Upper Bound for a SumUpper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums

How can I perform a deterministic physics simulation?

Are valid inequalities worth the effort given modern solver preprocessing options?

On the consistency of different well-polished astronomy software

Does a humanoid possessed by a ghost register as undead to a paladin's Divine Sense?

ZFS on Linux: Which mountpoint option when mounting manually per script?

How to call made-up data?

What does C++ language definition say about the extent of the static keyword?

Why do my fried eggs start browning very fast?

What's "halachic" about "Esav hates Ya'akov"?

Did Logical Positivism fail because it simply denied human emotion?

How do I handle a DM that plays favorites with certain players?

Are the related objects in an SOQL query shared?

Is there a way to say "double + any number" in German?

Why wasn't interlaced CRT scanning done back and forth?

Can the Cauchy product of divergent series with itself be convergent?

How to increase Solr JVM memory

What printing process is this?

What does "autolyco-sentimental" mean?

How do I know when and if a character requires a backstory?

The Game of the Century - why didn't Byrne take the rook after he forked Fischer?

C# TCP server/client class

Is the first page of a novel really that important?

Generate random number in Unity without class ambiguity

foot-pounds of energy?



Upper Bound for a Sum


Upper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


Can you help me prove the following inequality:
$$
(sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
$$

where $a's,b's,c's in mathrmR$



I tried to use Cauchy's inequality to prove this but got stuck.










share|cite|improve this question











$endgroup$




















    5












    $begingroup$


    Can you help me prove the following inequality:
    $$
    (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
    $$

    where $a's,b's,c's in mathrmR$



    I tried to use Cauchy's inequality to prove this but got stuck.










    share|cite|improve this question











    $endgroup$
















      5












      5








      5


      1



      $begingroup$


      Can you help me prove the following inequality:
      $$
      (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
      $$

      where $a's,b's,c's in mathrmR$



      I tried to use Cauchy's inequality to prove this but got stuck.










      share|cite|improve this question











      $endgroup$




      Can you help me prove the following inequality:
      $$
      (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
      $$

      where $a's,b's,c's in mathrmR$



      I tried to use Cauchy's inequality to prove this but got stuck.







      inequality cauchy-schwarz-inequality holder-inequality karamata-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 7 hours ago









      Michael Rozenberg

      123k20 gold badges105 silver badges210 bronze badges




      123k20 gold badges105 silver badges210 bronze badges










      asked 9 hours ago









      A Slow LearnerA Slow Learner

      5324 silver badges14 bronze badges




      5324 silver badges14 bronze badges























          5 Answers
          5






          active

          oldest

          votes


















          7












          $begingroup$

          For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






          share|cite|improve this answer









          $endgroup$










          • 2




            $begingroup$
            fantastic............................................
            $endgroup$
            – Guy Fsone
            8 hours ago


















          0












          $begingroup$

          You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
          $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



          So, the inequality should also work over $mathbbC$.






          share|cite|improve this answer









          $endgroup$






















            0












            $begingroup$

            $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



            The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






            share|cite|improve this answer









            $endgroup$






















              0












              $begingroup$

              I'd like to add one more version.



              First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
              Without loss of generality, I will consider everything positive from now on.



              Now let's prove $2$ lemmas.
              Lemma L1
              $$
              sum_k=1^n x_k^2 y_k^2
              leq
              left(sum_k=1^n x_k y_kright)^2,
              $$

              obvious, since sum on the right contains everything on the left plus something more.



              Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
              $$
              left(vecx cdot vecyright)^2 =
              left(sum_k=1^n x_k y_kright)^2
              ;quad
              left(vecx cdot vecxright) left(vecy cdot vecyright) =
              left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
              $$

              But we know that
              $$
              left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
              = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
              $$

              where $phi$ is an angle between $vecx$ and $vecy$.
              Since $cos^2(phi) leq 1$ we can state
              $$
              left(sum_k=1^n x_k y_kright)^2 leq
              left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
              $$



              Now we are equipped to do the proof
              $$
              left(sum_k=1^n a_k b_k c_kright)^2
              stackreltextL2leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
              stackreltextL1leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
              stackreltextL2leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
              $$

              QED






              share|cite|improve this answer









              $endgroup$






















                0












                $begingroup$

                Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                Now, let $a_kb_kc_k=x_k.$



                Thus, by Holder
                $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                Now, let $f(x)=x^frac23.$



                Thus, $f$ is a concave function.



                Also, let $x_1geq x_2geq...geq x_n.$



                Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                share|cite|improve this answer









                $endgroup$

















                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "69"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );













                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  7












                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago















                  7












                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago













                  7












                  7








                  7





                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$



                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  KeenKeen

                  6132 silver badges11 bronze badges




                  6132 silver badges11 bronze badges










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago












                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    8 hours ago







                  2




                  2




                  $begingroup$
                  fantastic............................................
                  $endgroup$
                  – Guy Fsone
                  8 hours ago




                  $begingroup$
                  fantastic............................................
                  $endgroup$
                  – Guy Fsone
                  8 hours ago













                  0












                  $begingroup$

                  You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                  $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                  So, the inequality should also work over $mathbbC$.






                  share|cite|improve this answer









                  $endgroup$



















                    0












                    $begingroup$

                    You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                    $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                    So, the inequality should also work over $mathbbC$.






                    share|cite|improve this answer









                    $endgroup$

















                      0












                      0








                      0





                      $begingroup$

                      You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                      $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                      So, the inequality should also work over $mathbbC$.






                      share|cite|improve this answer









                      $endgroup$



                      You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                      $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                      So, the inequality should also work over $mathbbC$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 8 hours ago









                      D.B.D.B.

                      2,0792 silver badges10 bronze badges




                      2,0792 silver badges10 bronze badges
























                          0












                          $begingroup$

                          $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                          The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                          share|cite|improve this answer









                          $endgroup$



















                            0












                            $begingroup$

                            $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                            The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                            share|cite|improve this answer









                            $endgroup$

















                              0












                              0








                              0





                              $begingroup$

                              $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                              The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                              share|cite|improve this answer









                              $endgroup$



                              $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                              The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 8 hours ago









                              herb steinbergherb steinberg

                              4,5042 gold badges3 silver badges12 bronze badges




                              4,5042 gold badges3 silver badges12 bronze badges
























                                  0












                                  $begingroup$

                                  I'd like to add one more version.



                                  First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                  Without loss of generality, I will consider everything positive from now on.



                                  Now let's prove $2$ lemmas.
                                  Lemma L1
                                  $$
                                  sum_k=1^n x_k^2 y_k^2
                                  leq
                                  left(sum_k=1^n x_k y_kright)^2,
                                  $$

                                  obvious, since sum on the right contains everything on the left plus something more.



                                  Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                  $$
                                  left(vecx cdot vecyright)^2 =
                                  left(sum_k=1^n x_k y_kright)^2
                                  ;quad
                                  left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                  left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                  $$

                                  But we know that
                                  $$
                                  left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                  = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                  $$

                                  where $phi$ is an angle between $vecx$ and $vecy$.
                                  Since $cos^2(phi) leq 1$ we can state
                                  $$
                                  left(sum_k=1^n x_k y_kright)^2 leq
                                  left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                  $$



                                  Now we are equipped to do the proof
                                  $$
                                  left(sum_k=1^n a_k b_k c_kright)^2
                                  stackreltextL2leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                  stackreltextL1leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                  stackreltextL2leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                  $$

                                  QED






                                  share|cite|improve this answer









                                  $endgroup$



















                                    0












                                    $begingroup$

                                    I'd like to add one more version.



                                    First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                    Without loss of generality, I will consider everything positive from now on.



                                    Now let's prove $2$ lemmas.
                                    Lemma L1
                                    $$
                                    sum_k=1^n x_k^2 y_k^2
                                    leq
                                    left(sum_k=1^n x_k y_kright)^2,
                                    $$

                                    obvious, since sum on the right contains everything on the left plus something more.



                                    Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                    $$
                                    left(vecx cdot vecyright)^2 =
                                    left(sum_k=1^n x_k y_kright)^2
                                    ;quad
                                    left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                    left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                    $$

                                    But we know that
                                    $$
                                    left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                    = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                    $$

                                    where $phi$ is an angle between $vecx$ and $vecy$.
                                    Since $cos^2(phi) leq 1$ we can state
                                    $$
                                    left(sum_k=1^n x_k y_kright)^2 leq
                                    left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                    $$



                                    Now we are equipped to do the proof
                                    $$
                                    left(sum_k=1^n a_k b_k c_kright)^2
                                    stackreltextL2leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                    stackreltextL1leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                    stackreltextL2leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                    $$

                                    QED






                                    share|cite|improve this answer









                                    $endgroup$

















                                      0












                                      0








                                      0





                                      $begingroup$

                                      I'd like to add one more version.



                                      First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                      Without loss of generality, I will consider everything positive from now on.



                                      Now let's prove $2$ lemmas.
                                      Lemma L1
                                      $$
                                      sum_k=1^n x_k^2 y_k^2
                                      leq
                                      left(sum_k=1^n x_k y_kright)^2,
                                      $$

                                      obvious, since sum on the right contains everything on the left plus something more.



                                      Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                      $$
                                      left(vecx cdot vecyright)^2 =
                                      left(sum_k=1^n x_k y_kright)^2
                                      ;quad
                                      left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$

                                      But we know that
                                      $$
                                      left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                      = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                      $$

                                      where $phi$ is an angle between $vecx$ and $vecy$.
                                      Since $cos^2(phi) leq 1$ we can state
                                      $$
                                      left(sum_k=1^n x_k y_kright)^2 leq
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$



                                      Now we are equipped to do the proof
                                      $$
                                      left(sum_k=1^n a_k b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                      stackreltextL1leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                      $$

                                      QED






                                      share|cite|improve this answer









                                      $endgroup$



                                      I'd like to add one more version.



                                      First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                      Without loss of generality, I will consider everything positive from now on.



                                      Now let's prove $2$ lemmas.
                                      Lemma L1
                                      $$
                                      sum_k=1^n x_k^2 y_k^2
                                      leq
                                      left(sum_k=1^n x_k y_kright)^2,
                                      $$

                                      obvious, since sum on the right contains everything on the left plus something more.



                                      Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                      $$
                                      left(vecx cdot vecyright)^2 =
                                      left(sum_k=1^n x_k y_kright)^2
                                      ;quad
                                      left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$

                                      But we know that
                                      $$
                                      left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                      = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                      $$

                                      where $phi$ is an angle between $vecx$ and $vecy$.
                                      Since $cos^2(phi) leq 1$ we can state
                                      $$
                                      left(sum_k=1^n x_k y_kright)^2 leq
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$



                                      Now we are equipped to do the proof
                                      $$
                                      left(sum_k=1^n a_k b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                      stackreltextL1leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                      $$

                                      QED







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 7 hours ago









                                      guestguest

                                      3261 silver badge3 bronze badges




                                      3261 silver badge3 bronze badges
























                                          0












                                          $begingroup$

                                          Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                          Now, let $a_kb_kc_k=x_k.$



                                          Thus, by Holder
                                          $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                          $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                          $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                          Now, let $f(x)=x^frac23.$



                                          Thus, $f$ is a concave function.



                                          Also, let $x_1geq x_2geq...geq x_n.$



                                          Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                          $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                          share|cite|improve this answer









                                          $endgroup$



















                                            0












                                            $begingroup$

                                            Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                            Now, let $a_kb_kc_k=x_k.$



                                            Thus, by Holder
                                            $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                            $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                            $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                            Now, let $f(x)=x^frac23.$



                                            Thus, $f$ is a concave function.



                                            Also, let $x_1geq x_2geq...geq x_n.$



                                            Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                            $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                            share|cite|improve this answer









                                            $endgroup$

















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                              Now, let $a_kb_kc_k=x_k.$



                                              Thus, by Holder
                                              $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                              $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                              $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                              Now, let $f(x)=x^frac23.$



                                              Thus, $f$ is a concave function.



                                              Also, let $x_1geq x_2geq...geq x_n.$



                                              Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                              $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                              share|cite|improve this answer









                                              $endgroup$



                                              Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                              Now, let $a_kb_kc_k=x_k.$



                                              Thus, by Holder
                                              $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                              $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                              $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                              Now, let $f(x)=x^frac23.$



                                              Thus, $f$ is a concave function.



                                              Also, let $x_1geq x_2geq...geq x_n.$



                                              Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                              $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 7 hours ago









                                              Michael RozenbergMichael Rozenberg

                                              123k20 gold badges105 silver badges210 bronze badges




                                              123k20 gold badges105 silver badges210 bronze badges






























                                                  draft saved

                                                  draft discarded
















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  ParseJSON using SSJSUsing AMPscript with SSJS ActivitiesHow to resubscribe a user in Marketing cloud using SSJS?Pulling Subscriber Status from Lists using SSJSRetrieving Emails using SSJSProblem in updating DE using SSJSUsing SSJS to send single email in Marketing CloudError adding EmailSendDefinition using SSJS

                                                  Кампала Садржај Географија Географија Историја Становништво Привреда Партнерски градови Референце Спољашње везе Мени за навигацију0°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.340°11′ СГШ; 32°20′ ИГД / 0.18° СГШ; 32.34° ИГД / 0.18; 32.34МедијиПодациЗванични веб-сајту

                                                  19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу