Is taking modulus on both sides of an equation valid?Square root of a squared number changes sign, which to apply first?Why is it valid to multiply both sides of an equation by its complex conjugate?Will there be two square roots for a Complex number?Taking Mod on both sides, mathematically correct?Solving and graphing all values of $z$.When do you take into account the +2kpi for complex numbers arguments in complex equations$z^2 = sqrt3+ 3i$ (complex equation)Range of sum of complex numberssolve $(x+iy)^2= a+ ib$Question on the logic of a proof involving complex numbers

Usefulness of complex chord names?

How can Thor be worthy?

Does kinetic energy warp spacetime?

How to Access data returned from Apex class in JS controller using Lightning web component

How do I compare the result of "1d20+x, with advantage" to "1d20+y, without advantage", assuming x < y?

Would an 8% reduction in drag outweigh the weight addition from this custom CFD-tested winglet?

Why was the Ancient One so hesitant to teach Dr. Strange the art of sorcery?

Extracting sublists that contain similar elements

51% attack - apparently very easy? refering to CZ's "rollback btc chain" - How to make sure such corruptible scenario can never happen so easily?

Run script for 10 times until meets the condition, but break the loop if it meets the condition during iteration

How do I tell my supervisor that he is choosing poor replacements for me while I am on maternity leave?

How to slow yourself down (for playing nice with others)

SSD - Disk is OK, one bad sector

Plastic-on-plastic lubricant that wont leave a residue?

What is Plautus’s pun about frustum and frustrum?

Why does the Earth follow an elliptical trajectory rather than a parabolic one?

Is the schwa sound consistent?

How can I answer high-school writing prompts without sounding weird and fake?

Is taking modulus on both sides of an equation valid?

Create a list of all possible Boolean configurations of three constraints

"Right on the tip of my tongue" meaning?

Proof that the inverse image of a single element is a discrete space

As programers say: Strive to be lazy

Extrude the faces of a cube symmetrically along XYZ



Is taking modulus on both sides of an equation valid?


Square root of a squared number changes sign, which to apply first?Why is it valid to multiply both sides of an equation by its complex conjugate?Will there be two square roots for a Complex number?Taking Mod on both sides, mathematically correct?Solving and graphing all values of $z$.When do you take into account the +2kpi for complex numbers arguments in complex equations$z^2 = sqrt3+ 3i$ (complex equation)Range of sum of complex numberssolve $(x+iy)^2= a+ ib$Question on the logic of a proof involving complex numbers













2












$begingroup$


This might look like a copy of another question, but what I'm about to propose here is new. There's this question,




Find the least positive integral value of n for which $(frac1+i1-i)^n = 1$




While solving, if we multiply what is within the bracket, by the conjugate of denominator and divide by the same thing, we get $i$ in the bracket, that means, the question boils down to




$i ^ n= 1$




We know that the least positive value $n$ can have is $4$, for $i^n$ to be $1$.
Done.
Now,
IF I were to solve it by taking mod on both sides of the given equation,
I would get




$Big(frac1+iBig)^n = |1|$



$Big(fracsqrt2sqrt2Big)^n = 1$



$1^n = 1$




NOTE that the least positive value of $n$ changes from $4$ to $1$.



Why is it so?
I read an answer on stack exchange, that it is valid to do anything with the equation until it maintains the equality. I didn't destroy the equality, so why does the answer vary?



Is there any restriction as to where to use the "taking-mod-both-sides" thing?










share|cite|improve this question









New contributor



user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 2




    $begingroup$
    If $a=b$, then $|a|=|b|$. In this sense, it is "valid" to take the modulus of both sides. It is not necessarily the case, however, that if $|a|=|b|$, then $a=b$. Assuming this latter statement is what is leading you to incorrectly conclude that $n=1$ is a solution to the original problem.
    $endgroup$
    – jawheele
    42 mins ago
















2












$begingroup$


This might look like a copy of another question, but what I'm about to propose here is new. There's this question,




Find the least positive integral value of n for which $(frac1+i1-i)^n = 1$




While solving, if we multiply what is within the bracket, by the conjugate of denominator and divide by the same thing, we get $i$ in the bracket, that means, the question boils down to




$i ^ n= 1$




We know that the least positive value $n$ can have is $4$, for $i^n$ to be $1$.
Done.
Now,
IF I were to solve it by taking mod on both sides of the given equation,
I would get




$Big(frac1+iBig)^n = |1|$



$Big(fracsqrt2sqrt2Big)^n = 1$



$1^n = 1$




NOTE that the least positive value of $n$ changes from $4$ to $1$.



Why is it so?
I read an answer on stack exchange, that it is valid to do anything with the equation until it maintains the equality. I didn't destroy the equality, so why does the answer vary?



Is there any restriction as to where to use the "taking-mod-both-sides" thing?










share|cite|improve this question









New contributor



user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 2




    $begingroup$
    If $a=b$, then $|a|=|b|$. In this sense, it is "valid" to take the modulus of both sides. It is not necessarily the case, however, that if $|a|=|b|$, then $a=b$. Assuming this latter statement is what is leading you to incorrectly conclude that $n=1$ is a solution to the original problem.
    $endgroup$
    – jawheele
    42 mins ago














2












2








2





$begingroup$


This might look like a copy of another question, but what I'm about to propose here is new. There's this question,




Find the least positive integral value of n for which $(frac1+i1-i)^n = 1$




While solving, if we multiply what is within the bracket, by the conjugate of denominator and divide by the same thing, we get $i$ in the bracket, that means, the question boils down to




$i ^ n= 1$




We know that the least positive value $n$ can have is $4$, for $i^n$ to be $1$.
Done.
Now,
IF I were to solve it by taking mod on both sides of the given equation,
I would get




$Big(frac1+iBig)^n = |1|$



$Big(fracsqrt2sqrt2Big)^n = 1$



$1^n = 1$




NOTE that the least positive value of $n$ changes from $4$ to $1$.



Why is it so?
I read an answer on stack exchange, that it is valid to do anything with the equation until it maintains the equality. I didn't destroy the equality, so why does the answer vary?



Is there any restriction as to where to use the "taking-mod-both-sides" thing?










share|cite|improve this question









New contributor



user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




This might look like a copy of another question, but what I'm about to propose here is new. There's this question,




Find the least positive integral value of n for which $(frac1+i1-i)^n = 1$




While solving, if we multiply what is within the bracket, by the conjugate of denominator and divide by the same thing, we get $i$ in the bracket, that means, the question boils down to




$i ^ n= 1$




We know that the least positive value $n$ can have is $4$, for $i^n$ to be $1$.
Done.
Now,
IF I were to solve it by taking mod on both sides of the given equation,
I would get




$Big(frac1+iBig)^n = |1|$



$Big(fracsqrt2sqrt2Big)^n = 1$



$1^n = 1$




NOTE that the least positive value of $n$ changes from $4$ to $1$.



Why is it so?
I read an answer on stack exchange, that it is valid to do anything with the equation until it maintains the equality. I didn't destroy the equality, so why does the answer vary?



Is there any restriction as to where to use the "taking-mod-both-sides" thing?







complex-numbers






share|cite|improve this question









New contributor



user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|cite|improve this question









New contributor



user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|cite|improve this question




share|cite|improve this question








edited 44 mins ago









Ryan Shesler

40711




40711






New contributor



user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 53 mins ago









user231094user231094

111




111




New contributor



user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




user231094 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









  • 2




    $begingroup$
    If $a=b$, then $|a|=|b|$. In this sense, it is "valid" to take the modulus of both sides. It is not necessarily the case, however, that if $|a|=|b|$, then $a=b$. Assuming this latter statement is what is leading you to incorrectly conclude that $n=1$ is a solution to the original problem.
    $endgroup$
    – jawheele
    42 mins ago













  • 2




    $begingroup$
    If $a=b$, then $|a|=|b|$. In this sense, it is "valid" to take the modulus of both sides. It is not necessarily the case, however, that if $|a|=|b|$, then $a=b$. Assuming this latter statement is what is leading you to incorrectly conclude that $n=1$ is a solution to the original problem.
    $endgroup$
    – jawheele
    42 mins ago








2




2




$begingroup$
If $a=b$, then $|a|=|b|$. In this sense, it is "valid" to take the modulus of both sides. It is not necessarily the case, however, that if $|a|=|b|$, then $a=b$. Assuming this latter statement is what is leading you to incorrectly conclude that $n=1$ is a solution to the original problem.
$endgroup$
– jawheele
42 mins ago





$begingroup$
If $a=b$, then $|a|=|b|$. In this sense, it is "valid" to take the modulus of both sides. It is not necessarily the case, however, that if $|a|=|b|$, then $a=b$. Assuming this latter statement is what is leading you to incorrectly conclude that $n=1$ is a solution to the original problem.
$endgroup$
– jawheele
42 mins ago











2 Answers
2






active

oldest

votes


















3












$begingroup$

The problem is, "taking-mod-of-both-sides" is valid, but only gives a one way implication. If $z_1 = z_2$ then $|z_1| = |z_2|$. But there are lots of possibilities for $z_3$,$z_4$ with $|z_3| = |z_4|$ and $z_3 neq z_4$, since modulus is not a one-to-one map.



When you look at $left(frac1+mathrmi1-mathrmiright)^n$, this always has modulus $1$ for all values of $n$. But this just means it lies on the unit circle in the complex plane, it does not mean that it is equal to 1.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    It is a many to one map
    $endgroup$
    – Arjang
    38 mins ago










  • $begingroup$
    So while solving questions relating to this, how am I supposed to know that my taking mod would yield me a valid result? With reference to the quoted example question, of course.
    $endgroup$
    – user231094
    38 mins ago






  • 1




    $begingroup$
    @user231094 In order to know, you can explicitly check the result you obtain after taking the modulus. For instance, in the originally posed problem, we can explicitly check that $n=1$ is not a solution, i.e. $fraci+1i-1 neq 1$. Sometimes taking the modulus might help you narrow down the possible solutions, even if it doesn't tell you the solutions exactly. Oftentimes, it's more useful in determining what the solutions aren't.
    $endgroup$
    – jawheele
    32 mins ago


















2












$begingroup$

I'm sure you have learned that when solving equations, if you square both sides you can introduce spurious solutions. The point is that
$$A = B implies A^2 = B^2
$$

but the converse can fail. That's why we teach algebra students to check their answers back in the original equation.



Taking the modulus on both sides of the equation has the same effect:
$$A = B implies |A| = |B|
$$

but the converse can fail, for example $|i|=|1|$ but $i ne 1$.



When you took the modulus on both sides of your equation, you introduced spurious solutions. So you have to check each answer to see if it satisfies the original equation.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    user231094 is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3222731%2fis-taking-modulus-on-both-sides-of-an-equation-valid%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    The problem is, "taking-mod-of-both-sides" is valid, but only gives a one way implication. If $z_1 = z_2$ then $|z_1| = |z_2|$. But there are lots of possibilities for $z_3$,$z_4$ with $|z_3| = |z_4|$ and $z_3 neq z_4$, since modulus is not a one-to-one map.



    When you look at $left(frac1+mathrmi1-mathrmiright)^n$, this always has modulus $1$ for all values of $n$. But this just means it lies on the unit circle in the complex plane, it does not mean that it is equal to 1.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      It is a many to one map
      $endgroup$
      – Arjang
      38 mins ago










    • $begingroup$
      So while solving questions relating to this, how am I supposed to know that my taking mod would yield me a valid result? With reference to the quoted example question, of course.
      $endgroup$
      – user231094
      38 mins ago






    • 1




      $begingroup$
      @user231094 In order to know, you can explicitly check the result you obtain after taking the modulus. For instance, in the originally posed problem, we can explicitly check that $n=1$ is not a solution, i.e. $fraci+1i-1 neq 1$. Sometimes taking the modulus might help you narrow down the possible solutions, even if it doesn't tell you the solutions exactly. Oftentimes, it's more useful in determining what the solutions aren't.
      $endgroup$
      – jawheele
      32 mins ago















    3












    $begingroup$

    The problem is, "taking-mod-of-both-sides" is valid, but only gives a one way implication. If $z_1 = z_2$ then $|z_1| = |z_2|$. But there are lots of possibilities for $z_3$,$z_4$ with $|z_3| = |z_4|$ and $z_3 neq z_4$, since modulus is not a one-to-one map.



    When you look at $left(frac1+mathrmi1-mathrmiright)^n$, this always has modulus $1$ for all values of $n$. But this just means it lies on the unit circle in the complex plane, it does not mean that it is equal to 1.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      It is a many to one map
      $endgroup$
      – Arjang
      38 mins ago










    • $begingroup$
      So while solving questions relating to this, how am I supposed to know that my taking mod would yield me a valid result? With reference to the quoted example question, of course.
      $endgroup$
      – user231094
      38 mins ago






    • 1




      $begingroup$
      @user231094 In order to know, you can explicitly check the result you obtain after taking the modulus. For instance, in the originally posed problem, we can explicitly check that $n=1$ is not a solution, i.e. $fraci+1i-1 neq 1$. Sometimes taking the modulus might help you narrow down the possible solutions, even if it doesn't tell you the solutions exactly. Oftentimes, it's more useful in determining what the solutions aren't.
      $endgroup$
      – jawheele
      32 mins ago













    3












    3








    3





    $begingroup$

    The problem is, "taking-mod-of-both-sides" is valid, but only gives a one way implication. If $z_1 = z_2$ then $|z_1| = |z_2|$. But there are lots of possibilities for $z_3$,$z_4$ with $|z_3| = |z_4|$ and $z_3 neq z_4$, since modulus is not a one-to-one map.



    When you look at $left(frac1+mathrmi1-mathrmiright)^n$, this always has modulus $1$ for all values of $n$. But this just means it lies on the unit circle in the complex plane, it does not mean that it is equal to 1.






    share|cite|improve this answer











    $endgroup$



    The problem is, "taking-mod-of-both-sides" is valid, but only gives a one way implication. If $z_1 = z_2$ then $|z_1| = |z_2|$. But there are lots of possibilities for $z_3$,$z_4$ with $|z_3| = |z_4|$ and $z_3 neq z_4$, since modulus is not a one-to-one map.



    When you look at $left(frac1+mathrmi1-mathrmiright)^n$, this always has modulus $1$ for all values of $n$. But this just means it lies on the unit circle in the complex plane, it does not mean that it is equal to 1.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 30 mins ago

























    answered 41 mins ago









    Morgan RodgersMorgan Rodgers

    9,95731440




    9,95731440











    • $begingroup$
      It is a many to one map
      $endgroup$
      – Arjang
      38 mins ago










    • $begingroup$
      So while solving questions relating to this, how am I supposed to know that my taking mod would yield me a valid result? With reference to the quoted example question, of course.
      $endgroup$
      – user231094
      38 mins ago






    • 1




      $begingroup$
      @user231094 In order to know, you can explicitly check the result you obtain after taking the modulus. For instance, in the originally posed problem, we can explicitly check that $n=1$ is not a solution, i.e. $fraci+1i-1 neq 1$. Sometimes taking the modulus might help you narrow down the possible solutions, even if it doesn't tell you the solutions exactly. Oftentimes, it's more useful in determining what the solutions aren't.
      $endgroup$
      – jawheele
      32 mins ago
















    • $begingroup$
      It is a many to one map
      $endgroup$
      – Arjang
      38 mins ago










    • $begingroup$
      So while solving questions relating to this, how am I supposed to know that my taking mod would yield me a valid result? With reference to the quoted example question, of course.
      $endgroup$
      – user231094
      38 mins ago






    • 1




      $begingroup$
      @user231094 In order to know, you can explicitly check the result you obtain after taking the modulus. For instance, in the originally posed problem, we can explicitly check that $n=1$ is not a solution, i.e. $fraci+1i-1 neq 1$. Sometimes taking the modulus might help you narrow down the possible solutions, even if it doesn't tell you the solutions exactly. Oftentimes, it's more useful in determining what the solutions aren't.
      $endgroup$
      – jawheele
      32 mins ago















    $begingroup$
    It is a many to one map
    $endgroup$
    – Arjang
    38 mins ago




    $begingroup$
    It is a many to one map
    $endgroup$
    – Arjang
    38 mins ago












    $begingroup$
    So while solving questions relating to this, how am I supposed to know that my taking mod would yield me a valid result? With reference to the quoted example question, of course.
    $endgroup$
    – user231094
    38 mins ago




    $begingroup$
    So while solving questions relating to this, how am I supposed to know that my taking mod would yield me a valid result? With reference to the quoted example question, of course.
    $endgroup$
    – user231094
    38 mins ago




    1




    1




    $begingroup$
    @user231094 In order to know, you can explicitly check the result you obtain after taking the modulus. For instance, in the originally posed problem, we can explicitly check that $n=1$ is not a solution, i.e. $fraci+1i-1 neq 1$. Sometimes taking the modulus might help you narrow down the possible solutions, even if it doesn't tell you the solutions exactly. Oftentimes, it's more useful in determining what the solutions aren't.
    $endgroup$
    – jawheele
    32 mins ago




    $begingroup$
    @user231094 In order to know, you can explicitly check the result you obtain after taking the modulus. For instance, in the originally posed problem, we can explicitly check that $n=1$ is not a solution, i.e. $fraci+1i-1 neq 1$. Sometimes taking the modulus might help you narrow down the possible solutions, even if it doesn't tell you the solutions exactly. Oftentimes, it's more useful in determining what the solutions aren't.
    $endgroup$
    – jawheele
    32 mins ago











    2












    $begingroup$

    I'm sure you have learned that when solving equations, if you square both sides you can introduce spurious solutions. The point is that
    $$A = B implies A^2 = B^2
    $$

    but the converse can fail. That's why we teach algebra students to check their answers back in the original equation.



    Taking the modulus on both sides of the equation has the same effect:
    $$A = B implies |A| = |B|
    $$

    but the converse can fail, for example $|i|=|1|$ but $i ne 1$.



    When you took the modulus on both sides of your equation, you introduced spurious solutions. So you have to check each answer to see if it satisfies the original equation.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      I'm sure you have learned that when solving equations, if you square both sides you can introduce spurious solutions. The point is that
      $$A = B implies A^2 = B^2
      $$

      but the converse can fail. That's why we teach algebra students to check their answers back in the original equation.



      Taking the modulus on both sides of the equation has the same effect:
      $$A = B implies |A| = |B|
      $$

      but the converse can fail, for example $|i|=|1|$ but $i ne 1$.



      When you took the modulus on both sides of your equation, you introduced spurious solutions. So you have to check each answer to see if it satisfies the original equation.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        I'm sure you have learned that when solving equations, if you square both sides you can introduce spurious solutions. The point is that
        $$A = B implies A^2 = B^2
        $$

        but the converse can fail. That's why we teach algebra students to check their answers back in the original equation.



        Taking the modulus on both sides of the equation has the same effect:
        $$A = B implies |A| = |B|
        $$

        but the converse can fail, for example $|i|=|1|$ but $i ne 1$.



        When you took the modulus on both sides of your equation, you introduced spurious solutions. So you have to check each answer to see if it satisfies the original equation.






        share|cite|improve this answer









        $endgroup$



        I'm sure you have learned that when solving equations, if you square both sides you can introduce spurious solutions. The point is that
        $$A = B implies A^2 = B^2
        $$

        but the converse can fail. That's why we teach algebra students to check their answers back in the original equation.



        Taking the modulus on both sides of the equation has the same effect:
        $$A = B implies |A| = |B|
        $$

        but the converse can fail, for example $|i|=|1|$ but $i ne 1$.



        When you took the modulus on both sides of your equation, you introduced spurious solutions. So you have to check each answer to see if it satisfies the original equation.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 31 mins ago









        Lee MosherLee Mosher

        53k33892




        53k33892




















            user231094 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            user231094 is a new contributor. Be nice, and check out our Code of Conduct.












            user231094 is a new contributor. Be nice, and check out our Code of Conduct.











            user231094 is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3222731%2fis-taking-modulus-on-both-sides-of-an-equation-valid%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

            Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

            Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)