Commutator subgroup of Heisenberg group.Commutator subgroup problemIs there a nonvirtually abelian group whose commutator subgroup is finite?Subgroup of the quotient group of the commutator G'.Commutator Subgroup is finitely generatedCommutator subgroup is the minimal normal subgroup such that quotient group is abelianIs the commutator subgroup of a commutator subgroup itself?When is a quotient group abelian?Problem on commutator subgroupLet $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian.Proving that a quotient is virtually a nilpotent group
Do native speakers use ZVE or CPU?
Why does Hellboy file down his horns?
do not have power to all my breakers
Does entangle require vegetation?
Why doesn't Anakin's lightsaber explode when it's chopped in half on Geonosis?
Are there any double stars that I can actually see orbit each other?
Is it okay to retroactively change things when running a published adventure?
What is the closed form of the following recursive function?
Remove intersect line for one circle using venndiagram2sets
Crab Nebula short story from 1960s or '70s
GPIO and Python - GPIO.output() not working
Integral clarification
Why use null function instead of == []
Asking for higher salary after I increased my initial figure
Filtering fine silt/mud from water (not necessarily bacteria etc.)
Would letting a multiclass character rebuild their character to be single-classed be game-breaking?
Why limit to revolvers?
How would you write do the dialogues of two characters talking in a chat room?
Can I activate an iPhone without an Apple ID?
Could the crash sites of the Apollo 11 and 16 LMs be seen by the LRO?
How can I legally visit the United States Minor Outlying Islands in the Pacific?
How did Southern slaveholders in the United States relate to the Caribbean and Latin America?
What is the German equivalent of 干物女 (dried fish woman)?
What are some symbols representing peasants/oppressed persons fighting back?
Commutator subgroup of Heisenberg group.
Commutator subgroup problemIs there a nonvirtually abelian group whose commutator subgroup is finite?Subgroup of the quotient group of the commutator G'.Commutator Subgroup is finitely generatedCommutator subgroup is the minimal normal subgroup such that quotient group is abelianIs the commutator subgroup of a commutator subgroup itself?When is a quotient group abelian?Problem on commutator subgroupLet $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian.Proving that a quotient is virtually a nilpotent group
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
$endgroup$
add a comment |
$begingroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
$endgroup$
add a comment |
$begingroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
$endgroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
edited 7 hours ago
Maciej Ficek
asked 8 hours ago
Maciej FicekMaciej Ficek
276 bronze badges
276 bronze badges
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293033%2fcommutator-subgroup-of-heisenberg-group%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
add a comment |
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
add a comment |
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
edited 5 hours ago
answered 7 hours ago
Gae. S.Gae. S.
6073 silver badges14 bronze badges
6073 silver badges14 bronze badges
add a comment |
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
edited 7 hours ago
answered 8 hours ago


José Carlos SantosJosé Carlos Santos
199k25 gold badges158 silver badges276 bronze badges
199k25 gold badges158 silver badges276 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293033%2fcommutator-subgroup-of-heisenberg-group%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown