? Or I miss some key assumptions?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
    $endgroup$
    – Phicar
    6 hours ago






  • 1




    $begingroup$
    Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
    $endgroup$
    – amsmath
    6 hours ago















1












$begingroup$


I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.



Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.



As we know, a permutation matrix is orthogonal, i.e., $E^T=E^-1$. I am interested in when it is symmetric, i.e., $E^T=E^-1 = E$



Suppose



  1. Start from an identity matrix $I_n$.


  2. $n$ can be even or odd number.

  3. Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_ii=E_jj=0$ and $E_ij=E_ji=1$.

  4. Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.

One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get



$$beginbmatrix0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 endbmatrix,$$



which is not symmetric. In this case, I repeat $2$ in each suit.



Is the above correct? Or I miss some key assumptions?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
    $endgroup$
    – Phicar
    6 hours ago






  • 1




    $begingroup$
    Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
    $endgroup$
    – amsmath
    6 hours ago













1












1








1





$begingroup$


I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.



Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.



As we know, a permutation matrix is orthogonal, i.e., $E^T=E^-1$. I am interested in when it is symmetric, i.e., $E^T=E^-1 = E$



Suppose



  1. Start from an identity matrix $I_n$.


  2. $n$ can be even or odd number.

  3. Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_ii=E_jj=0$ and $E_ij=E_ji=1$.

  4. Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.

One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get



$$beginbmatrix0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 endbmatrix,$$



which is not symmetric. In this case, I repeat $2$ in each suit.



Is the above correct? Or I miss some key assumptions?










share|cite|improve this question









$endgroup$




I am now playing with permutation matrices, http://mathworld.wolfram.com/PermutationMatrix.html.



Also, there is a similar discussion: Symmetric Permutation Matrix.
I want to ask more details than this one.



As we know, a permutation matrix is orthogonal, i.e., $E^T=E^-1$. I am interested in when it is symmetric, i.e., $E^T=E^-1 = E$



Suppose



  1. Start from an identity matrix $I_n$.


  2. $n$ can be even or odd number.

  3. Pick $(i,j)$, where $0<i,jleq n$ and $i, j$ are integer. Exchange $i$-th and $j$-th columns of $I_n$ (identity matrix) and get $E$. Then $E$ is symmetric. This is because $E_ii=E_jj=0$ and $E_ij=E_ji=1$.

  4. Based on 3., if I pick a number of sets $(i,j)$, $(k,l)$, $(q,r), ldots$, without repeated index in each $(cdot,cdot)$, and permute columns of $I_n$ according to these sets, then the resulting permutation matrix $E$ is symmetric.

One key thing here is "without repeated index in each $(cdot,cdot)$". This is because if I do $(1,2)$ and $(2,3)$ for $I_3$ for example, I get



$$beginbmatrix0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 endbmatrix,$$



which is not symmetric. In this case, I repeat $2$ in each suit.



Is the above correct? Or I miss some key assumptions?







linear-algebra matrices permutations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 6 hours ago









sleeve chensleeve chen

3,20042256




3,20042256







  • 1




    $begingroup$
    Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
    $endgroup$
    – Phicar
    6 hours ago






  • 1




    $begingroup$
    Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
    $endgroup$
    – amsmath
    6 hours ago












  • 1




    $begingroup$
    Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
    $endgroup$
    – Phicar
    6 hours ago






  • 1




    $begingroup$
    Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
    $endgroup$
    – amsmath
    6 hours ago







1




1




$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
6 hours ago




$begingroup$
Yes, in general the permutation is idempotent when is a disjoint product of fix points and cycles of length $2.$
$endgroup$
– Phicar
6 hours ago




1




1




$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
6 hours ago




$begingroup$
Yes, it's correct. A permutation matrix describes a permutation $pi$. You want $E^2 = I$, so $picircpi = id$.
$endgroup$
– amsmath
6 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

You’re correct!



We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on $1,dots,n$ and vice versa.



Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_1i=e_i1$ by symmetry. Thus $E$ swaps the first and the $i^th$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    As you have noted condition for a permutation matrix $E$ to be symmetric
    is that $E^-1=E$, and this condition can be expressed as $E^2=I$.



    Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)



    So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).



    In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194162%2fconditions-when-a-permutation-matrix-is-symmetric%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      You’re correct!



      We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on $1,dots,n$ and vice versa.



      Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_1i=e_i1$ by symmetry. Thus $E$ swaps the first and the $i^th$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        You’re correct!



        We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on $1,dots,n$ and vice versa.



        Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_1i=e_i1$ by symmetry. Thus $E$ swaps the first and the $i^th$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          You’re correct!



          We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on $1,dots,n$ and vice versa.



          Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_1i=e_i1$ by symmetry. Thus $E$ swaps the first and the $i^th$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.






          share|cite|improve this answer









          $endgroup$



          You’re correct!



          We can think of the action of $E$ on the set of $n$ standard basis vectors as a permutation $sigma$ on $1,dots,n$ and vice versa.



          Let $E$ be symmetric, and let $i$ be the only nonzero entry in the first row. This means that $e_1i=e_i1$ by symmetry. Thus $E$ swaps the first and the $i^th$ standard basis vectors, so $(1~i)$ is a cycle in the cycle decomposition of $sigma$. This argument applies to the rest of the rows to show that $sigma$ is a product of disjoint transpositions.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Santana AftonSantana Afton

          3,1922730




          3,1922730





















              2












              $begingroup$

              As you have noted condition for a permutation matrix $E$ to be symmetric
              is that $E^-1=E$, and this condition can be expressed as $E^2=I$.



              Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)



              So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).



              In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                As you have noted condition for a permutation matrix $E$ to be symmetric
                is that $E^-1=E$, and this condition can be expressed as $E^2=I$.



                Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)



                So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).



                In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  As you have noted condition for a permutation matrix $E$ to be symmetric
                  is that $E^-1=E$, and this condition can be expressed as $E^2=I$.



                  Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)



                  So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).



                  In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).






                  share|cite|improve this answer









                  $endgroup$



                  As you have noted condition for a permutation matrix $E$ to be symmetric
                  is that $E^-1=E$, and this condition can be expressed as $E^2=I$.



                  Interpreting the last condition as repeating the permutation is identity. So this represents a permutation that is its own inverse. That is if $E$ sends a basis vector $v$ to $W$ $E^2=I$ implies $Ew=v$. (possible that $v=w$)



                  So this corresponds to a permutation where an element is fixed, or if it sends $x$ to $y$ then it has to send $y$ to $x$. Thus this consists of many disjoint swaps (and possibly some fixed points).



                  In group theory it is a permutation of cycle type corresponding to the partition of $n$ into $2$'s and $1$'s. For example $9=2+2+2+ 1^6 $ (that is 1 repeated six times).







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  P VanchinathanP Vanchinathan

                  15.7k12236




                  15.7k12236



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194162%2fconditions-when-a-permutation-matrix-is-symmetric%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                      Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                      Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거