Upper Bound for a SumUpper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums

How can I perform a deterministic physics simulation?

Are valid inequalities worth the effort given modern solver preprocessing options?

On the consistency of different well-polished astronomy software

Does a humanoid possessed by a ghost register as undead to a paladin's Divine Sense?

ZFS on Linux: Which mountpoint option when mounting manually per script?

How to call made-up data?

What does C++ language definition say about the extent of the static keyword?

Why do my fried eggs start browning very fast?

What's "halachic" about "Esav hates Ya'akov"?

Did Logical Positivism fail because it simply denied human emotion?

How do I handle a DM that plays favorites with certain players?

Are the related objects in an SOQL query shared?

Is there a way to say "double + any number" in German?

Why wasn't interlaced CRT scanning done back and forth?

Can the Cauchy product of divergent series with itself be convergent?

How to increase Solr JVM memory

What printing process is this?

What does "autolyco-sentimental" mean?

How do I know when and if a character requires a backstory?

The Game of the Century - why didn't Byrne take the rook after he forked Fischer?

C# TCP server/client class

Is the first page of a novel really that important?

Generate random number in Unity without class ambiguity

foot-pounds of energy?



Upper Bound for a Sum


Upper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


Can you help me prove the following inequality:
$$
(sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
$$

where $a's,b's,c's in mathrmR$



I tried to use Cauchy's inequality to prove this but got stuck.










share|cite|improve this question











$endgroup$




















    5












    $begingroup$


    Can you help me prove the following inequality:
    $$
    (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
    $$

    where $a's,b's,c's in mathrmR$



    I tried to use Cauchy's inequality to prove this but got stuck.










    share|cite|improve this question











    $endgroup$
















      5












      5








      5


      1



      $begingroup$


      Can you help me prove the following inequality:
      $$
      (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
      $$

      where $a's,b's,c's in mathrmR$



      I tried to use Cauchy's inequality to prove this but got stuck.










      share|cite|improve this question











      $endgroup$




      Can you help me prove the following inequality:
      $$
      (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
      $$

      where $a's,b's,c's in mathrmR$



      I tried to use Cauchy's inequality to prove this but got stuck.







      inequality cauchy-schwarz-inequality holder-inequality karamata-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 7 hours ago









      Michael Rozenberg

      123k20 gold badges105 silver badges210 bronze badges




      123k20 gold badges105 silver badges210 bronze badges










      asked 9 hours ago









      A Slow LearnerA Slow Learner

      5324 silver badges14 bronze badges




      5324 silver badges14 bronze badges























          5 Answers
          5






          active

          oldest

          votes


















          7












          $begingroup$

          For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






          share|cite|improve this answer









          $endgroup$










          • 2




            $begingroup$
            fantastic............................................
            $endgroup$
            – Guy Fsone
            8 hours ago


















          0












          $begingroup$

          You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
          $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



          So, the inequality should also work over $mathbbC$.






          share|cite|improve this answer









          $endgroup$






















            0












            $begingroup$

            $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



            The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






            share|cite|improve this answer









            $endgroup$






















              0












              $begingroup$

              I'd like to add one more version.



              First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
              Without loss of generality, I will consider everything positive from now on.



              Now let's prove $2$ lemmas.
              Lemma L1
              $$
              sum_k=1^n x_k^2 y_k^2
              leq
              left(sum_k=1^n x_k y_kright)^2,
              $$

              obvious, since sum on the right contains everything on the left plus something more.



              Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
              $$
              left(vecx cdot vecyright)^2 =
              left(sum_k=1^n x_k y_kright)^2
              ;quad
              left(vecx cdot vecxright) left(vecy cdot vecyright) =
              left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
              $$

              But we know that
              $$
              left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
              = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
              $$

              where $phi$ is an angle between $vecx$ and $vecy$.
              Since $cos^2(phi) leq 1$ we can state
              $$
              left(sum_k=1^n x_k y_kright)^2 leq
              left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
              $$



              Now we are equipped to do the proof
              $$
              left(sum_k=1^n a_k b_k c_kright)^2
              stackreltextL2leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
              stackreltextL1leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
              stackreltextL2leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
              $$

              QED






              share|cite|improve this answer









              $endgroup$






















                0












                $begingroup$

                Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                Now, let $a_kb_kc_k=x_k.$



                Thus, by Holder
                $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                Now, let $f(x)=x^frac23.$



                Thus, $f$ is a concave function.



                Also, let $x_1geq x_2geq...geq x_n.$



                Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                share|cite|improve this answer









                $endgroup$

















                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "69"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );













                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  7












                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago















                  7












                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago













                  7












                  7








                  7





                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$



                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  KeenKeen

                  6132 silver badges11 bronze badges




                  6132 silver badges11 bronze badges










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago












                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago







                  2




                  2




                  $begingroup$
                  fantastic............................................
                  $endgroup$
                  – Guy Fsone
                  8 hours ago




                  $begingroup$
                  fantastic............................................
                  $endgroup$
                  – Guy Fsone
                  8 hours ago













                  0












                  $begingroup$

                  You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                  $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                  So, the inequality should also work over $mathbbC$.






                  share|cite|improve this answer









                  $endgroup$



















                    0












                    $begingroup$

                    You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                    $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                    So, the inequality should also work over $mathbbC$.






                    share|cite|improve this answer









                    $endgroup$

















                      0












                      0








                      0





                      $begingroup$

                      You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                      $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                      So, the inequality should also work over $mathbbC$.






                      share|cite|improve this answer









                      $endgroup$



                      You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                      $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                      So, the inequality should also work over $mathbbC$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 8 hours ago









                      D.B.D.B.

                      2,0792 silver badges10 bronze badges




                      2,0792 silver badges10 bronze badges
























                          0












                          $begingroup$

                          $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                          The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                          share|cite|improve this answer









                          $endgroup$



















                            0












                            $begingroup$

                            $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                            The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                            share|cite|improve this answer









                            $endgroup$

















                              0












                              0








                              0





                              $begingroup$

                              $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                              The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                              share|cite|improve this answer









                              $endgroup$



                              $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                              The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 8 hours ago









                              herb steinbergherb steinberg

                              4,5042 gold badges3 silver badges12 bronze badges




                              4,5042 gold badges3 silver badges12 bronze badges
























                                  0












                                  $begingroup$

                                  I'd like to add one more version.



                                  First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                  Without loss of generality, I will consider everything positive from now on.



                                  Now let's prove $2$ lemmas.
                                  Lemma L1
                                  $$
                                  sum_k=1^n x_k^2 y_k^2
                                  leq
                                  left(sum_k=1^n x_k y_kright)^2,
                                  $$

                                  obvious, since sum on the right contains everything on the left plus something more.



                                  Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                  $$
                                  left(vecx cdot vecyright)^2 =
                                  left(sum_k=1^n x_k y_kright)^2
                                  ;quad
                                  left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                  left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                  $$

                                  But we know that
                                  $$
                                  left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                  = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                  $$

                                  where $phi$ is an angle between $vecx$ and $vecy$.
                                  Since $cos^2(phi) leq 1$ we can state
                                  $$
                                  left(sum_k=1^n x_k y_kright)^2 leq
                                  left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                  $$



                                  Now we are equipped to do the proof
                                  $$
                                  left(sum_k=1^n a_k b_k c_kright)^2
                                  stackreltextL2leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                  stackreltextL1leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                  stackreltextL2leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                  $$

                                  QED






                                  share|cite|improve this answer









                                  $endgroup$



















                                    0












                                    $begingroup$

                                    I'd like to add one more version.



                                    First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                    Without loss of generality, I will consider everything positive from now on.



                                    Now let's prove $2$ lemmas.
                                    Lemma L1
                                    $$
                                    sum_k=1^n x_k^2 y_k^2
                                    leq
                                    left(sum_k=1^n x_k y_kright)^2,
                                    $$

                                    obvious, since sum on the right contains everything on the left plus something more.



                                    Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                    $$
                                    left(vecx cdot vecyright)^2 =
                                    left(sum_k=1^n x_k y_kright)^2
                                    ;quad
                                    left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                    left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                    $$

                                    But we know that
                                    $$
                                    left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                    = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                    $$

                                    where $phi$ is an angle between $vecx$ and $vecy$.
                                    Since $cos^2(phi) leq 1$ we can state
                                    $$
                                    left(sum_k=1^n x_k y_kright)^2 leq
                                    left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                    $$



                                    Now we are equipped to do the proof
                                    $$
                                    left(sum_k=1^n a_k b_k c_kright)^2
                                    stackreltextL2leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                    stackreltextL1leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                    stackreltextL2leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                    $$

                                    QED






                                    share|cite|improve this answer









                                    $endgroup$

















                                      0












                                      0








                                      0





                                      $begingroup$

                                      I'd like to add one more version.



                                      First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                      Without loss of generality, I will consider everything positive from now on.



                                      Now let's prove $2$ lemmas.
                                      Lemma L1
                                      $$
                                      sum_k=1^n x_k^2 y_k^2
                                      leq
                                      left(sum_k=1^n x_k y_kright)^2,
                                      $$

                                      obvious, since sum on the right contains everything on the left plus something more.



                                      Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                      $$
                                      left(vecx cdot vecyright)^2 =
                                      left(sum_k=1^n x_k y_kright)^2
                                      ;quad
                                      left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$

                                      But we know that
                                      $$
                                      left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                      = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                      $$

                                      where $phi$ is an angle between $vecx$ and $vecy$.
                                      Since $cos^2(phi) leq 1$ we can state
                                      $$
                                      left(sum_k=1^n x_k y_kright)^2 leq
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$



                                      Now we are equipped to do the proof
                                      $$
                                      left(sum_k=1^n a_k b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                      stackreltextL1leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                      $$

                                      QED






                                      share|cite|improve this answer









                                      $endgroup$



                                      I'd like to add one more version.



                                      First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                      Without loss of generality, I will consider everything positive from now on.



                                      Now let's prove $2$ lemmas.
                                      Lemma L1
                                      $$
                                      sum_k=1^n x_k^2 y_k^2
                                      leq
                                      left(sum_k=1^n x_k y_kright)^2,
                                      $$

                                      obvious, since sum on the right contains everything on the left plus something more.



                                      Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                      $$
                                      left(vecx cdot vecyright)^2 =
                                      left(sum_k=1^n x_k y_kright)^2
                                      ;quad
                                      left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$

                                      But we know that
                                      $$
                                      left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                      = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                      $$

                                      where $phi$ is an angle between $vecx$ and $vecy$.
                                      Since $cos^2(phi) leq 1$ we can state
                                      $$
                                      left(sum_k=1^n x_k y_kright)^2 leq
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$



                                      Now we are equipped to do the proof
                                      $$
                                      left(sum_k=1^n a_k b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                      stackreltextL1leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                      $$

                                      QED







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 7 hours ago









                                      guestguest

                                      3261 silver badge3 bronze badges




                                      3261 silver badge3 bronze badges
























                                          0












                                          $begingroup$

                                          Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                          Now, let $a_kb_kc_k=x_k.$



                                          Thus, by Holder
                                          $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                          $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                          $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                          Now, let $f(x)=x^frac23.$



                                          Thus, $f$ is a concave function.



                                          Also, let $x_1geq x_2geq...geq x_n.$



                                          Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                          $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                          share|cite|improve this answer









                                          $endgroup$



















                                            0












                                            $begingroup$

                                            Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                            Now, let $a_kb_kc_k=x_k.$



                                            Thus, by Holder
                                            $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                            $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                            $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                            Now, let $f(x)=x^frac23.$



                                            Thus, $f$ is a concave function.



                                            Also, let $x_1geq x_2geq...geq x_n.$



                                            Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                            $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                            share|cite|improve this answer









                                            $endgroup$

















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                              Now, let $a_kb_kc_k=x_k.$



                                              Thus, by Holder
                                              $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                              $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                              $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                              Now, let $f(x)=x^frac23.$



                                              Thus, $f$ is a concave function.



                                              Also, let $x_1geq x_2geq...geq x_n.$



                                              Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                              $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                              share|cite|improve this answer









                                              $endgroup$



                                              Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                              Now, let $a_kb_kc_k=x_k.$



                                              Thus, by Holder
                                              $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                              $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                              $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                              Now, let $f(x)=x^frac23.$



                                              Thus, $f$ is a concave function.



                                              Also, let $x_1geq x_2geq...geq x_n.$



                                              Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                              $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 7 hours ago









                                              Michael RozenbergMichael Rozenberg

                                              123k20 gold badges105 silver badges210 bronze badges




                                              123k20 gold badges105 silver badges210 bronze badges






























                                                  draft saved

                                                  draft discarded
















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                                  Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                                  Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거