Computing a trigonometric integralHelp computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.

Why doesn't a marching band have strings?

Why is the voltage measurement of this circuit different when the switch is on?

Can the negators "jamais, rien, personne, plus, ni, aucun" be used in a single sentence?

How can I politely work my way around not liking coffee or beer when it comes to professional networking?

How would modern naval warfare have to have developed differently for battleships to still be relevant in the 21st century?

Can White Castle?

Archery in modern conflicts

How dangerous are set-size assumptions?

Proving a certain type of topology is discrete without the axiom of choice

Is adding a new player (or players) a DM decision, or a group decision?

What's currently blocking the construction of the wall between Mexico and the US?

Should developer taking test phones home or put in office?

Why do some games show lights shine thorugh walls?

Has there been any indication at all that further negotiation between the UK and EU is possible?

What does "play with your toy’s toys" mean?

Why aren't cotton tents more popular?

Did Karl Marx ever use any example that involved cotton and dollars to illustrate the way capital and surplus value were generated?

C-152 carb heat on before landing in hot weather?

Where can I find a database of galactic spectra?

How do I set an alias to a terminal line?

Suggested order for Amazon Prime Doctor Who series

How do I respond to requests for a "guarantee" not to leave after a few months?

Do I have any obligations to my PhD supervisor's requests after I have graduated?

Folding basket - is there such a thing?



Computing a trigonometric integral


Help computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago

















3












$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago













3












3








3





$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$




I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago







user326159

















asked 8 hours ago









user326159user326159

1,4771 gold badge9 silver badges22 bronze badges




1,4771 gold badge9 silver badges22 bronze badges











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago
















  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    8 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    7 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    7 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    5 hours ago















$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago




$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago












$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago




$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago












$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago




$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago




1




1




$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago




$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

note that since the function part of the function is odd i.e:
$$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
$$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
you could notice that the integral can be simplified to:
$$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    This problem is "nice" in the sense that the integrand is really trig function of $2theta$
    $$
    I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
    $$

    So
    $$
    I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
    $$

    which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



    So
    $$
    I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
    $$

    which simplifies to
    $$
    I=frac12iint_mathbbT
    frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
    $$

    The poles are at, if $mneq 1$,
    $$
    z+z^-1=frac2(m-2pmsqrtm)m-1.
    $$

    so, since $m>0$
    $$labeleq:poles
    z=
    begincases
    0,frac12(3pmsqrt5)& m=1\
    frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
    endcasestag$star$
    $$

    So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
    $$
    I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Can you give more details of this method?
      $endgroup$
      – user326159
      7 hours ago


















    2












    $begingroup$


    Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



    $$beginalign
    mathcalIleft(muright)
    &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
    endalign$$




    Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



    $$beginalign
    mathcalIleft(muright)
    &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
    &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
    endalign$$




    Using the double-angle formulas for sine and cosine,



    $$beginalign
    sinleft(2thetaright)
    &=2sinleft(thetaright)cosleft(thetaright),\
    cosleft(2thetaright)
    &=cos^2left(thetaright)-sin^2left(thetaright)\
    &=2cos^2left(thetaright)-1\
    &=1-2sin^2left(thetaright),\
    endalign$$



    we can rewrite the integral as



    $$beginalign
    mathcalIleft(muright)
    &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
    &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
    &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
    &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
    endalign$$



    Using the tangent half-angle substitution, the trigonometric integral transforms as



    $$beginalign
    mathcalIleft(muright)
    &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
    &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
    &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
    endalign$$



    Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



    $$beginalign
    mathcalIleft(muright)
    &=mathcalIleft(frac2a^2right)\
    &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
    &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
    &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
    &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
    &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
    &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
    &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
    &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
    &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
    &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
    endalign$$



    Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



    $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



    as you originally conjectured.








    share|cite|improve this answer









    $endgroup$















      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      note that since the function part of the function is odd i.e:
      $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
      $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
      you could notice that the integral can be simplified to:
      $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
      $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
      $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
      $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




      One route you could try to take is Tangent half-angle substitution, which yields:
      $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
      the bottom of this fraction can be expanded to:
      $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
      this may be factorisable for certain values of $m$






      share|cite|improve this answer











      $endgroup$

















        2












        $begingroup$

        note that since the function part of the function is odd i.e:
        $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
        $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
        you could notice that the integral can be simplified to:
        $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
        $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
        $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
        $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




        One route you could try to take is Tangent half-angle substitution, which yields:
        $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
        the bottom of this fraction can be expanded to:
        $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
        this may be factorisable for certain values of $m$






        share|cite|improve this answer











        $endgroup$















          2












          2








          2





          $begingroup$

          note that since the function part of the function is odd i.e:
          $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          you could notice that the integral can be simplified to:
          $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




          One route you could try to take is Tangent half-angle substitution, which yields:
          $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
          the bottom of this fraction can be expanded to:
          $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
          this may be factorisable for certain values of $m$






          share|cite|improve this answer











          $endgroup$



          note that since the function part of the function is odd i.e:
          $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
          you could notice that the integral can be simplified to:
          $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
          $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




          One route you could try to take is Tangent half-angle substitution, which yields:
          $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
          the bottom of this fraction can be expanded to:
          $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
          this may be factorisable for certain values of $m$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 7 hours ago

























          answered 7 hours ago









          Henry LeeHenry Lee

          2,6891 gold badge4 silver badges19 bronze badges




          2,6891 gold badge4 silver badges19 bronze badges























              2












              $begingroup$

              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago















              2












              $begingroup$

              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago













              2












              2








              2





              $begingroup$

              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$






              share|cite|improve this answer











              $endgroup$



              This problem is "nice" in the sense that the integrand is really trig function of $2theta$
              $$
              I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
              $$

              So
              $$
              I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
              $$

              which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



              So
              $$
              I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
              $$

              which simplifies to
              $$
              I=frac12iint_mathbbT
              frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
              $$

              The poles are at, if $mneq 1$,
              $$
              z+z^-1=frac2(m-2pmsqrtm)m-1.
              $$

              so, since $m>0$
              $$labeleq:poles
              z=
              begincases
              0,frac12(3pmsqrt5)& m=1\
              frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
              endcasestag$star$
              $$

              So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
              $$
              I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
              $$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 7 hours ago

























              answered 7 hours ago









              user10354138user10354138

              17.3k2 gold badges12 silver badges32 bronze badges




              17.3k2 gold badges12 silver badges32 bronze badges











              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago
















              • $begingroup$
                Can you give more details of this method?
                $endgroup$
                – user326159
                7 hours ago















              $begingroup$
              Can you give more details of this method?
              $endgroup$
              – user326159
              7 hours ago




              $begingroup$
              Can you give more details of this method?
              $endgroup$
              – user326159
              7 hours ago











              2












              $begingroup$


              Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



              $$beginalign
              mathcalIleft(muright)
              &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
              endalign$$




              Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



              $$beginalign
              mathcalIleft(muright)
              &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
              &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
              endalign$$




              Using the double-angle formulas for sine and cosine,



              $$beginalign
              sinleft(2thetaright)
              &=2sinleft(thetaright)cosleft(thetaright),\
              cosleft(2thetaright)
              &=cos^2left(thetaright)-sin^2left(thetaright)\
              &=2cos^2left(thetaright)-1\
              &=1-2sin^2left(thetaright),\
              endalign$$



              we can rewrite the integral as



              $$beginalign
              mathcalIleft(muright)
              &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
              &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
              &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
              &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
              endalign$$



              Using the tangent half-angle substitution, the trigonometric integral transforms as



              $$beginalign
              mathcalIleft(muright)
              &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
              &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
              &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
              endalign$$



              Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



              $$beginalign
              mathcalIleft(muright)
              &=mathcalIleft(frac2a^2right)\
              &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
              &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
              &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
              &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
              &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
              &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
              &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
              &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
              &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
              &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
              endalign$$



              Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



              $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



              as you originally conjectured.








              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$


                Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



                $$beginalign
                mathcalIleft(muright)
                &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                endalign$$




                Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



                $$beginalign
                mathcalIleft(muright)
                &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
                &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                endalign$$




                Using the double-angle formulas for sine and cosine,



                $$beginalign
                sinleft(2thetaright)
                &=2sinleft(thetaright)cosleft(thetaright),\
                cosleft(2thetaright)
                &=cos^2left(thetaright)-sin^2left(thetaright)\
                &=2cos^2left(thetaright)-1\
                &=1-2sin^2left(thetaright),\
                endalign$$



                we can rewrite the integral as



                $$beginalign
                mathcalIleft(muright)
                &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
                &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
                &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
                &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
                endalign$$



                Using the tangent half-angle substitution, the trigonometric integral transforms as



                $$beginalign
                mathcalIleft(muright)
                &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
                &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
                &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
                endalign$$



                Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



                $$beginalign
                mathcalIleft(muright)
                &=mathcalIleft(frac2a^2right)\
                &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
                &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
                &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
                &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
                &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
                &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
                endalign$$



                Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



                $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



                as you originally conjectured.








                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$


                  Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



                  $$beginalign
                  mathcalIleft(muright)
                  &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



                  $$beginalign
                  mathcalIleft(muright)
                  &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Using the double-angle formulas for sine and cosine,



                  $$beginalign
                  sinleft(2thetaright)
                  &=2sinleft(thetaright)cosleft(thetaright),\
                  cosleft(2thetaright)
                  &=cos^2left(thetaright)-sin^2left(thetaright)\
                  &=2cos^2left(thetaright)-1\
                  &=1-2sin^2left(thetaright),\
                  endalign$$



                  we can rewrite the integral as



                  $$beginalign
                  mathcalIleft(muright)
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
                  &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
                  endalign$$



                  Using the tangent half-angle substitution, the trigonometric integral transforms as



                  $$beginalign
                  mathcalIleft(muright)
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
                  &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
                  endalign$$



                  Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



                  $$beginalign
                  mathcalIleft(muright)
                  &=mathcalIleft(frac2a^2right)\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
                  &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
                  &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
                  &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
                  endalign$$



                  Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



                  $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



                  as you originally conjectured.








                  share|cite|improve this answer









                  $endgroup$




                  Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



                  $$beginalign
                  mathcalIleft(muright)
                  &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



                  $$beginalign
                  mathcalIleft(muright)
                  &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
                  &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
                  endalign$$




                  Using the double-angle formulas for sine and cosine,



                  $$beginalign
                  sinleft(2thetaright)
                  &=2sinleft(thetaright)cosleft(thetaright),\
                  cosleft(2thetaright)
                  &=cos^2left(thetaright)-sin^2left(thetaright)\
                  &=2cos^2left(thetaright)-1\
                  &=1-2sin^2left(thetaright),\
                  endalign$$



                  we can rewrite the integral as



                  $$beginalign
                  mathcalIleft(muright)
                  &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
                  &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
                  &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
                  endalign$$



                  Using the tangent half-angle substitution, the trigonometric integral transforms as



                  $$beginalign
                  mathcalIleft(muright)
                  &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
                  &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
                  endalign$$



                  Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



                  $$beginalign
                  mathcalIleft(muright)
                  &=mathcalIleft(frac2a^2right)\
                  &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
                  &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
                  &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
                  &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
                  &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
                  &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
                  &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
                  endalign$$



                  Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



                  $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



                  as you originally conjectured.









                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  David HDavid H

                  22.2k2 gold badges49 silver badges96 bronze badges




                  22.2k2 gold badges49 silver badges96 bronze badges



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                      Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                      Черчино Становништво Референце Спољашње везе Мени за навигацију46°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.5081446°09′29″ СГШ; 9°30′29″ ИГД / 46.15809° СГШ; 9.50814° ИГД / 46.15809; 9.508143179111„The GeoNames geographical database”„Istituto Nazionale di Statistica”Званични веб-сајтпроширитиуу