Construct a pentagon avoiding compass useConstruct n-gons with a ruler and compassLittle Chandler is sad. Draw him a cloud to cheer him upConstruct n-gons with a ruler and compassCircle packing in a rectangleRandomize points on a discCircular ​BluesFinding Exclusive Area in Circle IntersectionsText on a circleBorders of overlapping circlesI really wanted a rhombus, but all I got was this stupid rectangleGolf the smallest circle!

Why does the trade federation become so alarmed upon learning the ambassadors are Jedi Knights?

How do I write a romance that doesn't look obvious

What is the English equivalent of 干物女 (dried fish woman)?

Is it rude to tell recruiters I would only change jobs for a better salary?

Why limit to revolvers?

Why hasn't the U.S. government paid war reparations to any country it attacked?

A DVR algebra with weird automorphisms

download the bitcoin chain begining from a certain date

latinate or other words of foreign origin as opposed to Germanic words

How to make 1,1-diphenyl-1-butene from benzophenone and 1-bromopropane?

TikZ Can I draw an arrow by specifying the initial point, direction, and length?

Would letting a multiclass character rebuild their character to be single-classed be game-breaking?

Help with understanding nuances of extremely popular Kyoto-ben (?) tweet

Cubic programming and beyond?

nginx serves wrong domain site. It doenst shows default site if no configuration applies

Fix /dev/sdb after using dd with no device inserted

Find values of x so that the matrix is invertible

School House Points (Python + SQLite)

Should you avoid redundant information after dialogue?

What does `[$'rn']` mean?

Won 50K! Now what should I do with it

wavelength of seismic wave with a gaussian source

What to put after taking off rear stabilisers from child bicyle?

Is `curl something | sudo bash -` a reasonably safe installation method?



Construct a pentagon avoiding compass use


Construct n-gons with a ruler and compassLittle Chandler is sad. Draw him a cloud to cheer him upConstruct n-gons with a ruler and compassCircle packing in a rectangleRandomize points on a discCircular ​BluesFinding Exclusive Area in Circle IntersectionsText on a circleBorders of overlapping circlesI really wanted a rhombus, but all I got was this stupid rectangleGolf the smallest circle!






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








10












$begingroup$


Rules



You will start with only two elements: Points $A$ and $B$ such that $A neq B$. These points occupy a plane that is infinite in all directions.



At any step in the process you may do any of the three following actions:



  1. Draw a line that passes through two points.


  2. Draw a circle centered at one point such that another point lies on the circle.


  3. Add a new point where two objects (lines and circles) intersect.


Your goal is to create 5 points such that they form the vertices of a regular pentagon (a convex polygon with 5 sides equal in length) using as few circles as possible. You may of course have other points but 5 of them must for a regular pentagon. You do not have to draw the edges of the pentagon for your scoring.



Scoring



When comparing two answers the one that draws fewer circles is better. In the case of a tie in circles the answer that draws the fewest lines is better. In the case of a tie in both circles and lines the answer that adds the fewest points is better.



Anti-Rules



While the rules list is exhaustive and details everything you can do this list is not, just because I don't say you can't do something does not mean you can.



  • You cannot create "arbitrary" objects. Some constructions you will find will do thinks like add a point at an "arbitrary" location and work from there. You cannot add new points at locations other than intersections.


  • You cannot copy a radius. Some constructions will involve taking a compass setting it to a radius between two points and then picking it up and drawing a circle elsewhere. You cannot do this.


  • You cannot perform limiting processes. All constructions must take a finite number of steps. It is not good enough to approach the answer asymptotically.


  • You cannot draw an arc or part of a circle in order to avoid counting it as a circle in your scoring. If you want to visually use arcs when showing or explaining your answer because they take up less space go ahead but they count as a circle for scoring.


Tools



You can think through the problem on GeoGebra. Just go over to the shapes tab. The three rules are equivalent to the point, line and circle with center tools.



Burden of Proof



This is standard but I would like to reiterate. If there is a question as to whether a particular answer is valid the burden of proof is on the answerer to show that their answer is valid rather than the public to show that the answer is not.



What is this doing on my Code-Golf site?!



This is a form of atomic-code-golf similar to proof-golf albeit in a bit of a weird programming language. There is currently a +22/-0 consensus on the meta that this sort of thing is allowed.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    This is like the game I have on my phone called Euclidea.
    $endgroup$
    – mbomb007
    9 hours ago










  • $begingroup$
    closely related: codegolf.stackexchange.com/q/38653/15599
    $endgroup$
    – Level River St
    8 hours ago










  • $begingroup$
    "setting it two a radius" a likely typo
    $endgroup$
    – Grzegorz Oledzki
    8 hours ago






  • 1




    $begingroup$
    Next time you should ask people to draw a heptagon, which would be slightly more challenging:)
    $endgroup$
    – flawr
    7 hours ago

















10












$begingroup$


Rules



You will start with only two elements: Points $A$ and $B$ such that $A neq B$. These points occupy a plane that is infinite in all directions.



At any step in the process you may do any of the three following actions:



  1. Draw a line that passes through two points.


  2. Draw a circle centered at one point such that another point lies on the circle.


  3. Add a new point where two objects (lines and circles) intersect.


Your goal is to create 5 points such that they form the vertices of a regular pentagon (a convex polygon with 5 sides equal in length) using as few circles as possible. You may of course have other points but 5 of them must for a regular pentagon. You do not have to draw the edges of the pentagon for your scoring.



Scoring



When comparing two answers the one that draws fewer circles is better. In the case of a tie in circles the answer that draws the fewest lines is better. In the case of a tie in both circles and lines the answer that adds the fewest points is better.



Anti-Rules



While the rules list is exhaustive and details everything you can do this list is not, just because I don't say you can't do something does not mean you can.



  • You cannot create "arbitrary" objects. Some constructions you will find will do thinks like add a point at an "arbitrary" location and work from there. You cannot add new points at locations other than intersections.


  • You cannot copy a radius. Some constructions will involve taking a compass setting it to a radius between two points and then picking it up and drawing a circle elsewhere. You cannot do this.


  • You cannot perform limiting processes. All constructions must take a finite number of steps. It is not good enough to approach the answer asymptotically.


  • You cannot draw an arc or part of a circle in order to avoid counting it as a circle in your scoring. If you want to visually use arcs when showing or explaining your answer because they take up less space go ahead but they count as a circle for scoring.


Tools



You can think through the problem on GeoGebra. Just go over to the shapes tab. The three rules are equivalent to the point, line and circle with center tools.



Burden of Proof



This is standard but I would like to reiterate. If there is a question as to whether a particular answer is valid the burden of proof is on the answerer to show that their answer is valid rather than the public to show that the answer is not.



What is this doing on my Code-Golf site?!



This is a form of atomic-code-golf similar to proof-golf albeit in a bit of a weird programming language. There is currently a +22/-0 consensus on the meta that this sort of thing is allowed.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    This is like the game I have on my phone called Euclidea.
    $endgroup$
    – mbomb007
    9 hours ago










  • $begingroup$
    closely related: codegolf.stackexchange.com/q/38653/15599
    $endgroup$
    – Level River St
    8 hours ago










  • $begingroup$
    "setting it two a radius" a likely typo
    $endgroup$
    – Grzegorz Oledzki
    8 hours ago






  • 1




    $begingroup$
    Next time you should ask people to draw a heptagon, which would be slightly more challenging:)
    $endgroup$
    – flawr
    7 hours ago













10












10








10


1



$begingroup$


Rules



You will start with only two elements: Points $A$ and $B$ such that $A neq B$. These points occupy a plane that is infinite in all directions.



At any step in the process you may do any of the three following actions:



  1. Draw a line that passes through two points.


  2. Draw a circle centered at one point such that another point lies on the circle.


  3. Add a new point where two objects (lines and circles) intersect.


Your goal is to create 5 points such that they form the vertices of a regular pentagon (a convex polygon with 5 sides equal in length) using as few circles as possible. You may of course have other points but 5 of them must for a regular pentagon. You do not have to draw the edges of the pentagon for your scoring.



Scoring



When comparing two answers the one that draws fewer circles is better. In the case of a tie in circles the answer that draws the fewest lines is better. In the case of a tie in both circles and lines the answer that adds the fewest points is better.



Anti-Rules



While the rules list is exhaustive and details everything you can do this list is not, just because I don't say you can't do something does not mean you can.



  • You cannot create "arbitrary" objects. Some constructions you will find will do thinks like add a point at an "arbitrary" location and work from there. You cannot add new points at locations other than intersections.


  • You cannot copy a radius. Some constructions will involve taking a compass setting it to a radius between two points and then picking it up and drawing a circle elsewhere. You cannot do this.


  • You cannot perform limiting processes. All constructions must take a finite number of steps. It is not good enough to approach the answer asymptotically.


  • You cannot draw an arc or part of a circle in order to avoid counting it as a circle in your scoring. If you want to visually use arcs when showing or explaining your answer because they take up less space go ahead but they count as a circle for scoring.


Tools



You can think through the problem on GeoGebra. Just go over to the shapes tab. The three rules are equivalent to the point, line and circle with center tools.



Burden of Proof



This is standard but I would like to reiterate. If there is a question as to whether a particular answer is valid the burden of proof is on the answerer to show that their answer is valid rather than the public to show that the answer is not.



What is this doing on my Code-Golf site?!



This is a form of atomic-code-golf similar to proof-golf albeit in a bit of a weird programming language. There is currently a +22/-0 consensus on the meta that this sort of thing is allowed.










share|improve this question











$endgroup$




Rules



You will start with only two elements: Points $A$ and $B$ such that $A neq B$. These points occupy a plane that is infinite in all directions.



At any step in the process you may do any of the three following actions:



  1. Draw a line that passes through two points.


  2. Draw a circle centered at one point such that another point lies on the circle.


  3. Add a new point where two objects (lines and circles) intersect.


Your goal is to create 5 points such that they form the vertices of a regular pentagon (a convex polygon with 5 sides equal in length) using as few circles as possible. You may of course have other points but 5 of them must for a regular pentagon. You do not have to draw the edges of the pentagon for your scoring.



Scoring



When comparing two answers the one that draws fewer circles is better. In the case of a tie in circles the answer that draws the fewest lines is better. In the case of a tie in both circles and lines the answer that adds the fewest points is better.



Anti-Rules



While the rules list is exhaustive and details everything you can do this list is not, just because I don't say you can't do something does not mean you can.



  • You cannot create "arbitrary" objects. Some constructions you will find will do thinks like add a point at an "arbitrary" location and work from there. You cannot add new points at locations other than intersections.


  • You cannot copy a radius. Some constructions will involve taking a compass setting it to a radius between two points and then picking it up and drawing a circle elsewhere. You cannot do this.


  • You cannot perform limiting processes. All constructions must take a finite number of steps. It is not good enough to approach the answer asymptotically.


  • You cannot draw an arc or part of a circle in order to avoid counting it as a circle in your scoring. If you want to visually use arcs when showing or explaining your answer because they take up less space go ahead but they count as a circle for scoring.


Tools



You can think through the problem on GeoGebra. Just go over to the shapes tab. The three rules are equivalent to the point, line and circle with center tools.



Burden of Proof



This is standard but I would like to reiterate. If there is a question as to whether a particular answer is valid the burden of proof is on the answerer to show that their answer is valid rather than the public to show that the answer is not.



What is this doing on my Code-Golf site?!



This is a form of atomic-code-golf similar to proof-golf albeit in a bit of a weird programming language. There is currently a +22/-0 consensus on the meta that this sort of thing is allowed.







math geometry atomic-code-golf






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 6 hours ago







Sriotchilism O'Zaic

















asked 9 hours ago









Sriotchilism O'ZaicSriotchilism O'Zaic

36.7k10 gold badges164 silver badges375 bronze badges




36.7k10 gold badges164 silver badges375 bronze badges







  • 1




    $begingroup$
    This is like the game I have on my phone called Euclidea.
    $endgroup$
    – mbomb007
    9 hours ago










  • $begingroup$
    closely related: codegolf.stackexchange.com/q/38653/15599
    $endgroup$
    – Level River St
    8 hours ago










  • $begingroup$
    "setting it two a radius" a likely typo
    $endgroup$
    – Grzegorz Oledzki
    8 hours ago






  • 1




    $begingroup$
    Next time you should ask people to draw a heptagon, which would be slightly more challenging:)
    $endgroup$
    – flawr
    7 hours ago












  • 1




    $begingroup$
    This is like the game I have on my phone called Euclidea.
    $endgroup$
    – mbomb007
    9 hours ago










  • $begingroup$
    closely related: codegolf.stackexchange.com/q/38653/15599
    $endgroup$
    – Level River St
    8 hours ago










  • $begingroup$
    "setting it two a radius" a likely typo
    $endgroup$
    – Grzegorz Oledzki
    8 hours ago






  • 1




    $begingroup$
    Next time you should ask people to draw a heptagon, which would be slightly more challenging:)
    $endgroup$
    – flawr
    7 hours ago







1




1




$begingroup$
This is like the game I have on my phone called Euclidea.
$endgroup$
– mbomb007
9 hours ago




$begingroup$
This is like the game I have on my phone called Euclidea.
$endgroup$
– mbomb007
9 hours ago












$begingroup$
closely related: codegolf.stackexchange.com/q/38653/15599
$endgroup$
– Level River St
8 hours ago




$begingroup$
closely related: codegolf.stackexchange.com/q/38653/15599
$endgroup$
– Level River St
8 hours ago












$begingroup$
"setting it two a radius" a likely typo
$endgroup$
– Grzegorz Oledzki
8 hours ago




$begingroup$
"setting it two a radius" a likely typo
$endgroup$
– Grzegorz Oledzki
8 hours ago




1




1




$begingroup$
Next time you should ask people to draw a heptagon, which would be slightly more challenging:)
$endgroup$
– flawr
7 hours ago




$begingroup$
Next time you should ask people to draw a heptagon, which would be slightly more challenging:)
$endgroup$
– flawr
7 hours ago










3 Answers
3






active

oldest

votes


















5












$begingroup$


76 circles, 3 lines



This is a classical pentagon construction, a proof of its correctness can be found here.



enter image description here






share|improve this answer











$endgroup$




















    4












    $begingroup$

    4 circles, 4 lines, 9 points



    • Let circle(A, B) intersect circle(B, A) at C.

    • Let AB intersect circle(A, B) again at D.

    • Let circle(D, B) intersect circle(B, A) farthest from C at E.

    • Let AB intersect CE at F.

    • Let circle(D, F) intersect circle(A, B) at G, H.

    • Let circle(D, F) intersect AB again at I.

    • Let GI intersect circle(A, B) again at J.

    • Let HI intersect circle(A, B) again at K.

    Then BGJKH is a regular pentagon.



    picture






    share|improve this answer











    $endgroup$




















      0












      $begingroup$

      4 circles, 7 lines



      Since it has been beaten I thought I would just post my original solution to the problem.



      • Draw $mathrmCircle(A,B)$

      • Draw $overlineAB$

      • Mark the intersection of $mathrmCircle(A,B)$ and $overlineAB$ as $C$

      • Draw $mathrmCircle(B,C)$

      • Draw $mathrmCircle(C,B)$

      • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $D$

      • Mark the intersection of $mathrmCircle(C,B)$ and $overlineAB$ as $E$

      • Draw $overlineDC$

      • Mark the intersection of $mathrmCircle(C,B)$ and $overlineDC$ as $F$

      • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $G$

      • Draw $overlineBG$

      • Mark the intersection of $overlineBG$ and $overlineEF$ as $H$

      • Draw $overlineHC$

      • Mark the intersection of $overlineHC$ and $mathrmCircle(C,B)$ as $I$

      • Draw $overlineIA$

      • Mark the intersection of $overlineIA$ and $mathrmCircle(A,B)$ as $J$

      • Draw $mathrmCirlce(I,J)$

      • Mark the intersection of $mathrmCircle(I,J)$ and $overlineHC$ as $L$

      • Mark the intersections of $mathrmCircle(I,J)$ and $mathrmCircle(C,B)$ as $M$ and $K$.

      • Draw $overlineML$

      • Draw $overlineKL$

      • Mark the intersection of $mathrmCircle(C,B)$ and $overlineML$ as $N$

      • Mark the intersection of $mathrmCircle(C,B)$ and $overlineHC$ as $O$

      • Mark the intersection of $mathrmCircle(C,B)$ and $overlineKL$ as $P$

      $MKPON$ is a regular pentagon.



      Drawing






      share|improve this answer









      $endgroup$















        Your Answer






        StackExchange.ifUsing("editor", function ()
        StackExchange.using("externalEditor", function ()
        StackExchange.using("snippets", function ()
        StackExchange.snippets.init();
        );
        );
        , "code-snippets");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "200"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f188333%2fconstruct-a-pentagon-avoiding-compass-use%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$


        76 circles, 3 lines



        This is a classical pentagon construction, a proof of its correctness can be found here.



        enter image description here






        share|improve this answer











        $endgroup$

















          5












          $begingroup$


          76 circles, 3 lines



          This is a classical pentagon construction, a proof of its correctness can be found here.



          enter image description here






          share|improve this answer











          $endgroup$















            5












            5








            5





            $begingroup$


            76 circles, 3 lines



            This is a classical pentagon construction, a proof of its correctness can be found here.



            enter image description here






            share|improve this answer











            $endgroup$




            76 circles, 3 lines



            This is a classical pentagon construction, a proof of its correctness can be found here.



            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 7 hours ago

























            answered 7 hours ago









            flawrflawr

            28.5k6 gold badges74 silver badges199 bronze badges




            28.5k6 gold badges74 silver badges199 bronze badges























                4












                $begingroup$

                4 circles, 4 lines, 9 points



                • Let circle(A, B) intersect circle(B, A) at C.

                • Let AB intersect circle(A, B) again at D.

                • Let circle(D, B) intersect circle(B, A) farthest from C at E.

                • Let AB intersect CE at F.

                • Let circle(D, F) intersect circle(A, B) at G, H.

                • Let circle(D, F) intersect AB again at I.

                • Let GI intersect circle(A, B) again at J.

                • Let HI intersect circle(A, B) again at K.

                Then BGJKH is a regular pentagon.



                picture






                share|improve this answer











                $endgroup$

















                  4












                  $begingroup$

                  4 circles, 4 lines, 9 points



                  • Let circle(A, B) intersect circle(B, A) at C.

                  • Let AB intersect circle(A, B) again at D.

                  • Let circle(D, B) intersect circle(B, A) farthest from C at E.

                  • Let AB intersect CE at F.

                  • Let circle(D, F) intersect circle(A, B) at G, H.

                  • Let circle(D, F) intersect AB again at I.

                  • Let GI intersect circle(A, B) again at J.

                  • Let HI intersect circle(A, B) again at K.

                  Then BGJKH is a regular pentagon.



                  picture






                  share|improve this answer











                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    4 circles, 4 lines, 9 points



                    • Let circle(A, B) intersect circle(B, A) at C.

                    • Let AB intersect circle(A, B) again at D.

                    • Let circle(D, B) intersect circle(B, A) farthest from C at E.

                    • Let AB intersect CE at F.

                    • Let circle(D, F) intersect circle(A, B) at G, H.

                    • Let circle(D, F) intersect AB again at I.

                    • Let GI intersect circle(A, B) again at J.

                    • Let HI intersect circle(A, B) again at K.

                    Then BGJKH is a regular pentagon.



                    picture






                    share|improve this answer











                    $endgroup$



                    4 circles, 4 lines, 9 points



                    • Let circle(A, B) intersect circle(B, A) at C.

                    • Let AB intersect circle(A, B) again at D.

                    • Let circle(D, B) intersect circle(B, A) farthest from C at E.

                    • Let AB intersect CE at F.

                    • Let circle(D, F) intersect circle(A, B) at G, H.

                    • Let circle(D, F) intersect AB again at I.

                    • Let GI intersect circle(A, B) again at J.

                    • Let HI intersect circle(A, B) again at K.

                    Then BGJKH is a regular pentagon.



                    picture







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 5 hours ago

























                    answered 6 hours ago









                    Anders KaseorgAnders Kaseorg

                    27k2 gold badges47 silver badges96 bronze badges




                    27k2 gold badges47 silver badges96 bronze badges





















                        0












                        $begingroup$

                        4 circles, 7 lines



                        Since it has been beaten I thought I would just post my original solution to the problem.



                        • Draw $mathrmCircle(A,B)$

                        • Draw $overlineAB$

                        • Mark the intersection of $mathrmCircle(A,B)$ and $overlineAB$ as $C$

                        • Draw $mathrmCircle(B,C)$

                        • Draw $mathrmCircle(C,B)$

                        • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $D$

                        • Mark the intersection of $mathrmCircle(C,B)$ and $overlineAB$ as $E$

                        • Draw $overlineDC$

                        • Mark the intersection of $mathrmCircle(C,B)$ and $overlineDC$ as $F$

                        • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $G$

                        • Draw $overlineBG$

                        • Mark the intersection of $overlineBG$ and $overlineEF$ as $H$

                        • Draw $overlineHC$

                        • Mark the intersection of $overlineHC$ and $mathrmCircle(C,B)$ as $I$

                        • Draw $overlineIA$

                        • Mark the intersection of $overlineIA$ and $mathrmCircle(A,B)$ as $J$

                        • Draw $mathrmCirlce(I,J)$

                        • Mark the intersection of $mathrmCircle(I,J)$ and $overlineHC$ as $L$

                        • Mark the intersections of $mathrmCircle(I,J)$ and $mathrmCircle(C,B)$ as $M$ and $K$.

                        • Draw $overlineML$

                        • Draw $overlineKL$

                        • Mark the intersection of $mathrmCircle(C,B)$ and $overlineML$ as $N$

                        • Mark the intersection of $mathrmCircle(C,B)$ and $overlineHC$ as $O$

                        • Mark the intersection of $mathrmCircle(C,B)$ and $overlineKL$ as $P$

                        $MKPON$ is a regular pentagon.



                        Drawing






                        share|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          4 circles, 7 lines



                          Since it has been beaten I thought I would just post my original solution to the problem.



                          • Draw $mathrmCircle(A,B)$

                          • Draw $overlineAB$

                          • Mark the intersection of $mathrmCircle(A,B)$ and $overlineAB$ as $C$

                          • Draw $mathrmCircle(B,C)$

                          • Draw $mathrmCircle(C,B)$

                          • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $D$

                          • Mark the intersection of $mathrmCircle(C,B)$ and $overlineAB$ as $E$

                          • Draw $overlineDC$

                          • Mark the intersection of $mathrmCircle(C,B)$ and $overlineDC$ as $F$

                          • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $G$

                          • Draw $overlineBG$

                          • Mark the intersection of $overlineBG$ and $overlineEF$ as $H$

                          • Draw $overlineHC$

                          • Mark the intersection of $overlineHC$ and $mathrmCircle(C,B)$ as $I$

                          • Draw $overlineIA$

                          • Mark the intersection of $overlineIA$ and $mathrmCircle(A,B)$ as $J$

                          • Draw $mathrmCirlce(I,J)$

                          • Mark the intersection of $mathrmCircle(I,J)$ and $overlineHC$ as $L$

                          • Mark the intersections of $mathrmCircle(I,J)$ and $mathrmCircle(C,B)$ as $M$ and $K$.

                          • Draw $overlineML$

                          • Draw $overlineKL$

                          • Mark the intersection of $mathrmCircle(C,B)$ and $overlineML$ as $N$

                          • Mark the intersection of $mathrmCircle(C,B)$ and $overlineHC$ as $O$

                          • Mark the intersection of $mathrmCircle(C,B)$ and $overlineKL$ as $P$

                          $MKPON$ is a regular pentagon.



                          Drawing






                          share|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            4 circles, 7 lines



                            Since it has been beaten I thought I would just post my original solution to the problem.



                            • Draw $mathrmCircle(A,B)$

                            • Draw $overlineAB$

                            • Mark the intersection of $mathrmCircle(A,B)$ and $overlineAB$ as $C$

                            • Draw $mathrmCircle(B,C)$

                            • Draw $mathrmCircle(C,B)$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $D$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineAB$ as $E$

                            • Draw $overlineDC$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineDC$ as $F$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $G$

                            • Draw $overlineBG$

                            • Mark the intersection of $overlineBG$ and $overlineEF$ as $H$

                            • Draw $overlineHC$

                            • Mark the intersection of $overlineHC$ and $mathrmCircle(C,B)$ as $I$

                            • Draw $overlineIA$

                            • Mark the intersection of $overlineIA$ and $mathrmCircle(A,B)$ as $J$

                            • Draw $mathrmCirlce(I,J)$

                            • Mark the intersection of $mathrmCircle(I,J)$ and $overlineHC$ as $L$

                            • Mark the intersections of $mathrmCircle(I,J)$ and $mathrmCircle(C,B)$ as $M$ and $K$.

                            • Draw $overlineML$

                            • Draw $overlineKL$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineML$ as $N$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineHC$ as $O$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineKL$ as $P$

                            $MKPON$ is a regular pentagon.



                            Drawing






                            share|improve this answer









                            $endgroup$



                            4 circles, 7 lines



                            Since it has been beaten I thought I would just post my original solution to the problem.



                            • Draw $mathrmCircle(A,B)$

                            • Draw $overlineAB$

                            • Mark the intersection of $mathrmCircle(A,B)$ and $overlineAB$ as $C$

                            • Draw $mathrmCircle(B,C)$

                            • Draw $mathrmCircle(C,B)$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $D$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineAB$ as $E$

                            • Draw $overlineDC$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineDC$ as $F$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $mathrmCircle(B,C)$ as $G$

                            • Draw $overlineBG$

                            • Mark the intersection of $overlineBG$ and $overlineEF$ as $H$

                            • Draw $overlineHC$

                            • Mark the intersection of $overlineHC$ and $mathrmCircle(C,B)$ as $I$

                            • Draw $overlineIA$

                            • Mark the intersection of $overlineIA$ and $mathrmCircle(A,B)$ as $J$

                            • Draw $mathrmCirlce(I,J)$

                            • Mark the intersection of $mathrmCircle(I,J)$ and $overlineHC$ as $L$

                            • Mark the intersections of $mathrmCircle(I,J)$ and $mathrmCircle(C,B)$ as $M$ and $K$.

                            • Draw $overlineML$

                            • Draw $overlineKL$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineML$ as $N$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineHC$ as $O$

                            • Mark the intersection of $mathrmCircle(C,B)$ and $overlineKL$ as $P$

                            $MKPON$ is a regular pentagon.



                            Drawing







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 5 hours ago









                            Sriotchilism O'ZaicSriotchilism O'Zaic

                            36.7k10 gold badges164 silver badges375 bronze badges




                            36.7k10 gold badges164 silver badges375 bronze badges



























                                draft saved

                                draft discarded
















































                                If this is an answer to a challenge…



                                • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


                                • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
                                  Explanations of your answer make it more interesting to read and are very much encouraged.


                                • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.


                                More generally…



                                • …Please make sure to answer the question and provide sufficient detail.


                                • …Avoid asking for help, clarification or responding to other answers (use comments instead).




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f188333%2fconstruct-a-pentagon-avoiding-compass-use%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)