Definition of Newton's first lawAre Newton's “laws” of motion laws or definitions of force and mass?Is there any true inertial reference frame in the universe?Newton's First Law of Motion; Empirical AspectsHow does Newton's first law asserts the existence of inertial frames?Why is Newton's first law necessary?Newton's first law: unclear multiple choice questionGalilean Relativity is already included in Newton's Laws?Newton's first law of motion a corollary of second law?What does Newton's first law of motion want to say?Statement of the first law of motion and definition of forceDoes Newton's First Law depend on the object having mass?

Does kinetic energy warp spacetime?

Can 'sudo apt-get remove [write]' destroy my Ubuntu?

What is the significance of 4200 BCE in context of farming replacing foraging in Europe?

Was this character’s old age look CGI or make-up?

How can a Lich look like a human without magic?

Surely they can fit?

What's the word for the soldier salute?

Light Switch Terminals

Why does getw return -1 when trying to read a character?

Why is this int array not passed as an object vararg array?

How do I compare the result of "1d20+x, with advantage" to "1d20+y, without advantage", assuming x < y?

tikz: not so precise graphic

Should these notes be played as a chord or one after another?

Do atomic orbitals "pulse" in time?

Drawing lines to nearest point

Why was castling bad for white in this game, and engine strongly prefered trading queens?

How did Thanos not realise this had happened at the end of Endgame?

51% attack - apparently very easy? refering to CZ's "rollback btc chain" - How to make sure such corruptible scenario can never happen so easily?

What is the best way for a skeleton to impersonate human without using magic?

Word for being out at night during curfew

Why does the Earth follow an elliptical trajectory rather than a parabolic one?

How to compact two the parabol commands in the following example?

Would an 8% reduction in drag outweigh the weight addition from this custom CFD-tested winglet?

Who was this character from the Tomb of Annihilation adventure before they became a monster?



Definition of Newton's first law


Are Newton's “laws” of motion laws or definitions of force and mass?Is there any true inertial reference frame in the universe?Newton's First Law of Motion; Empirical AspectsHow does Newton's first law asserts the existence of inertial frames?Why is Newton's first law necessary?Newton's first law: unclear multiple choice questionGalilean Relativity is already included in Newton's Laws?Newton's first law of motion a corollary of second law?What does Newton's first law of motion want to say?Statement of the first law of motion and definition of forceDoes Newton's First Law depend on the object having mass?













3












$begingroup$


I have always had a doubt in the definition of the Newton's first law. In general, it is stated in a form like:




An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.




However, we know that there are reference frames in which the first law is not valid, these are the called non-inertial reference frames. So the first law should be stated as "there are reference frames in which an object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force". But the most books don't care about this and state the first law like the first way, what to me is incorrect.



I understand a high school book doesn't talk about non-inertial reference frames (this is not simple), but I have already seen a lot of undergraduate and graduate physics books do this. What do you think? This statement is really incorrect?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The accurate form of the definition would start with 'In an inertial frame of reference' + 'the rest'
    $endgroup$
    – Mitchell
    5 hours ago






  • 2




    $begingroup$
    Yes, you are precisely correct. More advanced books like An Introduction to Mechanics by Kleppner discuss this. You might be interested in that book.
    $endgroup$
    – SpiralRain
    5 hours ago











  • $begingroup$
    Can you give some examples of places where you've seen undergraduate and graduate physics books (especially graduate physics books) omitting the stipulation that Newton's First Law only applies to inertial reference frames?
    $endgroup$
    – probably_someone
    5 hours ago










  • $begingroup$
    "Yes, you are precisely on-point and perfectly correct." That is really the answer but is too short to be posted as an answer. :P To extend your concerns to the way the rest of the two laws are presented, see: physics.stackexchange.com/q/70186
    $endgroup$
    – Dvij Mankad
    4 hours ago







  • 2




    $begingroup$
    Possible duplicate of Are Newton's "laws" of motion laws or definitions of force and mass?
    $endgroup$
    – Dvij Mankad
    4 hours ago
















3












$begingroup$


I have always had a doubt in the definition of the Newton's first law. In general, it is stated in a form like:




An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.




However, we know that there are reference frames in which the first law is not valid, these are the called non-inertial reference frames. So the first law should be stated as "there are reference frames in which an object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force". But the most books don't care about this and state the first law like the first way, what to me is incorrect.



I understand a high school book doesn't talk about non-inertial reference frames (this is not simple), but I have already seen a lot of undergraduate and graduate physics books do this. What do you think? This statement is really incorrect?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The accurate form of the definition would start with 'In an inertial frame of reference' + 'the rest'
    $endgroup$
    – Mitchell
    5 hours ago






  • 2




    $begingroup$
    Yes, you are precisely correct. More advanced books like An Introduction to Mechanics by Kleppner discuss this. You might be interested in that book.
    $endgroup$
    – SpiralRain
    5 hours ago











  • $begingroup$
    Can you give some examples of places where you've seen undergraduate and graduate physics books (especially graduate physics books) omitting the stipulation that Newton's First Law only applies to inertial reference frames?
    $endgroup$
    – probably_someone
    5 hours ago










  • $begingroup$
    "Yes, you are precisely on-point and perfectly correct." That is really the answer but is too short to be posted as an answer. :P To extend your concerns to the way the rest of the two laws are presented, see: physics.stackexchange.com/q/70186
    $endgroup$
    – Dvij Mankad
    4 hours ago







  • 2




    $begingroup$
    Possible duplicate of Are Newton's "laws" of motion laws or definitions of force and mass?
    $endgroup$
    – Dvij Mankad
    4 hours ago














3












3








3


1



$begingroup$


I have always had a doubt in the definition of the Newton's first law. In general, it is stated in a form like:




An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.




However, we know that there are reference frames in which the first law is not valid, these are the called non-inertial reference frames. So the first law should be stated as "there are reference frames in which an object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force". But the most books don't care about this and state the first law like the first way, what to me is incorrect.



I understand a high school book doesn't talk about non-inertial reference frames (this is not simple), but I have already seen a lot of undergraduate and graduate physics books do this. What do you think? This statement is really incorrect?










share|cite|improve this question











$endgroup$




I have always had a doubt in the definition of the Newton's first law. In general, it is stated in a form like:




An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.




However, we know that there are reference frames in which the first law is not valid, these are the called non-inertial reference frames. So the first law should be stated as "there are reference frames in which an object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force". But the most books don't care about this and state the first law like the first way, what to me is incorrect.



I understand a high school book doesn't talk about non-inertial reference frames (this is not simple), but I have already seen a lot of undergraduate and graduate physics books do this. What do you think? This statement is really incorrect?







newtonian-mechanics reference-frames inertial-frames definition






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Qmechanic

109k122041262




109k122041262










asked 5 hours ago









AlfredVAlfredV

613




613







  • 1




    $begingroup$
    The accurate form of the definition would start with 'In an inertial frame of reference' + 'the rest'
    $endgroup$
    – Mitchell
    5 hours ago






  • 2




    $begingroup$
    Yes, you are precisely correct. More advanced books like An Introduction to Mechanics by Kleppner discuss this. You might be interested in that book.
    $endgroup$
    – SpiralRain
    5 hours ago











  • $begingroup$
    Can you give some examples of places where you've seen undergraduate and graduate physics books (especially graduate physics books) omitting the stipulation that Newton's First Law only applies to inertial reference frames?
    $endgroup$
    – probably_someone
    5 hours ago










  • $begingroup$
    "Yes, you are precisely on-point and perfectly correct." That is really the answer but is too short to be posted as an answer. :P To extend your concerns to the way the rest of the two laws are presented, see: physics.stackexchange.com/q/70186
    $endgroup$
    – Dvij Mankad
    4 hours ago







  • 2




    $begingroup$
    Possible duplicate of Are Newton's "laws" of motion laws or definitions of force and mass?
    $endgroup$
    – Dvij Mankad
    4 hours ago













  • 1




    $begingroup$
    The accurate form of the definition would start with 'In an inertial frame of reference' + 'the rest'
    $endgroup$
    – Mitchell
    5 hours ago






  • 2




    $begingroup$
    Yes, you are precisely correct. More advanced books like An Introduction to Mechanics by Kleppner discuss this. You might be interested in that book.
    $endgroup$
    – SpiralRain
    5 hours ago











  • $begingroup$
    Can you give some examples of places where you've seen undergraduate and graduate physics books (especially graduate physics books) omitting the stipulation that Newton's First Law only applies to inertial reference frames?
    $endgroup$
    – probably_someone
    5 hours ago










  • $begingroup$
    "Yes, you are precisely on-point and perfectly correct." That is really the answer but is too short to be posted as an answer. :P To extend your concerns to the way the rest of the two laws are presented, see: physics.stackexchange.com/q/70186
    $endgroup$
    – Dvij Mankad
    4 hours ago







  • 2




    $begingroup$
    Possible duplicate of Are Newton's "laws" of motion laws or definitions of force and mass?
    $endgroup$
    – Dvij Mankad
    4 hours ago








1




1




$begingroup$
The accurate form of the definition would start with 'In an inertial frame of reference' + 'the rest'
$endgroup$
– Mitchell
5 hours ago




$begingroup$
The accurate form of the definition would start with 'In an inertial frame of reference' + 'the rest'
$endgroup$
– Mitchell
5 hours ago




2




2




$begingroup$
Yes, you are precisely correct. More advanced books like An Introduction to Mechanics by Kleppner discuss this. You might be interested in that book.
$endgroup$
– SpiralRain
5 hours ago





$begingroup$
Yes, you are precisely correct. More advanced books like An Introduction to Mechanics by Kleppner discuss this. You might be interested in that book.
$endgroup$
– SpiralRain
5 hours ago













$begingroup$
Can you give some examples of places where you've seen undergraduate and graduate physics books (especially graduate physics books) omitting the stipulation that Newton's First Law only applies to inertial reference frames?
$endgroup$
– probably_someone
5 hours ago




$begingroup$
Can you give some examples of places where you've seen undergraduate and graduate physics books (especially graduate physics books) omitting the stipulation that Newton's First Law only applies to inertial reference frames?
$endgroup$
– probably_someone
5 hours ago












$begingroup$
"Yes, you are precisely on-point and perfectly correct." That is really the answer but is too short to be posted as an answer. :P To extend your concerns to the way the rest of the two laws are presented, see: physics.stackexchange.com/q/70186
$endgroup$
– Dvij Mankad
4 hours ago





$begingroup$
"Yes, you are precisely on-point and perfectly correct." That is really the answer but is too short to be posted as an answer. :P To extend your concerns to the way the rest of the two laws are presented, see: physics.stackexchange.com/q/70186
$endgroup$
– Dvij Mankad
4 hours ago





2




2




$begingroup$
Possible duplicate of Are Newton's "laws" of motion laws or definitions of force and mass?
$endgroup$
– Dvij Mankad
4 hours ago





$begingroup$
Possible duplicate of Are Newton's "laws" of motion laws or definitions of force and mass?
$endgroup$
– Dvij Mankad
4 hours ago











3 Answers
3






active

oldest

votes


















2












$begingroup$

Newton starts with the assumption that there is a special preferred frame of reference:



Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external...




Absolute space, in its own nature, without regard to anything external, remains always similar and immovable.


It's clear from context that Newton intends his laws to refer to measurements in that "absolute" frame. So Newton, at least, does not have to qualify his laws further at this point because he's already qualified them up front by specifying the frame he's working in.



I don't know what books you're talking about, but if they're following Newton, then perhaps they're doing exactly the same thing.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Well, nobody is supposed to really use the concept of the absolute space of Newton these days, right? I mean even pre-SR, there is no way to pin down this absolute frame of Newton's imagination because all the tests one can perform to check if one is in the preferred frame are Galilean invariant and thus, ironically enough, do not prefer a specific frame.
    $endgroup$
    – Dvij Mankad
    52 mins ago



















1












$begingroup$

Many texts are encumbered by too much tradition in many ways when it comes to explaining important, basic concepts.



The "proper" statement of Newton's first law should have two parts. One of these is the definition of an inertial frame of reference: this is a frame of reference in which all objects which are not being acted on by any forces, i.e. are not interacting with other objects, will move with steady motion. The second part is that the ways in which objects move and interactions behave are such that it is possible to have such a frame.



The last part is a physical law, because we can imagine a world where it does not hold, but we cannot imagine a world where a "definition" doesn't hold "physically" since definitions are statements of what words mean and that is something purely in our heads (We could imagine though, of course, a world where people use the word differently and thus don't accept such a definition, but not the definition itself).



A world where the "law" part of Newton's first law doesn't hold is a world where no inertial frames exist, i.e. nothing in it satisfies the definition, but that's not the same as the definition being wrong (e.g. I could define a "zneezax" as something that is "a piece of candy-like dragon blood that glows bright pink". No zneezaxes exist, as far as we know, but that doesn't invalidate the definition).



In fact, however, it is quite difficult to imagine such a world, but not impossible. Because, it turns out, if you have a bunch of objects in fixed paths of motion you can, with rather clever and weird choices of complicated, curvilinear coordinate systems that morph over time (if you don't like that last part, keep in mind that a simply-moving system is a simple form of such "morphing"), no matter how they're moving, make them all "at rest" or in "steady motion", i.e. that their coordinates do not change. To rule that out, you actually need to thus quantify over an unlimited number of possibilites including ones counterfactual to the actual situation at hand.



(For a simple concrete example, consider a "universe" with different and very simple laws of physics in which its sole content is two separate, non-interacting, point-like objects, that oscillate forever, back and forth with respect to each other, purely on their own, with no connection between them. Define a coordinate system that compresses and rarefies in the direction of their oscillation accordingly. Now they are steady with regard thereto. It would only be by imposing a third, counterfactual object, that one could regard this coordinate system as not inertial.)



Hence, I think a better statement may be, after some thought on this:




"It is possible to impose upon the space and time of the Universe a coordinate system for which, with regard to the same system in all cases, an arbitrary number of arbitrarily-configured objects, were such to exist, would move in a steady fashion, unless some are in interaction with each other, in which case, only those objects who are not in such interaction, will be assured to move steadily."




then to follow it with:




"Such coordinate systems, are what we call inertial systems."




The first is the law part, the second part is the definition of the inertial system. As one can see, this is quite clearly a law since it requires that the laws governing the motion and interaction of objects are such as to make this possible.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    +1: Although, it has always seemed to me that even this kind of careful analysis leaves out some circularity about the non-existence of forces. Let's say we want to test a frame for it being inertial and we see that a particle is accelerating wrt it. How do we know if the frame is non-inertial or there exists a field which imparts some force on the particle? For a way out, I think we always assume that if no other particles are "around", no field is supposed to be present and the particle is truly free. Now we can put the onus solely on the frame.
    $endgroup$
    – Dvij Mankad
    59 mins ago



















0












$begingroup$

The general form of Newton's first law itself turns out to be the definition of inertial frame of reference to some extent.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    This is empathetically wrong. If a "law" is a definition then it is no law. See: physics.stackexchange.com/questions/70186/…
    $endgroup$
    – Dvij Mankad
    2 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f479470%2fdefinition-of-newtons-first-law%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Newton starts with the assumption that there is a special preferred frame of reference:



Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external...




Absolute space, in its own nature, without regard to anything external, remains always similar and immovable.


It's clear from context that Newton intends his laws to refer to measurements in that "absolute" frame. So Newton, at least, does not have to qualify his laws further at this point because he's already qualified them up front by specifying the frame he's working in.



I don't know what books you're talking about, but if they're following Newton, then perhaps they're doing exactly the same thing.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Well, nobody is supposed to really use the concept of the absolute space of Newton these days, right? I mean even pre-SR, there is no way to pin down this absolute frame of Newton's imagination because all the tests one can perform to check if one is in the preferred frame are Galilean invariant and thus, ironically enough, do not prefer a specific frame.
    $endgroup$
    – Dvij Mankad
    52 mins ago
















2












$begingroup$

Newton starts with the assumption that there is a special preferred frame of reference:



Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external...




Absolute space, in its own nature, without regard to anything external, remains always similar and immovable.


It's clear from context that Newton intends his laws to refer to measurements in that "absolute" frame. So Newton, at least, does not have to qualify his laws further at this point because he's already qualified them up front by specifying the frame he's working in.



I don't know what books you're talking about, but if they're following Newton, then perhaps they're doing exactly the same thing.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Well, nobody is supposed to really use the concept of the absolute space of Newton these days, right? I mean even pre-SR, there is no way to pin down this absolute frame of Newton's imagination because all the tests one can perform to check if one is in the preferred frame are Galilean invariant and thus, ironically enough, do not prefer a specific frame.
    $endgroup$
    – Dvij Mankad
    52 mins ago














2












2








2





$begingroup$

Newton starts with the assumption that there is a special preferred frame of reference:



Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external...




Absolute space, in its own nature, without regard to anything external, remains always similar and immovable.


It's clear from context that Newton intends his laws to refer to measurements in that "absolute" frame. So Newton, at least, does not have to qualify his laws further at this point because he's already qualified them up front by specifying the frame he's working in.



I don't know what books you're talking about, but if they're following Newton, then perhaps they're doing exactly the same thing.






share|cite|improve this answer









$endgroup$



Newton starts with the assumption that there is a special preferred frame of reference:



Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external...




Absolute space, in its own nature, without regard to anything external, remains always similar and immovable.


It's clear from context that Newton intends his laws to refer to measurements in that "absolute" frame. So Newton, at least, does not have to qualify his laws further at this point because he's already qualified them up front by specifying the frame he's working in.



I don't know what books you're talking about, but if they're following Newton, then perhaps they're doing exactly the same thing.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 hours ago









WillOWillO

7,12022233




7,12022233











  • $begingroup$
    Well, nobody is supposed to really use the concept of the absolute space of Newton these days, right? I mean even pre-SR, there is no way to pin down this absolute frame of Newton's imagination because all the tests one can perform to check if one is in the preferred frame are Galilean invariant and thus, ironically enough, do not prefer a specific frame.
    $endgroup$
    – Dvij Mankad
    52 mins ago

















  • $begingroup$
    Well, nobody is supposed to really use the concept of the absolute space of Newton these days, right? I mean even pre-SR, there is no way to pin down this absolute frame of Newton's imagination because all the tests one can perform to check if one is in the preferred frame are Galilean invariant and thus, ironically enough, do not prefer a specific frame.
    $endgroup$
    – Dvij Mankad
    52 mins ago
















$begingroup$
Well, nobody is supposed to really use the concept of the absolute space of Newton these days, right? I mean even pre-SR, there is no way to pin down this absolute frame of Newton's imagination because all the tests one can perform to check if one is in the preferred frame are Galilean invariant and thus, ironically enough, do not prefer a specific frame.
$endgroup$
– Dvij Mankad
52 mins ago





$begingroup$
Well, nobody is supposed to really use the concept of the absolute space of Newton these days, right? I mean even pre-SR, there is no way to pin down this absolute frame of Newton's imagination because all the tests one can perform to check if one is in the preferred frame are Galilean invariant and thus, ironically enough, do not prefer a specific frame.
$endgroup$
– Dvij Mankad
52 mins ago












1












$begingroup$

Many texts are encumbered by too much tradition in many ways when it comes to explaining important, basic concepts.



The "proper" statement of Newton's first law should have two parts. One of these is the definition of an inertial frame of reference: this is a frame of reference in which all objects which are not being acted on by any forces, i.e. are not interacting with other objects, will move with steady motion. The second part is that the ways in which objects move and interactions behave are such that it is possible to have such a frame.



The last part is a physical law, because we can imagine a world where it does not hold, but we cannot imagine a world where a "definition" doesn't hold "physically" since definitions are statements of what words mean and that is something purely in our heads (We could imagine though, of course, a world where people use the word differently and thus don't accept such a definition, but not the definition itself).



A world where the "law" part of Newton's first law doesn't hold is a world where no inertial frames exist, i.e. nothing in it satisfies the definition, but that's not the same as the definition being wrong (e.g. I could define a "zneezax" as something that is "a piece of candy-like dragon blood that glows bright pink". No zneezaxes exist, as far as we know, but that doesn't invalidate the definition).



In fact, however, it is quite difficult to imagine such a world, but not impossible. Because, it turns out, if you have a bunch of objects in fixed paths of motion you can, with rather clever and weird choices of complicated, curvilinear coordinate systems that morph over time (if you don't like that last part, keep in mind that a simply-moving system is a simple form of such "morphing"), no matter how they're moving, make them all "at rest" or in "steady motion", i.e. that their coordinates do not change. To rule that out, you actually need to thus quantify over an unlimited number of possibilites including ones counterfactual to the actual situation at hand.



(For a simple concrete example, consider a "universe" with different and very simple laws of physics in which its sole content is two separate, non-interacting, point-like objects, that oscillate forever, back and forth with respect to each other, purely on their own, with no connection between them. Define a coordinate system that compresses and rarefies in the direction of their oscillation accordingly. Now they are steady with regard thereto. It would only be by imposing a third, counterfactual object, that one could regard this coordinate system as not inertial.)



Hence, I think a better statement may be, after some thought on this:




"It is possible to impose upon the space and time of the Universe a coordinate system for which, with regard to the same system in all cases, an arbitrary number of arbitrarily-configured objects, were such to exist, would move in a steady fashion, unless some are in interaction with each other, in which case, only those objects who are not in such interaction, will be assured to move steadily."




then to follow it with:




"Such coordinate systems, are what we call inertial systems."




The first is the law part, the second part is the definition of the inertial system. As one can see, this is quite clearly a law since it requires that the laws governing the motion and interaction of objects are such as to make this possible.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    +1: Although, it has always seemed to me that even this kind of careful analysis leaves out some circularity about the non-existence of forces. Let's say we want to test a frame for it being inertial and we see that a particle is accelerating wrt it. How do we know if the frame is non-inertial or there exists a field which imparts some force on the particle? For a way out, I think we always assume that if no other particles are "around", no field is supposed to be present and the particle is truly free. Now we can put the onus solely on the frame.
    $endgroup$
    – Dvij Mankad
    59 mins ago
















1












$begingroup$

Many texts are encumbered by too much tradition in many ways when it comes to explaining important, basic concepts.



The "proper" statement of Newton's first law should have two parts. One of these is the definition of an inertial frame of reference: this is a frame of reference in which all objects which are not being acted on by any forces, i.e. are not interacting with other objects, will move with steady motion. The second part is that the ways in which objects move and interactions behave are such that it is possible to have such a frame.



The last part is a physical law, because we can imagine a world where it does not hold, but we cannot imagine a world where a "definition" doesn't hold "physically" since definitions are statements of what words mean and that is something purely in our heads (We could imagine though, of course, a world where people use the word differently and thus don't accept such a definition, but not the definition itself).



A world where the "law" part of Newton's first law doesn't hold is a world where no inertial frames exist, i.e. nothing in it satisfies the definition, but that's not the same as the definition being wrong (e.g. I could define a "zneezax" as something that is "a piece of candy-like dragon blood that glows bright pink". No zneezaxes exist, as far as we know, but that doesn't invalidate the definition).



In fact, however, it is quite difficult to imagine such a world, but not impossible. Because, it turns out, if you have a bunch of objects in fixed paths of motion you can, with rather clever and weird choices of complicated, curvilinear coordinate systems that morph over time (if you don't like that last part, keep in mind that a simply-moving system is a simple form of such "morphing"), no matter how they're moving, make them all "at rest" or in "steady motion", i.e. that their coordinates do not change. To rule that out, you actually need to thus quantify over an unlimited number of possibilites including ones counterfactual to the actual situation at hand.



(For a simple concrete example, consider a "universe" with different and very simple laws of physics in which its sole content is two separate, non-interacting, point-like objects, that oscillate forever, back and forth with respect to each other, purely on their own, with no connection between them. Define a coordinate system that compresses and rarefies in the direction of their oscillation accordingly. Now they are steady with regard thereto. It would only be by imposing a third, counterfactual object, that one could regard this coordinate system as not inertial.)



Hence, I think a better statement may be, after some thought on this:




"It is possible to impose upon the space and time of the Universe a coordinate system for which, with regard to the same system in all cases, an arbitrary number of arbitrarily-configured objects, were such to exist, would move in a steady fashion, unless some are in interaction with each other, in which case, only those objects who are not in such interaction, will be assured to move steadily."




then to follow it with:




"Such coordinate systems, are what we call inertial systems."




The first is the law part, the second part is the definition of the inertial system. As one can see, this is quite clearly a law since it requires that the laws governing the motion and interaction of objects are such as to make this possible.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    +1: Although, it has always seemed to me that even this kind of careful analysis leaves out some circularity about the non-existence of forces. Let's say we want to test a frame for it being inertial and we see that a particle is accelerating wrt it. How do we know if the frame is non-inertial or there exists a field which imparts some force on the particle? For a way out, I think we always assume that if no other particles are "around", no field is supposed to be present and the particle is truly free. Now we can put the onus solely on the frame.
    $endgroup$
    – Dvij Mankad
    59 mins ago














1












1








1





$begingroup$

Many texts are encumbered by too much tradition in many ways when it comes to explaining important, basic concepts.



The "proper" statement of Newton's first law should have two parts. One of these is the definition of an inertial frame of reference: this is a frame of reference in which all objects which are not being acted on by any forces, i.e. are not interacting with other objects, will move with steady motion. The second part is that the ways in which objects move and interactions behave are such that it is possible to have such a frame.



The last part is a physical law, because we can imagine a world where it does not hold, but we cannot imagine a world where a "definition" doesn't hold "physically" since definitions are statements of what words mean and that is something purely in our heads (We could imagine though, of course, a world where people use the word differently and thus don't accept such a definition, but not the definition itself).



A world where the "law" part of Newton's first law doesn't hold is a world where no inertial frames exist, i.e. nothing in it satisfies the definition, but that's not the same as the definition being wrong (e.g. I could define a "zneezax" as something that is "a piece of candy-like dragon blood that glows bright pink". No zneezaxes exist, as far as we know, but that doesn't invalidate the definition).



In fact, however, it is quite difficult to imagine such a world, but not impossible. Because, it turns out, if you have a bunch of objects in fixed paths of motion you can, with rather clever and weird choices of complicated, curvilinear coordinate systems that morph over time (if you don't like that last part, keep in mind that a simply-moving system is a simple form of such "morphing"), no matter how they're moving, make them all "at rest" or in "steady motion", i.e. that their coordinates do not change. To rule that out, you actually need to thus quantify over an unlimited number of possibilites including ones counterfactual to the actual situation at hand.



(For a simple concrete example, consider a "universe" with different and very simple laws of physics in which its sole content is two separate, non-interacting, point-like objects, that oscillate forever, back and forth with respect to each other, purely on their own, with no connection between them. Define a coordinate system that compresses and rarefies in the direction of their oscillation accordingly. Now they are steady with regard thereto. It would only be by imposing a third, counterfactual object, that one could regard this coordinate system as not inertial.)



Hence, I think a better statement may be, after some thought on this:




"It is possible to impose upon the space and time of the Universe a coordinate system for which, with regard to the same system in all cases, an arbitrary number of arbitrarily-configured objects, were such to exist, would move in a steady fashion, unless some are in interaction with each other, in which case, only those objects who are not in such interaction, will be assured to move steadily."




then to follow it with:




"Such coordinate systems, are what we call inertial systems."




The first is the law part, the second part is the definition of the inertial system. As one can see, this is quite clearly a law since it requires that the laws governing the motion and interaction of objects are such as to make this possible.






share|cite|improve this answer











$endgroup$



Many texts are encumbered by too much tradition in many ways when it comes to explaining important, basic concepts.



The "proper" statement of Newton's first law should have two parts. One of these is the definition of an inertial frame of reference: this is a frame of reference in which all objects which are not being acted on by any forces, i.e. are not interacting with other objects, will move with steady motion. The second part is that the ways in which objects move and interactions behave are such that it is possible to have such a frame.



The last part is a physical law, because we can imagine a world where it does not hold, but we cannot imagine a world where a "definition" doesn't hold "physically" since definitions are statements of what words mean and that is something purely in our heads (We could imagine though, of course, a world where people use the word differently and thus don't accept such a definition, but not the definition itself).



A world where the "law" part of Newton's first law doesn't hold is a world where no inertial frames exist, i.e. nothing in it satisfies the definition, but that's not the same as the definition being wrong (e.g. I could define a "zneezax" as something that is "a piece of candy-like dragon blood that glows bright pink". No zneezaxes exist, as far as we know, but that doesn't invalidate the definition).



In fact, however, it is quite difficult to imagine such a world, but not impossible. Because, it turns out, if you have a bunch of objects in fixed paths of motion you can, with rather clever and weird choices of complicated, curvilinear coordinate systems that morph over time (if you don't like that last part, keep in mind that a simply-moving system is a simple form of such "morphing"), no matter how they're moving, make them all "at rest" or in "steady motion", i.e. that their coordinates do not change. To rule that out, you actually need to thus quantify over an unlimited number of possibilites including ones counterfactual to the actual situation at hand.



(For a simple concrete example, consider a "universe" with different and very simple laws of physics in which its sole content is two separate, non-interacting, point-like objects, that oscillate forever, back and forth with respect to each other, purely on their own, with no connection between them. Define a coordinate system that compresses and rarefies in the direction of their oscillation accordingly. Now they are steady with regard thereto. It would only be by imposing a third, counterfactual object, that one could regard this coordinate system as not inertial.)



Hence, I think a better statement may be, after some thought on this:




"It is possible to impose upon the space and time of the Universe a coordinate system for which, with regard to the same system in all cases, an arbitrary number of arbitrarily-configured objects, were such to exist, would move in a steady fashion, unless some are in interaction with each other, in which case, only those objects who are not in such interaction, will be assured to move steadily."




then to follow it with:




"Such coordinate systems, are what we call inertial systems."




The first is the law part, the second part is the definition of the inertial system. As one can see, this is quite clearly a law since it requires that the laws governing the motion and interaction of objects are such as to make this possible.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 hours ago

























answered 2 hours ago









The_SympathizerThe_Sympathizer

5,0871028




5,0871028











  • $begingroup$
    +1: Although, it has always seemed to me that even this kind of careful analysis leaves out some circularity about the non-existence of forces. Let's say we want to test a frame for it being inertial and we see that a particle is accelerating wrt it. How do we know if the frame is non-inertial or there exists a field which imparts some force on the particle? For a way out, I think we always assume that if no other particles are "around", no field is supposed to be present and the particle is truly free. Now we can put the onus solely on the frame.
    $endgroup$
    – Dvij Mankad
    59 mins ago

















  • $begingroup$
    +1: Although, it has always seemed to me that even this kind of careful analysis leaves out some circularity about the non-existence of forces. Let's say we want to test a frame for it being inertial and we see that a particle is accelerating wrt it. How do we know if the frame is non-inertial or there exists a field which imparts some force on the particle? For a way out, I think we always assume that if no other particles are "around", no field is supposed to be present and the particle is truly free. Now we can put the onus solely on the frame.
    $endgroup$
    – Dvij Mankad
    59 mins ago
















$begingroup$
+1: Although, it has always seemed to me that even this kind of careful analysis leaves out some circularity about the non-existence of forces. Let's say we want to test a frame for it being inertial and we see that a particle is accelerating wrt it. How do we know if the frame is non-inertial or there exists a field which imparts some force on the particle? For a way out, I think we always assume that if no other particles are "around", no field is supposed to be present and the particle is truly free. Now we can put the onus solely on the frame.
$endgroup$
– Dvij Mankad
59 mins ago





$begingroup$
+1: Although, it has always seemed to me that even this kind of careful analysis leaves out some circularity about the non-existence of forces. Let's say we want to test a frame for it being inertial and we see that a particle is accelerating wrt it. How do we know if the frame is non-inertial or there exists a field which imparts some force on the particle? For a way out, I think we always assume that if no other particles are "around", no field is supposed to be present and the particle is truly free. Now we can put the onus solely on the frame.
$endgroup$
– Dvij Mankad
59 mins ago












0












$begingroup$

The general form of Newton's first law itself turns out to be the definition of inertial frame of reference to some extent.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    This is empathetically wrong. If a "law" is a definition then it is no law. See: physics.stackexchange.com/questions/70186/…
    $endgroup$
    – Dvij Mankad
    2 hours ago















0












$begingroup$

The general form of Newton's first law itself turns out to be the definition of inertial frame of reference to some extent.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    This is empathetically wrong. If a "law" is a definition then it is no law. See: physics.stackexchange.com/questions/70186/…
    $endgroup$
    – Dvij Mankad
    2 hours ago













0












0








0





$begingroup$

The general form of Newton's first law itself turns out to be the definition of inertial frame of reference to some extent.






share|cite|improve this answer









$endgroup$



The general form of Newton's first law itself turns out to be the definition of inertial frame of reference to some extent.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 hours ago









UniqueUnique

6011213




6011213











  • $begingroup$
    This is empathetically wrong. If a "law" is a definition then it is no law. See: physics.stackexchange.com/questions/70186/…
    $endgroup$
    – Dvij Mankad
    2 hours ago
















  • $begingroup$
    This is empathetically wrong. If a "law" is a definition then it is no law. See: physics.stackexchange.com/questions/70186/…
    $endgroup$
    – Dvij Mankad
    2 hours ago















$begingroup$
This is empathetically wrong. If a "law" is a definition then it is no law. See: physics.stackexchange.com/questions/70186/…
$endgroup$
– Dvij Mankad
2 hours ago




$begingroup$
This is empathetically wrong. If a "law" is a definition then it is no law. See: physics.stackexchange.com/questions/70186/…
$endgroup$
– Dvij Mankad
2 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f479470%2fdefinition-of-newtons-first-law%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)