Pin support, why is there no horizontal reaction force?Why build a cell lattice tower with square cross-section instead of triangular cross-section?Logic behind location of shear centreBest angle and length for a diagonal wood support for a pull-up barHow to calculate a structure's ultimate loadHow to transfer reaction forces of beam to a weld?Maximum deflection of a beam, fixed in one end and concetrated load at free endCritical Buckling Load for a Spring Supported BarHow to calculate indeterminacy of pin-jointed frame?How to find the reaction forces, moments and the displacement of the fixed beam with a link?Trying to shed some weight on my design, any thoughts?

「捨ててしまう」why is there two て’s used here?

Is there any possible way to get these hearts as Adult Link?

What does this Swiss black on yellow rectangular traffic sign with a symbol looking like a dart mean?

Am I legally required to provide a (GPL licensed) source code even after a project is abandoned?

Umlaut character order when sorting

Implementation of the Jacobi Symbol in C

How to take photos with a yellowish tone and point-and-shoot film camera look?

"Correct me if I'm wrong"

Why things float in space, though there is always gravity of our star is present

Understanding “en comprend”

Synaptic Static - when to roll the d6?

How much steel armor can you wear and still be able to swim?

Why is it 出差去 and not 去出差?

How to write a nice frame challenge?

King or Queen-Which piece is which?

In the US, can a former president run again?

Are there examples of rowers who also fought?

What is that ceiling compartment of a Boeing 737?

Is declining an undergraduate award which causes me discomfort appropriate?

Slow Performance When Changing Object Data [2.8]

Is the author of the Shu"t HaRidvaz the same one as the one known to be the rebbe of the Ariza"l?

Is there a polite way to ask about one's ethnicity?

How do you transpose samples in cents?

How is the idea of "girlfriend material" naturally expressed in Russian?



Pin support, why is there no horizontal reaction force?


Why build a cell lattice tower with square cross-section instead of triangular cross-section?Logic behind location of shear centreBest angle and length for a diagonal wood support for a pull-up barHow to calculate a structure's ultimate loadHow to transfer reaction forces of beam to a weld?Maximum deflection of a beam, fixed in one end and concetrated load at free endCritical Buckling Load for a Spring Supported BarHow to calculate indeterminacy of pin-jointed frame?How to find the reaction forces, moments and the displacement of the fixed beam with a link?Trying to shed some weight on my design, any thoughts?













1












$begingroup$


I am trying to understand this problem:



enter image description here



If we break down the 10T, they behave like this:



enter image description here



The right end of the beam can move as much as it wants, but the left end is pinned.



Why is there no horizontal reaction at A, if there is a horizontal part of the forces being applied on the beam axis?



I imagine, the force will push one section, and each section will push the next one, until the end, where it will create a reaction, just like the vertical forces are doing?



Thank you a lot.










share|improve this question







New contributor



UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$
















    1












    $begingroup$


    I am trying to understand this problem:



    enter image description here



    If we break down the 10T, they behave like this:



    enter image description here



    The right end of the beam can move as much as it wants, but the left end is pinned.



    Why is there no horizontal reaction at A, if there is a horizontal part of the forces being applied on the beam axis?



    I imagine, the force will push one section, and each section will push the next one, until the end, where it will create a reaction, just like the vertical forces are doing?



    Thank you a lot.










    share|improve this question







    New contributor



    UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$














      1












      1








      1





      $begingroup$


      I am trying to understand this problem:



      enter image description here



      If we break down the 10T, they behave like this:



      enter image description here



      The right end of the beam can move as much as it wants, but the left end is pinned.



      Why is there no horizontal reaction at A, if there is a horizontal part of the forces being applied on the beam axis?



      I imagine, the force will push one section, and each section will push the next one, until the end, where it will create a reaction, just like the vertical forces are doing?



      Thank you a lot.










      share|improve this question







      New contributor



      UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      I am trying to understand this problem:



      enter image description here



      If we break down the 10T, they behave like this:



      enter image description here



      The right end of the beam can move as much as it wants, but the left end is pinned.



      Why is there no horizontal reaction at A, if there is a horizontal part of the forces being applied on the beam axis?



      I imagine, the force will push one section, and each section will push the next one, until the end, where it will create a reaction, just like the vertical forces are doing?



      Thank you a lot.







      structures






      share|improve this question







      New contributor



      UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|improve this question







      New contributor



      UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|improve this question




      share|improve this question






      New contributor



      UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 15 hours ago









      UniversidadDeSevillaEsBasuraUniversidadDeSevillaEsBasura

      112




      112




      New contributor



      UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      UniversidadDeSevillaEsBasura is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Assuming I'm understanding the problem statement correctly and we have a vertical load transferred to a beam via a sort of angled frame, then here's how I'd think about the beam reactions.



          The Quick Way...



          The quickest approach is to solve for the support reactions by remembering the structure must be globally stable. In this case, we can consider the beam and the frame as a single structure for purposes of calculating the support reactions. Our equations of statics say the sum of the forces in the horizontal direction, the sum of the force in the vertical direction, and sum of the moments, must each be zero. Because there is no externally-applied horizontal load, there is only one possible horizontal force (the support reaction). For the sum of horizontal forces to be zero, the horizontal support reaction must therefore also be zero.



          The Longer Way...



          The longer way round is perhaps to convince ourselves that the frame applies equal and opposite horizontal loads to the beam and that this, again, means the horizontal support reaction must be zero.



          First, imagine we have a simply supported beam with equal and opposite horizontal load applied at a point.
          beam with coincident equal-opposite loads



          There is no net load at the point, so it's reasonably easy to convince ourselves that there's no support reaction.



          What if we applied equal and opposite loads at separate points along the beam?
          Beam with separate equal-opposite loads



          Now, it's perhaps less clear that there's no support reaction. But we can convince ourselves easily using the equations of statics. The beam reactions are about global stability of the structure. As is always the case in statics, the sum of horizontal forces must be zero.



          $$Sigma F_x = (+P) + (-P) + H_A = 0$$



          So, by some quick math, we prove that the horizontal reaction at Point A must be zero. In fact, for this beam configuration, the only segment of the beam "feeling" axial load is the segment in between the applied loads. It can be tempted to picture the left load "pushing" on the beam segment to the left of it, but that's not what's happening. Imagine a game of tug-of-war where the two innermost opponents perfectly oppose each other's forces...the players farther down the rope wouldn't feel anything, right?



          So now, all we have to do is convince ourselves the horizontal components of the applied loads are equal and opposite.
          components of applied load



          If we zoomed in and just looked at the bit of structure right were the vertical load is applied...well, that bit of structure must also be in equilibrium. The applied load is going to distribute between the two angled members, which means there will be horizontal components. However, again, by our lovely equations of statics, for this bit of structure to be in equilibrium, the sum of horizontal forces must be zero. Here, the only possible horizontal forces are the horizontal components of the loads in the angled members -- and thus, these components must be equal and opposite.



          Ta, da! Sometimes our initial intuition can lead us a little astray but the equations of statics never lie. Forces and moments must always sum to zero in order for the structure to remain...static.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thank you, for this clear information. Very appreciated.
            $endgroup$
            – UniversidadDeSevillaEsBasura
            9 hours ago


















          2












          $begingroup$

          Think about the three members that form the triangle EBC.



          There is no horizontal load applied at E.



          You know there is no horizontal load applied at C by beam CD, because there is a roller bearing at D.



          Therefore by equilibrium, there is no horizontal load applied at B.



          Therefore there is no horizontal tension in beam AB and no horizontal reaction at A.



          Of course there will be horizontal tension in BC, but that will be balanced at each end by the horizontal components of tension in EB and EC.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thanks for your time. But that is my confusion. I don't want to look at E and C where nothing is really happening. I want to look at A and B, where B is actually "pushing" against A, and so A should push back. Is there any way of visualizing this, only looking at A and B, where the fancy stuff is actually happening? Thanks a lot for your time, again.
            $endgroup$
            – UniversidadDeSevillaEsBasura
            11 hours ago











          • $begingroup$
            You seem to be asking "can I solve the problem by guessing which features I think are interesting and ignoring the rest? The answer is obviously "no, because you are not clever enough to guess right."
            $endgroup$
            – alephzero
            9 hours ago


















          0












          $begingroup$

          You are more than overthinking this. Keep it simple. For an object at rest:



          • ΣF(x) = 0 [sum of vertical forces = zero]

          • ΣF(y) = 0 [sum of horizontal forces = zero]


          • ΣMoments() = 0 [sum of moments about any point = zero]



            Free body diagram of beam.



          Free Body Diagram



          Again, ΣF(x) = 0. With the diagram drawn this way, what do you thing Force A (in the x direction) is?






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "595"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            UniversidadDeSevillaEsBasura is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fengineering.stackexchange.com%2fquestions%2f28828%2fpin-support-why-is-there-no-horizontal-reaction-force%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Assuming I'm understanding the problem statement correctly and we have a vertical load transferred to a beam via a sort of angled frame, then here's how I'd think about the beam reactions.



            The Quick Way...



            The quickest approach is to solve for the support reactions by remembering the structure must be globally stable. In this case, we can consider the beam and the frame as a single structure for purposes of calculating the support reactions. Our equations of statics say the sum of the forces in the horizontal direction, the sum of the force in the vertical direction, and sum of the moments, must each be zero. Because there is no externally-applied horizontal load, there is only one possible horizontal force (the support reaction). For the sum of horizontal forces to be zero, the horizontal support reaction must therefore also be zero.



            The Longer Way...



            The longer way round is perhaps to convince ourselves that the frame applies equal and opposite horizontal loads to the beam and that this, again, means the horizontal support reaction must be zero.



            First, imagine we have a simply supported beam with equal and opposite horizontal load applied at a point.
            beam with coincident equal-opposite loads



            There is no net load at the point, so it's reasonably easy to convince ourselves that there's no support reaction.



            What if we applied equal and opposite loads at separate points along the beam?
            Beam with separate equal-opposite loads



            Now, it's perhaps less clear that there's no support reaction. But we can convince ourselves easily using the equations of statics. The beam reactions are about global stability of the structure. As is always the case in statics, the sum of horizontal forces must be zero.



            $$Sigma F_x = (+P) + (-P) + H_A = 0$$



            So, by some quick math, we prove that the horizontal reaction at Point A must be zero. In fact, for this beam configuration, the only segment of the beam "feeling" axial load is the segment in between the applied loads. It can be tempted to picture the left load "pushing" on the beam segment to the left of it, but that's not what's happening. Imagine a game of tug-of-war where the two innermost opponents perfectly oppose each other's forces...the players farther down the rope wouldn't feel anything, right?



            So now, all we have to do is convince ourselves the horizontal components of the applied loads are equal and opposite.
            components of applied load



            If we zoomed in and just looked at the bit of structure right were the vertical load is applied...well, that bit of structure must also be in equilibrium. The applied load is going to distribute between the two angled members, which means there will be horizontal components. However, again, by our lovely equations of statics, for this bit of structure to be in equilibrium, the sum of horizontal forces must be zero. Here, the only possible horizontal forces are the horizontal components of the loads in the angled members -- and thus, these components must be equal and opposite.



            Ta, da! Sometimes our initial intuition can lead us a little astray but the equations of statics never lie. Forces and moments must always sum to zero in order for the structure to remain...static.






            share|improve this answer









            $endgroup$












            • $begingroup$
              Thank you, for this clear information. Very appreciated.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              9 hours ago















            2












            $begingroup$

            Assuming I'm understanding the problem statement correctly and we have a vertical load transferred to a beam via a sort of angled frame, then here's how I'd think about the beam reactions.



            The Quick Way...



            The quickest approach is to solve for the support reactions by remembering the structure must be globally stable. In this case, we can consider the beam and the frame as a single structure for purposes of calculating the support reactions. Our equations of statics say the sum of the forces in the horizontal direction, the sum of the force in the vertical direction, and sum of the moments, must each be zero. Because there is no externally-applied horizontal load, there is only one possible horizontal force (the support reaction). For the sum of horizontal forces to be zero, the horizontal support reaction must therefore also be zero.



            The Longer Way...



            The longer way round is perhaps to convince ourselves that the frame applies equal and opposite horizontal loads to the beam and that this, again, means the horizontal support reaction must be zero.



            First, imagine we have a simply supported beam with equal and opposite horizontal load applied at a point.
            beam with coincident equal-opposite loads



            There is no net load at the point, so it's reasonably easy to convince ourselves that there's no support reaction.



            What if we applied equal and opposite loads at separate points along the beam?
            Beam with separate equal-opposite loads



            Now, it's perhaps less clear that there's no support reaction. But we can convince ourselves easily using the equations of statics. The beam reactions are about global stability of the structure. As is always the case in statics, the sum of horizontal forces must be zero.



            $$Sigma F_x = (+P) + (-P) + H_A = 0$$



            So, by some quick math, we prove that the horizontal reaction at Point A must be zero. In fact, for this beam configuration, the only segment of the beam "feeling" axial load is the segment in between the applied loads. It can be tempted to picture the left load "pushing" on the beam segment to the left of it, but that's not what's happening. Imagine a game of tug-of-war where the two innermost opponents perfectly oppose each other's forces...the players farther down the rope wouldn't feel anything, right?



            So now, all we have to do is convince ourselves the horizontal components of the applied loads are equal and opposite.
            components of applied load



            If we zoomed in and just looked at the bit of structure right were the vertical load is applied...well, that bit of structure must also be in equilibrium. The applied load is going to distribute between the two angled members, which means there will be horizontal components. However, again, by our lovely equations of statics, for this bit of structure to be in equilibrium, the sum of horizontal forces must be zero. Here, the only possible horizontal forces are the horizontal components of the loads in the angled members -- and thus, these components must be equal and opposite.



            Ta, da! Sometimes our initial intuition can lead us a little astray but the equations of statics never lie. Forces and moments must always sum to zero in order for the structure to remain...static.






            share|improve this answer









            $endgroup$












            • $begingroup$
              Thank you, for this clear information. Very appreciated.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              9 hours ago













            2












            2








            2





            $begingroup$

            Assuming I'm understanding the problem statement correctly and we have a vertical load transferred to a beam via a sort of angled frame, then here's how I'd think about the beam reactions.



            The Quick Way...



            The quickest approach is to solve for the support reactions by remembering the structure must be globally stable. In this case, we can consider the beam and the frame as a single structure for purposes of calculating the support reactions. Our equations of statics say the sum of the forces in the horizontal direction, the sum of the force in the vertical direction, and sum of the moments, must each be zero. Because there is no externally-applied horizontal load, there is only one possible horizontal force (the support reaction). For the sum of horizontal forces to be zero, the horizontal support reaction must therefore also be zero.



            The Longer Way...



            The longer way round is perhaps to convince ourselves that the frame applies equal and opposite horizontal loads to the beam and that this, again, means the horizontal support reaction must be zero.



            First, imagine we have a simply supported beam with equal and opposite horizontal load applied at a point.
            beam with coincident equal-opposite loads



            There is no net load at the point, so it's reasonably easy to convince ourselves that there's no support reaction.



            What if we applied equal and opposite loads at separate points along the beam?
            Beam with separate equal-opposite loads



            Now, it's perhaps less clear that there's no support reaction. But we can convince ourselves easily using the equations of statics. The beam reactions are about global stability of the structure. As is always the case in statics, the sum of horizontal forces must be zero.



            $$Sigma F_x = (+P) + (-P) + H_A = 0$$



            So, by some quick math, we prove that the horizontal reaction at Point A must be zero. In fact, for this beam configuration, the only segment of the beam "feeling" axial load is the segment in between the applied loads. It can be tempted to picture the left load "pushing" on the beam segment to the left of it, but that's not what's happening. Imagine a game of tug-of-war where the two innermost opponents perfectly oppose each other's forces...the players farther down the rope wouldn't feel anything, right?



            So now, all we have to do is convince ourselves the horizontal components of the applied loads are equal and opposite.
            components of applied load



            If we zoomed in and just looked at the bit of structure right were the vertical load is applied...well, that bit of structure must also be in equilibrium. The applied load is going to distribute between the two angled members, which means there will be horizontal components. However, again, by our lovely equations of statics, for this bit of structure to be in equilibrium, the sum of horizontal forces must be zero. Here, the only possible horizontal forces are the horizontal components of the loads in the angled members -- and thus, these components must be equal and opposite.



            Ta, da! Sometimes our initial intuition can lead us a little astray but the equations of statics never lie. Forces and moments must always sum to zero in order for the structure to remain...static.






            share|improve this answer









            $endgroup$



            Assuming I'm understanding the problem statement correctly and we have a vertical load transferred to a beam via a sort of angled frame, then here's how I'd think about the beam reactions.



            The Quick Way...



            The quickest approach is to solve for the support reactions by remembering the structure must be globally stable. In this case, we can consider the beam and the frame as a single structure for purposes of calculating the support reactions. Our equations of statics say the sum of the forces in the horizontal direction, the sum of the force in the vertical direction, and sum of the moments, must each be zero. Because there is no externally-applied horizontal load, there is only one possible horizontal force (the support reaction). For the sum of horizontal forces to be zero, the horizontal support reaction must therefore also be zero.



            The Longer Way...



            The longer way round is perhaps to convince ourselves that the frame applies equal and opposite horizontal loads to the beam and that this, again, means the horizontal support reaction must be zero.



            First, imagine we have a simply supported beam with equal and opposite horizontal load applied at a point.
            beam with coincident equal-opposite loads



            There is no net load at the point, so it's reasonably easy to convince ourselves that there's no support reaction.



            What if we applied equal and opposite loads at separate points along the beam?
            Beam with separate equal-opposite loads



            Now, it's perhaps less clear that there's no support reaction. But we can convince ourselves easily using the equations of statics. The beam reactions are about global stability of the structure. As is always the case in statics, the sum of horizontal forces must be zero.



            $$Sigma F_x = (+P) + (-P) + H_A = 0$$



            So, by some quick math, we prove that the horizontal reaction at Point A must be zero. In fact, for this beam configuration, the only segment of the beam "feeling" axial load is the segment in between the applied loads. It can be tempted to picture the left load "pushing" on the beam segment to the left of it, but that's not what's happening. Imagine a game of tug-of-war where the two innermost opponents perfectly oppose each other's forces...the players farther down the rope wouldn't feel anything, right?



            So now, all we have to do is convince ourselves the horizontal components of the applied loads are equal and opposite.
            components of applied load



            If we zoomed in and just looked at the bit of structure right were the vertical load is applied...well, that bit of structure must also be in equilibrium. The applied load is going to distribute between the two angled members, which means there will be horizontal components. However, again, by our lovely equations of statics, for this bit of structure to be in equilibrium, the sum of horizontal forces must be zero. Here, the only possible horizontal forces are the horizontal components of the loads in the angled members -- and thus, these components must be equal and opposite.



            Ta, da! Sometimes our initial intuition can lead us a little astray but the equations of statics never lie. Forces and moments must always sum to zero in order for the structure to remain...static.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 9 hours ago









            CableStayCableStay

            1,7171824




            1,7171824











            • $begingroup$
              Thank you, for this clear information. Very appreciated.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              9 hours ago
















            • $begingroup$
              Thank you, for this clear information. Very appreciated.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              9 hours ago















            $begingroup$
            Thank you, for this clear information. Very appreciated.
            $endgroup$
            – UniversidadDeSevillaEsBasura
            9 hours ago




            $begingroup$
            Thank you, for this clear information. Very appreciated.
            $endgroup$
            – UniversidadDeSevillaEsBasura
            9 hours ago











            2












            $begingroup$

            Think about the three members that form the triangle EBC.



            There is no horizontal load applied at E.



            You know there is no horizontal load applied at C by beam CD, because there is a roller bearing at D.



            Therefore by equilibrium, there is no horizontal load applied at B.



            Therefore there is no horizontal tension in beam AB and no horizontal reaction at A.



            Of course there will be horizontal tension in BC, but that will be balanced at each end by the horizontal components of tension in EB and EC.






            share|improve this answer









            $endgroup$












            • $begingroup$
              Thanks for your time. But that is my confusion. I don't want to look at E and C where nothing is really happening. I want to look at A and B, where B is actually "pushing" against A, and so A should push back. Is there any way of visualizing this, only looking at A and B, where the fancy stuff is actually happening? Thanks a lot for your time, again.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              11 hours ago











            • $begingroup$
              You seem to be asking "can I solve the problem by guessing which features I think are interesting and ignoring the rest? The answer is obviously "no, because you are not clever enough to guess right."
              $endgroup$
              – alephzero
              9 hours ago















            2












            $begingroup$

            Think about the three members that form the triangle EBC.



            There is no horizontal load applied at E.



            You know there is no horizontal load applied at C by beam CD, because there is a roller bearing at D.



            Therefore by equilibrium, there is no horizontal load applied at B.



            Therefore there is no horizontal tension in beam AB and no horizontal reaction at A.



            Of course there will be horizontal tension in BC, but that will be balanced at each end by the horizontal components of tension in EB and EC.






            share|improve this answer









            $endgroup$












            • $begingroup$
              Thanks for your time. But that is my confusion. I don't want to look at E and C where nothing is really happening. I want to look at A and B, where B is actually "pushing" against A, and so A should push back. Is there any way of visualizing this, only looking at A and B, where the fancy stuff is actually happening? Thanks a lot for your time, again.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              11 hours ago











            • $begingroup$
              You seem to be asking "can I solve the problem by guessing which features I think are interesting and ignoring the rest? The answer is obviously "no, because you are not clever enough to guess right."
              $endgroup$
              – alephzero
              9 hours ago













            2












            2








            2





            $begingroup$

            Think about the three members that form the triangle EBC.



            There is no horizontal load applied at E.



            You know there is no horizontal load applied at C by beam CD, because there is a roller bearing at D.



            Therefore by equilibrium, there is no horizontal load applied at B.



            Therefore there is no horizontal tension in beam AB and no horizontal reaction at A.



            Of course there will be horizontal tension in BC, but that will be balanced at each end by the horizontal components of tension in EB and EC.






            share|improve this answer









            $endgroup$



            Think about the three members that form the triangle EBC.



            There is no horizontal load applied at E.



            You know there is no horizontal load applied at C by beam CD, because there is a roller bearing at D.



            Therefore by equilibrium, there is no horizontal load applied at B.



            Therefore there is no horizontal tension in beam AB and no horizontal reaction at A.



            Of course there will be horizontal tension in BC, but that will be balanced at each end by the horizontal components of tension in EB and EC.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 13 hours ago









            alephzeroalephzero

            7,9281622




            7,9281622











            • $begingroup$
              Thanks for your time. But that is my confusion. I don't want to look at E and C where nothing is really happening. I want to look at A and B, where B is actually "pushing" against A, and so A should push back. Is there any way of visualizing this, only looking at A and B, where the fancy stuff is actually happening? Thanks a lot for your time, again.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              11 hours ago











            • $begingroup$
              You seem to be asking "can I solve the problem by guessing which features I think are interesting and ignoring the rest? The answer is obviously "no, because you are not clever enough to guess right."
              $endgroup$
              – alephzero
              9 hours ago
















            • $begingroup$
              Thanks for your time. But that is my confusion. I don't want to look at E and C where nothing is really happening. I want to look at A and B, where B is actually "pushing" against A, and so A should push back. Is there any way of visualizing this, only looking at A and B, where the fancy stuff is actually happening? Thanks a lot for your time, again.
              $endgroup$
              – UniversidadDeSevillaEsBasura
              11 hours ago











            • $begingroup$
              You seem to be asking "can I solve the problem by guessing which features I think are interesting and ignoring the rest? The answer is obviously "no, because you are not clever enough to guess right."
              $endgroup$
              – alephzero
              9 hours ago















            $begingroup$
            Thanks for your time. But that is my confusion. I don't want to look at E and C where nothing is really happening. I want to look at A and B, where B is actually "pushing" against A, and so A should push back. Is there any way of visualizing this, only looking at A and B, where the fancy stuff is actually happening? Thanks a lot for your time, again.
            $endgroup$
            – UniversidadDeSevillaEsBasura
            11 hours ago





            $begingroup$
            Thanks for your time. But that is my confusion. I don't want to look at E and C where nothing is really happening. I want to look at A and B, where B is actually "pushing" against A, and so A should push back. Is there any way of visualizing this, only looking at A and B, where the fancy stuff is actually happening? Thanks a lot for your time, again.
            $endgroup$
            – UniversidadDeSevillaEsBasura
            11 hours ago













            $begingroup$
            You seem to be asking "can I solve the problem by guessing which features I think are interesting and ignoring the rest? The answer is obviously "no, because you are not clever enough to guess right."
            $endgroup$
            – alephzero
            9 hours ago




            $begingroup$
            You seem to be asking "can I solve the problem by guessing which features I think are interesting and ignoring the rest? The answer is obviously "no, because you are not clever enough to guess right."
            $endgroup$
            – alephzero
            9 hours ago











            0












            $begingroup$

            You are more than overthinking this. Keep it simple. For an object at rest:



            • ΣF(x) = 0 [sum of vertical forces = zero]

            • ΣF(y) = 0 [sum of horizontal forces = zero]


            • ΣMoments() = 0 [sum of moments about any point = zero]



              Free body diagram of beam.



            Free Body Diagram



            Again, ΣF(x) = 0. With the diagram drawn this way, what do you thing Force A (in the x direction) is?






            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              You are more than overthinking this. Keep it simple. For an object at rest:



              • ΣF(x) = 0 [sum of vertical forces = zero]

              • ΣF(y) = 0 [sum of horizontal forces = zero]


              • ΣMoments() = 0 [sum of moments about any point = zero]



                Free body diagram of beam.



              Free Body Diagram



              Again, ΣF(x) = 0. With the diagram drawn this way, what do you thing Force A (in the x direction) is?






              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                You are more than overthinking this. Keep it simple. For an object at rest:



                • ΣF(x) = 0 [sum of vertical forces = zero]

                • ΣF(y) = 0 [sum of horizontal forces = zero]


                • ΣMoments() = 0 [sum of moments about any point = zero]



                  Free body diagram of beam.



                Free Body Diagram



                Again, ΣF(x) = 0. With the diagram drawn this way, what do you thing Force A (in the x direction) is?






                share|improve this answer









                $endgroup$



                You are more than overthinking this. Keep it simple. For an object at rest:



                • ΣF(x) = 0 [sum of vertical forces = zero]

                • ΣF(y) = 0 [sum of horizontal forces = zero]


                • ΣMoments() = 0 [sum of moments about any point = zero]



                  Free body diagram of beam.



                Free Body Diagram



                Again, ΣF(x) = 0. With the diagram drawn this way, what do you thing Force A (in the x direction) is?







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 3 hours ago









                zipzitzipzit

                20127




                20127




















                    UniversidadDeSevillaEsBasura is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    UniversidadDeSevillaEsBasura is a new contributor. Be nice, and check out our Code of Conduct.












                    UniversidadDeSevillaEsBasura is a new contributor. Be nice, and check out our Code of Conduct.











                    UniversidadDeSevillaEsBasura is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Engineering Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fengineering.stackexchange.com%2fquestions%2f28828%2fpin-support-why-is-there-no-horizontal-reaction-force%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                    Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                    Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거