Computing a trigonometric integralHelp computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.
Why doesn't a marching band have strings?
Why is the voltage measurement of this circuit different when the switch is on?
Can the negators "jamais, rien, personne, plus, ni, aucun" be used in a single sentence?
How can I politely work my way around not liking coffee or beer when it comes to professional networking?
How would modern naval warfare have to have developed differently for battleships to still be relevant in the 21st century?
Can White Castle?
Archery in modern conflicts
How dangerous are set-size assumptions?
Proving a certain type of topology is discrete without the axiom of choice
Is adding a new player (or players) a DM decision, or a group decision?
What's currently blocking the construction of the wall between Mexico and the US?
Should developer taking test phones home or put in office?
Why do some games show lights shine thorugh walls?
Has there been any indication at all that further negotiation between the UK and EU is possible?
What does "play with your toy’s toys" mean?
Why aren't cotton tents more popular?
Did Karl Marx ever use any example that involved cotton and dollars to illustrate the way capital and surplus value were generated?
C-152 carb heat on before landing in hot weather?
Where can I find a database of galactic spectra?
How do I set an alias to a terminal line?
Suggested order for Amazon Prime Doctor Who series
How do I respond to requests for a "guarantee" not to leave after a few months?
Do I have any obligations to my PhD supervisor's requests after I have graduated?
Folding basket - is there such a thing?
Computing a trigonometric integral
Help computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$
Any help would be appreciated.
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$
Any help would be appreciated.
integration definite-integrals
$endgroup$
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago
1
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago
add a comment |
$begingroup$
I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$
Any help would be appreciated.
integration definite-integrals
$endgroup$
I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$
Any help would be appreciated.
integration definite-integrals
integration definite-integrals
edited 7 hours ago
user326159
asked 8 hours ago
user326159user326159
1,4771 gold badge9 silver badges22 bronze badges
1,4771 gold badge9 silver badges22 bronze badges
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago
1
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago
add a comment |
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago
1
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago
1
1
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
$$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
you could notice that the integral can be simplified to:
$$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
add a comment |
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
$$
So
$$
I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.
So
$$
I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
$$
which simplifies to
$$
I=frac12iint_mathbbT
frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
$$
The poles are at, if $mneq 1$,
$$
z+z^-1=frac2(m-2pmsqrtm)m-1.
$$
so, since $m>0$
$$labeleq:poles
z=
begincases
0,frac12(3pmsqrt5)& m=1\
frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
endcasestag$star$
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
$$
$endgroup$
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
7 hours ago
add a comment |
$begingroup$
Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral
$$beginalign
mathcalIleft(muright)
&:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$beginalign
mathcalIleft(muright)
&=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Using the double-angle formulas for sine and cosine,
$$beginalign
sinleft(2thetaright)
&=2sinleft(thetaright)cosleft(thetaright),\
cosleft(2thetaright)
&=cos^2left(thetaright)-sin^2left(thetaright)\
&=2cos^2left(thetaright)-1\
&=1-2sin^2left(thetaright),\
endalign$$
we can rewrite the integral as
$$beginalign
mathcalIleft(muright)
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
&=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
endalign$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$beginalign
mathcalIleft(muright)
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
&=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
endalign$$
Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have
$$beginalign
mathcalIleft(muright)
&=mathcalIleft(frac2a^2right)\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
&=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
&=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
&=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
endalign$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have
$$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$
as you originally conjectured.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
$$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
you could notice that the integral can be simplified to:
$$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
add a comment |
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
$$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
you could notice that the integral can be simplified to:
$$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
add a comment |
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
$$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
you could notice that the integral can be simplified to:
$$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
$$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
you could notice that the integral can be simplified to:
$$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
$$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
edited 7 hours ago
answered 7 hours ago
Henry LeeHenry Lee
2,6891 gold badge4 silver badges19 bronze badges
2,6891 gold badge4 silver badges19 bronze badges
add a comment |
add a comment |
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
$$
So
$$
I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.
So
$$
I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
$$
which simplifies to
$$
I=frac12iint_mathbbT
frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
$$
The poles are at, if $mneq 1$,
$$
z+z^-1=frac2(m-2pmsqrtm)m-1.
$$
so, since $m>0$
$$labeleq:poles
z=
begincases
0,frac12(3pmsqrt5)& m=1\
frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
endcasestag$star$
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
$$
$endgroup$
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
7 hours ago
add a comment |
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
$$
So
$$
I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.
So
$$
I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
$$
which simplifies to
$$
I=frac12iint_mathbbT
frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
$$
The poles are at, if $mneq 1$,
$$
z+z^-1=frac2(m-2pmsqrtm)m-1.
$$
so, since $m>0$
$$labeleq:poles
z=
begincases
0,frac12(3pmsqrt5)& m=1\
frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
endcasestag$star$
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
$$
$endgroup$
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
7 hours ago
add a comment |
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
$$
So
$$
I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.
So
$$
I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
$$
which simplifies to
$$
I=frac12iint_mathbbT
frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
$$
The poles are at, if $mneq 1$,
$$
z+z^-1=frac2(m-2pmsqrtm)m-1.
$$
so, since $m>0$
$$labeleq:poles
z=
begincases
0,frac12(3pmsqrt5)& m=1\
frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
endcasestag$star$
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
$$
$endgroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
$$
So
$$
I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.
So
$$
I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
$$
which simplifies to
$$
I=frac12iint_mathbbT
frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
$$
The poles are at, if $mneq 1$,
$$
z+z^-1=frac2(m-2pmsqrtm)m-1.
$$
so, since $m>0$
$$labeleq:poles
z=
begincases
0,frac12(3pmsqrt5)& m=1\
frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
endcasestag$star$
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
$$
edited 7 hours ago
answered 7 hours ago
user10354138user10354138
17.3k2 gold badges12 silver badges32 bronze badges
17.3k2 gold badges12 silver badges32 bronze badges
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
7 hours ago
add a comment |
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
7 hours ago
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
7 hours ago
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
7 hours ago
add a comment |
$begingroup$
Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral
$$beginalign
mathcalIleft(muright)
&:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$beginalign
mathcalIleft(muright)
&=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Using the double-angle formulas for sine and cosine,
$$beginalign
sinleft(2thetaright)
&=2sinleft(thetaright)cosleft(thetaright),\
cosleft(2thetaright)
&=cos^2left(thetaright)-sin^2left(thetaright)\
&=2cos^2left(thetaright)-1\
&=1-2sin^2left(thetaright),\
endalign$$
we can rewrite the integral as
$$beginalign
mathcalIleft(muright)
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
&=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
endalign$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$beginalign
mathcalIleft(muright)
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
&=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
endalign$$
Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have
$$beginalign
mathcalIleft(muright)
&=mathcalIleft(frac2a^2right)\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
&=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
&=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
&=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
endalign$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have
$$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$
as you originally conjectured.
$endgroup$
add a comment |
$begingroup$
Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral
$$beginalign
mathcalIleft(muright)
&:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$beginalign
mathcalIleft(muright)
&=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Using the double-angle formulas for sine and cosine,
$$beginalign
sinleft(2thetaright)
&=2sinleft(thetaright)cosleft(thetaright),\
cosleft(2thetaright)
&=cos^2left(thetaright)-sin^2left(thetaright)\
&=2cos^2left(thetaright)-1\
&=1-2sin^2left(thetaright),\
endalign$$
we can rewrite the integral as
$$beginalign
mathcalIleft(muright)
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
&=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
endalign$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$beginalign
mathcalIleft(muright)
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
&=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
endalign$$
Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have
$$beginalign
mathcalIleft(muright)
&=mathcalIleft(frac2a^2right)\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
&=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
&=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
&=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
endalign$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have
$$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$
as you originally conjectured.
$endgroup$
add a comment |
$begingroup$
Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral
$$beginalign
mathcalIleft(muright)
&:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$beginalign
mathcalIleft(muright)
&=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Using the double-angle formulas for sine and cosine,
$$beginalign
sinleft(2thetaright)
&=2sinleft(thetaright)cosleft(thetaright),\
cosleft(2thetaright)
&=cos^2left(thetaright)-sin^2left(thetaright)\
&=2cos^2left(thetaright)-1\
&=1-2sin^2left(thetaright),\
endalign$$
we can rewrite the integral as
$$beginalign
mathcalIleft(muright)
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
&=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
endalign$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$beginalign
mathcalIleft(muright)
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
&=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
endalign$$
Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have
$$beginalign
mathcalIleft(muright)
&=mathcalIleft(frac2a^2right)\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
&=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
&=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
&=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
endalign$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have
$$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$
as you originally conjectured.
$endgroup$
Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral
$$beginalign
mathcalIleft(muright)
&:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$beginalign
mathcalIleft(muright)
&=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$
Using the double-angle formulas for sine and cosine,
$$beginalign
sinleft(2thetaright)
&=2sinleft(thetaright)cosleft(thetaright),\
cosleft(2thetaright)
&=cos^2left(thetaright)-sin^2left(thetaright)\
&=2cos^2left(thetaright)-1\
&=1-2sin^2left(thetaright),\
endalign$$
we can rewrite the integral as
$$beginalign
mathcalIleft(muright)
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
&=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
endalign$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$beginalign
mathcalIleft(muright)
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
&=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
endalign$$
Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have
$$beginalign
mathcalIleft(muright)
&=mathcalIleft(frac2a^2right)\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
&=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
&=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
&=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
endalign$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have
$$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$
as you originally conjectured.
answered 3 hours ago
David HDavid H
22.2k2 gold badges49 silver badges96 bronze badges
22.2k2 gold badges49 silver badges96 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
8 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
7 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
7 hours ago
1
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
5 hours ago