Computing a trigonometric integralHelp computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.

Why doesn't a marching band have strings?

Why is the voltage measurement of this circuit different when the switch is on?

Can the negators "jamais, rien, personne, plus, ni, aucun" be used in a single sentence?

How can I politely work my way around not liking coffee or beer when it comes to professional networking?

How would modern naval warfare have to have developed differently for battleships to still be relevant in the 21st century?

Can White Castle?

Archery in modern conflicts

How dangerous are set-size assumptions?

Proving a certain type of topology is discrete without the axiom of choice

Is adding a new player (or players) a DM decision, or a group decision?

What's currently blocking the construction of the wall between Mexico and the US?

Should developer taking test phones home or put in office?

Why do some games show lights shine thorugh walls?

Has there been any indication at all that further negotiation between the UK and EU is possible?

What does "play with your toy’s toys" mean?

Why aren't cotton tents more popular?

Did Karl Marx ever use any example that involved cotton and dollars to illustrate the way capital and surplus value were generated?

C-152 carb heat on before landing in hot weather?

Where can I find a database of galactic spectra?

How do I set an alias to a terminal line?

Suggested order for Amazon Prime Doctor Who series

How do I respond to requests for a "guarantee" not to leave after a few months?

Do I have any obligations to my PhD supervisor's requests after I have graduated?

Folding basket - is there such a thing?



Computing a trigonometric integral


Help computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago

















3












$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago













3












3








3





$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$




I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago







user326159

















asked 8 hours ago









user326159user326159

1,4771 gold badge9 silver badges22 bronze badges




1,4771 gold badge9 silver badges22 bronze badges











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago
















  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago















$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago




$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago












$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago




$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago












$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago




$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago




1




1




$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago




$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

note that since the function part of the function is odd i.e:
$$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
$$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
you could notice that the integral can be simplified to:
$$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    This problem is "nice" in the sense that the integrand is really trig function of $2theta$
    $$
    I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
    $$

    So
    $$
    I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
    $$

    which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



    So
    $$
    I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
    $$

    which simplifies to
    $$
    I=frac12iint_mathbbT
    frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
    $$

    The poles are at, if $mneq 1$,
    $$
    z+z^-1=frac2(m-2pmsqrtm)m-1.
    $$

    so, since $m>0$
    $$labeleq:poles
    z=
    begincases
    0,frac12(3pmsqrt5)& m=1\
    frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
    endcasestag$star$
    $$

    So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
    $$
    I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Can you give more details of this method?
      $endgroup$
      – user326159
      7 hours ago


















    2












    $begingroup$


    Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



    $$beginalign
    mathcalIleft(muright)
    &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
    endalign$$




    Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



    $$beginalign
    mathcalIleft(muright)
    &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
    &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
    endalign$$




    Using the double-angle formulas for sine and cosine,



    $$beginalign
    sinleft(2thetaright)
    &=2sinleft(thetaright)cosleft(thetaright),\
    cosleft(2thetaright)
    &=cos^2left(thetaright)-sin^2left(thetaright)\
    &=2cos^2left(thetaright)-1\
    &=1-2sin^2left(thetaright),\
    endalign$$



    we can rewrite the integral as



    $$beginalign
    mathcalIleft(muright)
    &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
    &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
    &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
    endalign$$



    Using the tangent half-angle substitution, the trigonometric integral transforms as



    $$beginalign
    mathcalIleft(muright)
    &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
    &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
    &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
    endalign$$



    Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



    $$beginalign
    mathcalIleft(muright)
    &=mathcalIleft(frac2a^2right)\
    &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
    &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
    &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
    &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
    &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
    &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
    &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
    &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
    &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
    endalign$$



    Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



    $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



    as you originally conjectured.








    share|cite|improve this answer









    $endgroup$















      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      note that since the function part of the function is odd i.e:
      $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
      $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
      you could notice that the integral can be simplified to:
      $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
      $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
      $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
      $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




      One route you could try to take is Tangent half-angle substitution, which yields:
      $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
      the bottom of this fraction can be expanded to:
      $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
      this may be factorisable for certain values of $m$






      share|cite|improve this answer











      $endgroup$

















        2












        $begingroup$

        note that since the function part of the function is odd i.e:
        $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
        $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
        you could notice that the integral can be simplified to:
        $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
        $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
        $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
        $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




        One route you could try to take is Tangent half-angle substitution, which yields:
        $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
        the bottom of this fraction can be expanded to:
        $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
        this may be factorisable for certain values of $m$






        share|cite|improve this answer











        $endgroup$















          2












          2








          2





          $begingroup$

          note that since the function part of the function is odd i.e:
          $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          you could notice that the integral can be simplified to:
          $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




          One route you could try to take is Tangent half-angle substitution, which yields:
          $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
          the bottom of this fraction can be expanded to:
          $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
          this may be factorisable for certain values of $m$






          share|cite|improve this answer











          $endgroup$



          note that since the function part of the function is odd i.e:
          $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          you could notice that the integral can be simplified to:
          $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




          One route you could try to take is Tangent half-angle substitution, which yields:
          $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
          the bottom of this fraction can be expanded to:
          $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
          this may be factorisable for certain values of $m$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 7 hours ago

























          answered 7 hours ago









          Henry LeeHenry Lee

          2,6891 gold badge4 silver badges19 bronze badges




          2,6891 gold badge4 silver badges19 bronze badges























              2












              $begingroup$

              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago















              2












              $begingroup$

              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago













              2












              2








              2





              $begingroup$

              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$






              share|cite|improve this answer











              $endgroup$



              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 7 hours ago

























              answered 7 hours ago









              user10354138user10354138

              17.3k2 gold badges12 silver badges32 bronze badges




              17.3k2 gold badges12 silver badges32 bronze badges











              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago
















              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago















              $begingroup$
              Can you give more details of this method?
              $endgroup$
              – user326159
              7 hours ago




              $begingroup$
              Can you give more details of this method?
              $endgroup$
              – user326159
              7 hours ago











              2












              $begingroup$


              Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



              $$beginalign
              mathcalIleft(muright)
              &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
              endalign$$




              Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



              $$beginalign
              mathcalIleft(muright)
              &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
              &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
              endalign$$




              Using the double-angle formulas for sine and cosine,



              $$beginalign
              sinleft(2thetaright)
              &=2sinleft(thetaright)cosleft(thetaright),\
              cosleft(2thetaright)
              &=cos^2left(thetaright)-sin^2left(thetaright)\
              &=2cos^2left(thetaright)-1\
              &=1-2sin^2left(thetaright),\
              endalign$$



              we can rewrite the integral as



              $$beginalign
              mathcalIleft(muright)
              &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
              &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
              &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
              endalign$$



              Using the tangent half-angle substitution, the trigonometric integral transforms as



              $$beginalign
              mathcalIleft(muright)
              &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
              &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
              &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
              endalign$$



              Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



              $$beginalign
              mathcalIleft(muright)
              &=mathcalIleft(frac2a^2right)\
              &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
              &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
              &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
              &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
              &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
              &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
              &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
              &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
              &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
              endalign$$



              Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



              $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



              as you originally conjectured.








              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$


                Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



                $$beginalign
                mathcalIleft(muright)
                &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                endalign$$




                Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



                $$beginalign
                mathcalIleft(muright)
                &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
                &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                endalign$$




                Using the double-angle formulas for sine and cosine,



                $$beginalign
                sinleft(2thetaright)
                &=2sinleft(thetaright)cosleft(thetaright),\
                cosleft(2thetaright)
                &=cos^2left(thetaright)-sin^2left(thetaright)\
                &=2cos^2left(thetaright)-1\
                &=1-2sin^2left(thetaright),\
                endalign$$



                we can rewrite the integral as



                $$beginalign
                mathcalIleft(muright)
                &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
                &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
                &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
                endalign$$



                Using the tangent half-angle substitution, the trigonometric integral transforms as



                $$beginalign
                mathcalIleft(muright)
                &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
                &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
                &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
                endalign$$



                Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



                $$beginalign
                mathcalIleft(muright)
                &=mathcalIleft(frac2a^2right)\
                &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
                &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
                &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
                &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
                &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
                &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
                endalign$$



                Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



                $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



                as you originally conjectured.








                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$


                  Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



                  $$beginalign
                  mathcalIleft(muright)
                  &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



                  $$beginalign
                  mathcalIleft(muright)
                  &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Using the double-angle formulas for sine and cosine,



                  $$beginalign
                  sinleft(2thetaright)
                  &=2sinleft(thetaright)cosleft(thetaright),\
                  cosleft(2thetaright)
                  &=cos^2left(thetaright)-sin^2left(thetaright)\
                  &=2cos^2left(thetaright)-1\
                  &=1-2sin^2left(thetaright),\
                  endalign$$



                  we can rewrite the integral as



                  $$beginalign
                  mathcalIleft(muright)
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
                  &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
                  endalign$$



                  Using the tangent half-angle substitution, the trigonometric integral transforms as



                  $$beginalign
                  mathcalIleft(muright)
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
                  &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
                  endalign$$



                  Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



                  $$beginalign
                  mathcalIleft(muright)
                  &=mathcalIleft(frac2a^2right)\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
                  &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
                  &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
                  &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
                  endalign$$



                  Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



                  $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



                  as you originally conjectured.








                  share|cite|improve this answer









                  $endgroup$




                  Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



                  $$beginalign
                  mathcalIleft(muright)
                  &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



                  $$beginalign
                  mathcalIleft(muright)
                  &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Using the double-angle formulas for sine and cosine,



                  $$beginalign
                  sinleft(2thetaright)
                  &=2sinleft(thetaright)cosleft(thetaright),\
                  cosleft(2thetaright)
                  &=cos^2left(thetaright)-sin^2left(thetaright)\
                  &=2cos^2left(thetaright)-1\
                  &=1-2sin^2left(thetaright),\
                  endalign$$



                  we can rewrite the integral as



                  $$beginalign
                  mathcalIleft(muright)
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
                  &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
                  endalign$$



                  Using the tangent half-angle substitution, the trigonometric integral transforms as



                  $$beginalign
                  mathcalIleft(muright)
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
                  &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
                  endalign$$



                  Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



                  $$beginalign
                  mathcalIleft(muright)
                  &=mathcalIleft(frac2a^2right)\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
                  &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
                  &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
                  &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
                  endalign$$



                  Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



                  $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



                  as you originally conjectured.









                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  David HDavid H

                  22.2k2 gold badges49 silver badges96 bronze badges




                  22.2k2 gold badges49 silver badges96 bronze badges



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

                      Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу