An easy proof that an isometry preserving the zero vector is linearWhat is a general scalar and what a (complex conjugate)Show that $|lambda|leq 1$ for each eigenvalue $lambda$ of a partial isometryKinds of finite dimensional inner product spacesconformal maps between vector spaces?$B$ be an uncountable dimensional real Banach space and $T:B to B$ be a surjective isometry such that $T(0)=0$ , then is $T$ linear?Limitations on transforming a vector into another vector with norm-preserving linear transformationsIs a non-euclidean-norm preserving map necessarily linear?What properties of a linear map can be determined from its matrix?Extension of a linear map in a generic vector space (without Zorn's lemma)Are all isometries of subsets affine?

Does the 2019 UA Artificer's Many-Handed Pouch infusion enable unlimited infinite-range cross-planar communication?

Overlapping String-Blocks

Second (easy access) account in case my bank screws up

Heap allocation on microcontroller

Is it possible to fly backward if you have a 'really strong' headwind?

Let M and N be single-digit integers. If the product 2M5 x 13N is divisible by 36, how many ordered pairs (M,N) are possible?

Someone whose aspirations exceed abilities or means

A word that means "blending into a community too much"

sed + add word before string only if not exists

What aircraft was used as Air Force One for the flight between Southampton and Shannon?

Is it possible to have 2 different but equal size real number sets that have the same mean and standard deviation?

Meaning of 'lose their grip on the groins of their followers'

Print lines between start & end pattern, but if end pattern does not exist, don't print

Ability To Change Root User Password (Vulnerability?)

An easy proof that an isometry preserving the zero vector is linear

Why does the Mishnah use the terms poor person and homeowner when discussing carrying on Shabbat?

Active low-pass filters --- good to what frequencies?

Moving points closer to polyline using ModelBuilder?

Who enforces MPAA rating adherence?

Traversing Oceania: A Cryptic Journey

Is it safe to change the harddrive power feature so that it never turns off?

How does the Around command at zero work?

You have (3^2 + 2^3 + 2^2) Guesses Left. Figure out the Last one

How creative should the DM let an artificer be in terms of what they can build?



An easy proof that an isometry preserving the zero vector is linear


What is a general scalar and what a (complex conjugate)Show that $|lambda|leq 1$ for each eigenvalue $lambda$ of a partial isometryKinds of finite dimensional inner product spacesconformal maps between vector spaces?$B$ be an uncountable dimensional real Banach space and $T:B to B$ be a surjective isometry such that $T(0)=0$ , then is $T$ linear?Limitations on transforming a vector into another vector with norm-preserving linear transformationsIs a non-euclidean-norm preserving map necessarily linear?What properties of a linear map can be determined from its matrix?Extension of a linear map in a generic vector space (without Zorn's lemma)Are all isometries of subsets affine?













6












$begingroup$


I want to show that for real inner product spaces $V$ and $W$, if $L:Vto W$ satisfies the following properties:$$parallel L(vecx)-L(vecy)parallel=parallel vecx -vecyparallel\$$and $$L(vec0)=vec0,$$
then this map is linear. I am aware of the existence of the (more general) theorem of Mazur-Ulam, but I was wondering if there is more accessible proof, which is suitable for beginners in linear algebra. Thanks in advance!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Is the scalar field $mathbbR$ or $mathbbC$?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    Ah, we are assuming $V$ and $W$ are real vector spaces! Thanks.
    $endgroup$
    – EBP
    8 hours ago










  • $begingroup$
    Are we also assuming that $L$ is surjective?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    No, the assumptions I mentioned are all the assumptions we make. However, we could perhaps restrict the codomain to the image of $L$ in order to get some kind of surjectivity.
    $endgroup$
    – EBP
    8 hours ago















6












$begingroup$


I want to show that for real inner product spaces $V$ and $W$, if $L:Vto W$ satisfies the following properties:$$parallel L(vecx)-L(vecy)parallel=parallel vecx -vecyparallel\$$and $$L(vec0)=vec0,$$
then this map is linear. I am aware of the existence of the (more general) theorem of Mazur-Ulam, but I was wondering if there is more accessible proof, which is suitable for beginners in linear algebra. Thanks in advance!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Is the scalar field $mathbbR$ or $mathbbC$?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    Ah, we are assuming $V$ and $W$ are real vector spaces! Thanks.
    $endgroup$
    – EBP
    8 hours ago










  • $begingroup$
    Are we also assuming that $L$ is surjective?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    No, the assumptions I mentioned are all the assumptions we make. However, we could perhaps restrict the codomain to the image of $L$ in order to get some kind of surjectivity.
    $endgroup$
    – EBP
    8 hours ago













6












6








6


1



$begingroup$


I want to show that for real inner product spaces $V$ and $W$, if $L:Vto W$ satisfies the following properties:$$parallel L(vecx)-L(vecy)parallel=parallel vecx -vecyparallel\$$and $$L(vec0)=vec0,$$
then this map is linear. I am aware of the existence of the (more general) theorem of Mazur-Ulam, but I was wondering if there is more accessible proof, which is suitable for beginners in linear algebra. Thanks in advance!










share|cite|improve this question











$endgroup$




I want to show that for real inner product spaces $V$ and $W$, if $L:Vto W$ satisfies the following properties:$$parallel L(vecx)-L(vecy)parallel=parallel vecx -vecyparallel\$$and $$L(vec0)=vec0,$$
then this map is linear. I am aware of the existence of the (more general) theorem of Mazur-Ulam, but I was wondering if there is more accessible proof, which is suitable for beginners in linear algebra. Thanks in advance!







linear-algebra linear-transformations isometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago







EBP

















asked 8 hours ago









EBPEBP

1786




1786







  • 1




    $begingroup$
    Is the scalar field $mathbbR$ or $mathbbC$?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    Ah, we are assuming $V$ and $W$ are real vector spaces! Thanks.
    $endgroup$
    – EBP
    8 hours ago










  • $begingroup$
    Are we also assuming that $L$ is surjective?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    No, the assumptions I mentioned are all the assumptions we make. However, we could perhaps restrict the codomain to the image of $L$ in order to get some kind of surjectivity.
    $endgroup$
    – EBP
    8 hours ago












  • 1




    $begingroup$
    Is the scalar field $mathbbR$ or $mathbbC$?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    Ah, we are assuming $V$ and $W$ are real vector spaces! Thanks.
    $endgroup$
    – EBP
    8 hours ago










  • $begingroup$
    Are we also assuming that $L$ is surjective?
    $endgroup$
    – user159517
    8 hours ago










  • $begingroup$
    No, the assumptions I mentioned are all the assumptions we make. However, we could perhaps restrict the codomain to the image of $L$ in order to get some kind of surjectivity.
    $endgroup$
    – EBP
    8 hours ago







1




1




$begingroup$
Is the scalar field $mathbbR$ or $mathbbC$?
$endgroup$
– user159517
8 hours ago




$begingroup$
Is the scalar field $mathbbR$ or $mathbbC$?
$endgroup$
– user159517
8 hours ago












$begingroup$
Ah, we are assuming $V$ and $W$ are real vector spaces! Thanks.
$endgroup$
– EBP
8 hours ago




$begingroup$
Ah, we are assuming $V$ and $W$ are real vector spaces! Thanks.
$endgroup$
– EBP
8 hours ago












$begingroup$
Are we also assuming that $L$ is surjective?
$endgroup$
– user159517
8 hours ago




$begingroup$
Are we also assuming that $L$ is surjective?
$endgroup$
– user159517
8 hours ago












$begingroup$
No, the assumptions I mentioned are all the assumptions we make. However, we could perhaps restrict the codomain to the image of $L$ in order to get some kind of surjectivity.
$endgroup$
– EBP
8 hours ago




$begingroup$
No, the assumptions I mentioned are all the assumptions we make. However, we could perhaps restrict the codomain to the image of $L$ in order to get some kind of surjectivity.
$endgroup$
– EBP
8 hours ago










1 Answer
1






active

oldest

votes


















6












$begingroup$

Note that the assumptions imply that if $L(x)=0$, then $x=0$. Besides, $|L(x)|=|x|$ for all $x$.



Now, note that $|a+b|=sqrt^2+$.



As a consequence, for all $x,y$, $langle L(x),, L(y) rangle=langle x,y rangle$.



Therefore, for any scalars $lambda_i$, for any vectors $x_i$, $$|sum_ilambda_iL(x_i)|=|sum_ilambda_ix_i|.$$



Then take $x_1=alpha u+beta v$, $x_2=u$, $x_3=v$, $lambda_1=-1$, $lambda_2=alpha$, $lambda_3=beta$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you! While reading your comment I realised I made a mistake in the properties, I don't think this works for the current ones.
    $endgroup$
    – EBP
    7 hours ago






  • 1




    $begingroup$
    Nevermind! They are equivalent. Thank you very much!
    $endgroup$
    – EBP
    7 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3253534%2fan-easy-proof-that-an-isometry-preserving-the-zero-vector-is-linear%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Note that the assumptions imply that if $L(x)=0$, then $x=0$. Besides, $|L(x)|=|x|$ for all $x$.



Now, note that $|a+b|=sqrt^2+$.



As a consequence, for all $x,y$, $langle L(x),, L(y) rangle=langle x,y rangle$.



Therefore, for any scalars $lambda_i$, for any vectors $x_i$, $$|sum_ilambda_iL(x_i)|=|sum_ilambda_ix_i|.$$



Then take $x_1=alpha u+beta v$, $x_2=u$, $x_3=v$, $lambda_1=-1$, $lambda_2=alpha$, $lambda_3=beta$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you! While reading your comment I realised I made a mistake in the properties, I don't think this works for the current ones.
    $endgroup$
    – EBP
    7 hours ago






  • 1




    $begingroup$
    Nevermind! They are equivalent. Thank you very much!
    $endgroup$
    – EBP
    7 hours ago















6












$begingroup$

Note that the assumptions imply that if $L(x)=0$, then $x=0$. Besides, $|L(x)|=|x|$ for all $x$.



Now, note that $|a+b|=sqrt^2+$.



As a consequence, for all $x,y$, $langle L(x),, L(y) rangle=langle x,y rangle$.



Therefore, for any scalars $lambda_i$, for any vectors $x_i$, $$|sum_ilambda_iL(x_i)|=|sum_ilambda_ix_i|.$$



Then take $x_1=alpha u+beta v$, $x_2=u$, $x_3=v$, $lambda_1=-1$, $lambda_2=alpha$, $lambda_3=beta$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you! While reading your comment I realised I made a mistake in the properties, I don't think this works for the current ones.
    $endgroup$
    – EBP
    7 hours ago






  • 1




    $begingroup$
    Nevermind! They are equivalent. Thank you very much!
    $endgroup$
    – EBP
    7 hours ago













6












6








6





$begingroup$

Note that the assumptions imply that if $L(x)=0$, then $x=0$. Besides, $|L(x)|=|x|$ for all $x$.



Now, note that $|a+b|=sqrt^2+$.



As a consequence, for all $x,y$, $langle L(x),, L(y) rangle=langle x,y rangle$.



Therefore, for any scalars $lambda_i$, for any vectors $x_i$, $$|sum_ilambda_iL(x_i)|=|sum_ilambda_ix_i|.$$



Then take $x_1=alpha u+beta v$, $x_2=u$, $x_3=v$, $lambda_1=-1$, $lambda_2=alpha$, $lambda_3=beta$.






share|cite|improve this answer









$endgroup$



Note that the assumptions imply that if $L(x)=0$, then $x=0$. Besides, $|L(x)|=|x|$ for all $x$.



Now, note that $|a+b|=sqrt^2+$.



As a consequence, for all $x,y$, $langle L(x),, L(y) rangle=langle x,y rangle$.



Therefore, for any scalars $lambda_i$, for any vectors $x_i$, $$|sum_ilambda_iL(x_i)|=|sum_ilambda_ix_i|.$$



Then take $x_1=alpha u+beta v$, $x_2=u$, $x_3=v$, $lambda_1=-1$, $lambda_2=alpha$, $lambda_3=beta$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 8 hours ago









MindlackMindlack

5,413413




5,413413











  • $begingroup$
    Thank you! While reading your comment I realised I made a mistake in the properties, I don't think this works for the current ones.
    $endgroup$
    – EBP
    7 hours ago






  • 1




    $begingroup$
    Nevermind! They are equivalent. Thank you very much!
    $endgroup$
    – EBP
    7 hours ago
















  • $begingroup$
    Thank you! While reading your comment I realised I made a mistake in the properties, I don't think this works for the current ones.
    $endgroup$
    – EBP
    7 hours ago






  • 1




    $begingroup$
    Nevermind! They are equivalent. Thank you very much!
    $endgroup$
    – EBP
    7 hours ago















$begingroup$
Thank you! While reading your comment I realised I made a mistake in the properties, I don't think this works for the current ones.
$endgroup$
– EBP
7 hours ago




$begingroup$
Thank you! While reading your comment I realised I made a mistake in the properties, I don't think this works for the current ones.
$endgroup$
– EBP
7 hours ago




1




1




$begingroup$
Nevermind! They are equivalent. Thank you very much!
$endgroup$
– EBP
7 hours ago




$begingroup$
Nevermind! They are equivalent. Thank you very much!
$endgroup$
– EBP
7 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3253534%2fan-easy-proof-that-an-isometry-preserving-the-zero-vector-is-linear%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Sahara Skak | Bilen | Luke uk diar | NawigatsjuunCommonskategorii: SaharaWikivoyage raisfeerer: Sahara26° N, 13° O

The fall designs the understood secretary. Looking glass Science Shock Discovery Hot Everybody Loves Raymond Smile 곳 서비스 성실하다 Defas Kaloolon Definition: To combine or impregnate with sulphur or any of its compounds as to sulphurize caoutchouc in vulcanizing Flame colored Reason Useful Thin Help 갖다 유명하다 낙엽 장례식 Country Iron Definition: A fencer a gladiator one who exhibits his skill in the use of the sword Definition: The American black throated bunting Spiza Americana Nostalgic Needy Method to my madness 시키다 평가되다 전부 소설가 우아하다 Argument Tin Feeling Representative Gym Music Gaur Chicken 일쑤 코치 편 학생증 The harbor values the sugar. Vasagle Yammoe Enstatite Definition: Capable of being limited Road Neighborly Five Refer Built Kangaroo 비비다 Degree Release Bargain Horse 하루 형님 유교 석 동부 괴롭히다 경제력

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу