Data standardization vs. normalization for clustering analysisClustering variables with outliersMultivariate data analyis of compositional dataCan we use cluster analysis in multiple regressionk-mean clustering of week-timesClustering not producing even clustersClustering a dense datasetNormalization/Standarization for Clustering visualizationk-modes Clusters ValidationWhy is t-SNE not used as a dimensionality reduction technique for clustering or classification?How to deal with mixed data type in deep neural network

Is this floating-point optimization allowed?

Players of unusual orchestral instruments

When is pointing out a person's hypocrisy not considered to be a logical fallacy?

Bob's unnecessary trip to the shops

How to check the quality of an audio sample?

Why do they not say "The Baby"

When to finally reveal plot twist to characters?

Would letting a multiclass character rebuild their character to be single-classed be game-breaking?

What are some symbols representing peasants/oppressed persons fighting back?

Installing ubuntu with HD + SSD

Supporting developers who insist on using their pet language

Ambiguous sentences: How to tell when they need fixing?

I quit, and boss offered me 3 month "grace period" where I could still come back

Find values of x so that the matrix is invertible

Construct a pentagon avoiding compass use

does ability to impeach an expert witness on science or scholarship go too far?

A DVR algebra with weird automorphisms

QGIS Linestring rendering curves between vertex

How might the United Kingdom become a republic?

Why is dry soil hydrophobic? Bad gardener paradox

How does one stock fund's charge of 1% more in operating expenses than another fund lower expected returns by 10%?

What is temperature on a quantum level?

Too many spies!

How to repair a laptop's screen hinges?



Data standardization vs. normalization for clustering analysis


Clustering variables with outliersMultivariate data analyis of compositional dataCan we use cluster analysis in multiple regressionk-mean clustering of week-timesClustering not producing even clustersClustering a dense datasetNormalization/Standarization for Clustering visualizationk-modes Clusters ValidationWhy is t-SNE not used as a dimensionality reduction technique for clustering or classification?How to deal with mixed data type in deep neural network






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I'm performing clustering analysis and visualization (hierarchal, PCA, T-SNE etc.) on a dataset, and a bit confused about the method for data preparation. I understand that the typical options are to standardize, normalize, or log transform, but it seems like there are no hard and fast rules regarding when you apply one over the other?



With standardization and log-transformation - my dataset splits into two clusters with a number of different algorithms. One cluster is large and heterogeneous (which is actually interesting as this is a biological problem and makes logical sense). However, if I normalize the data, I get three clusters out of it - splits the heterogeneous cluster into two. This could make sense as well, but it would be a stretch, and the clusters are not as clean. What could be causing this? The non-heterogeneous cluster remains the same, which is reassuring. Is it reasonable to conclude that the "instability" of the second cluster is further evidence of the heterogeneity in the dataset?










share|cite|improve this question







New contributor



Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$


















    2












    $begingroup$


    I'm performing clustering analysis and visualization (hierarchal, PCA, T-SNE etc.) on a dataset, and a bit confused about the method for data preparation. I understand that the typical options are to standardize, normalize, or log transform, but it seems like there are no hard and fast rules regarding when you apply one over the other?



    With standardization and log-transformation - my dataset splits into two clusters with a number of different algorithms. One cluster is large and heterogeneous (which is actually interesting as this is a biological problem and makes logical sense). However, if I normalize the data, I get three clusters out of it - splits the heterogeneous cluster into two. This could make sense as well, but it would be a stretch, and the clusters are not as clean. What could be causing this? The non-heterogeneous cluster remains the same, which is reassuring. Is it reasonable to conclude that the "instability" of the second cluster is further evidence of the heterogeneity in the dataset?










    share|cite|improve this question







    New contributor



    Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$














      2












      2








      2





      $begingroup$


      I'm performing clustering analysis and visualization (hierarchal, PCA, T-SNE etc.) on a dataset, and a bit confused about the method for data preparation. I understand that the typical options are to standardize, normalize, or log transform, but it seems like there are no hard and fast rules regarding when you apply one over the other?



      With standardization and log-transformation - my dataset splits into two clusters with a number of different algorithms. One cluster is large and heterogeneous (which is actually interesting as this is a biological problem and makes logical sense). However, if I normalize the data, I get three clusters out of it - splits the heterogeneous cluster into two. This could make sense as well, but it would be a stretch, and the clusters are not as clean. What could be causing this? The non-heterogeneous cluster remains the same, which is reassuring. Is it reasonable to conclude that the "instability" of the second cluster is further evidence of the heterogeneity in the dataset?










      share|cite|improve this question







      New contributor



      Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      I'm performing clustering analysis and visualization (hierarchal, PCA, T-SNE etc.) on a dataset, and a bit confused about the method for data preparation. I understand that the typical options are to standardize, normalize, or log transform, but it seems like there are no hard and fast rules regarding when you apply one over the other?



      With standardization and log-transformation - my dataset splits into two clusters with a number of different algorithms. One cluster is large and heterogeneous (which is actually interesting as this is a biological problem and makes logical sense). However, if I normalize the data, I get three clusters out of it - splits the heterogeneous cluster into two. This could make sense as well, but it would be a stretch, and the clusters are not as clean. What could be causing this? The non-heterogeneous cluster remains the same, which is reassuring. Is it reasonable to conclude that the "instability" of the second cluster is further evidence of the heterogeneity in the dataset?







      machine-learning clustering pca






      share|cite|improve this question







      New contributor



      Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|cite|improve this question







      New contributor



      Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|cite|improve this question




      share|cite|improve this question






      New contributor



      Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 9 hours ago









      ElicenElicen

      111 bronze badge




      111 bronze badge




      New contributor



      Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      Elicen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          There cannot be a general rule on what to do.



          Any automatic normalization is usually "wrong". They only happen to usually work better than not weighting features at all, so people commony use them - in particular on data they don't understand.
          But the right way is to weight and scale features such they have the right balanced amount of influence on the results. As there is no mathematical way to capture this "right balance" (it's not uniform!) there cannot be an automatic solution. You have to understand your data and scale each feature to give it he desired amount of influence.






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Anony-Mousse provides a good answer. I'd add that often you are looking for sensible clusters that help the data tell a story. From what you've said in your question, the easier to interpret 2 cluster solution would seem better.
            $endgroup$
            – zbicyclist
            8 hours ago











          • $begingroup$
            Thank you! I guess my question was also - what component of normalizing/standardizing would give rise to these differences in results? Also, the challenge with my dataset is that it is unlabelled (and impossible to label otherwise, common for biological data), and so we are trying to use unsupervised clustering to figure out how many clusters exist. We are currently not weighting the features, but including feature selection.
            $endgroup$
            – Elicen
            8 hours ago










          • $begingroup$
            Normalizing usually is much worse because of outliers. Standardization is much more robust.
            $endgroup$
            – Anony-Mousse
            6 hours ago


















          1












          $begingroup$

          I think standard scaling mostly depends on the model being used, and normalizing depend on how the data is originated



          Most of distance based models e.g. k-means need standard scaling so that large-scaled features don't dominate the variation. Same goes to PCA.



          About the normalization, it mostly depends on the data. For example, if you have sensor data (each time step being a variable) with different scaling, you need to L2 normalize the data to bring them into the same scale. Or if you are working on customer recommendation and your entry are the number of times they bought each item (items being variables), you might need to L2 normalize the items if you don't want people who buy a lot to skew the feature.



          Personally, I think if the variables are well-defined, their log might result in losing interpretaility. So if you get good looking clusters without the log transform, I'd stick to it.






          share|cite|improve this answer









          $endgroup$















            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "65"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Elicen is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f417339%2fdata-standardization-vs-normalization-for-clustering-analysis%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            There cannot be a general rule on what to do.



            Any automatic normalization is usually "wrong". They only happen to usually work better than not weighting features at all, so people commony use them - in particular on data they don't understand.
            But the right way is to weight and scale features such they have the right balanced amount of influence on the results. As there is no mathematical way to capture this "right balance" (it's not uniform!) there cannot be an automatic solution. You have to understand your data and scale each feature to give it he desired amount of influence.






            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              Anony-Mousse provides a good answer. I'd add that often you are looking for sensible clusters that help the data tell a story. From what you've said in your question, the easier to interpret 2 cluster solution would seem better.
              $endgroup$
              – zbicyclist
              8 hours ago











            • $begingroup$
              Thank you! I guess my question was also - what component of normalizing/standardizing would give rise to these differences in results? Also, the challenge with my dataset is that it is unlabelled (and impossible to label otherwise, common for biological data), and so we are trying to use unsupervised clustering to figure out how many clusters exist. We are currently not weighting the features, but including feature selection.
              $endgroup$
              – Elicen
              8 hours ago










            • $begingroup$
              Normalizing usually is much worse because of outliers. Standardization is much more robust.
              $endgroup$
              – Anony-Mousse
              6 hours ago















            1












            $begingroup$

            There cannot be a general rule on what to do.



            Any automatic normalization is usually "wrong". They only happen to usually work better than not weighting features at all, so people commony use them - in particular on data they don't understand.
            But the right way is to weight and scale features such they have the right balanced amount of influence on the results. As there is no mathematical way to capture this "right balance" (it's not uniform!) there cannot be an automatic solution. You have to understand your data and scale each feature to give it he desired amount of influence.






            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              Anony-Mousse provides a good answer. I'd add that often you are looking for sensible clusters that help the data tell a story. From what you've said in your question, the easier to interpret 2 cluster solution would seem better.
              $endgroup$
              – zbicyclist
              8 hours ago











            • $begingroup$
              Thank you! I guess my question was also - what component of normalizing/standardizing would give rise to these differences in results? Also, the challenge with my dataset is that it is unlabelled (and impossible to label otherwise, common for biological data), and so we are trying to use unsupervised clustering to figure out how many clusters exist. We are currently not weighting the features, but including feature selection.
              $endgroup$
              – Elicen
              8 hours ago










            • $begingroup$
              Normalizing usually is much worse because of outliers. Standardization is much more robust.
              $endgroup$
              – Anony-Mousse
              6 hours ago













            1












            1








            1





            $begingroup$

            There cannot be a general rule on what to do.



            Any automatic normalization is usually "wrong". They only happen to usually work better than not weighting features at all, so people commony use them - in particular on data they don't understand.
            But the right way is to weight and scale features such they have the right balanced amount of influence on the results. As there is no mathematical way to capture this "right balance" (it's not uniform!) there cannot be an automatic solution. You have to understand your data and scale each feature to give it he desired amount of influence.






            share|cite|improve this answer









            $endgroup$



            There cannot be a general rule on what to do.



            Any automatic normalization is usually "wrong". They only happen to usually work better than not weighting features at all, so people commony use them - in particular on data they don't understand.
            But the right way is to weight and scale features such they have the right balanced amount of influence on the results. As there is no mathematical way to capture this "right balance" (it's not uniform!) there cannot be an automatic solution. You have to understand your data and scale each feature to give it he desired amount of influence.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 8 hours ago









            Anony-MousseAnony-Mousse

            32k5 gold badges44 silver badges85 bronze badges




            32k5 gold badges44 silver badges85 bronze badges







            • 1




              $begingroup$
              Anony-Mousse provides a good answer. I'd add that often you are looking for sensible clusters that help the data tell a story. From what you've said in your question, the easier to interpret 2 cluster solution would seem better.
              $endgroup$
              – zbicyclist
              8 hours ago











            • $begingroup$
              Thank you! I guess my question was also - what component of normalizing/standardizing would give rise to these differences in results? Also, the challenge with my dataset is that it is unlabelled (and impossible to label otherwise, common for biological data), and so we are trying to use unsupervised clustering to figure out how many clusters exist. We are currently not weighting the features, but including feature selection.
              $endgroup$
              – Elicen
              8 hours ago










            • $begingroup$
              Normalizing usually is much worse because of outliers. Standardization is much more robust.
              $endgroup$
              – Anony-Mousse
              6 hours ago












            • 1




              $begingroup$
              Anony-Mousse provides a good answer. I'd add that often you are looking for sensible clusters that help the data tell a story. From what you've said in your question, the easier to interpret 2 cluster solution would seem better.
              $endgroup$
              – zbicyclist
              8 hours ago











            • $begingroup$
              Thank you! I guess my question was also - what component of normalizing/standardizing would give rise to these differences in results? Also, the challenge with my dataset is that it is unlabelled (and impossible to label otherwise, common for biological data), and so we are trying to use unsupervised clustering to figure out how many clusters exist. We are currently not weighting the features, but including feature selection.
              $endgroup$
              – Elicen
              8 hours ago










            • $begingroup$
              Normalizing usually is much worse because of outliers. Standardization is much more robust.
              $endgroup$
              – Anony-Mousse
              6 hours ago







            1




            1




            $begingroup$
            Anony-Mousse provides a good answer. I'd add that often you are looking for sensible clusters that help the data tell a story. From what you've said in your question, the easier to interpret 2 cluster solution would seem better.
            $endgroup$
            – zbicyclist
            8 hours ago





            $begingroup$
            Anony-Mousse provides a good answer. I'd add that often you are looking for sensible clusters that help the data tell a story. From what you've said in your question, the easier to interpret 2 cluster solution would seem better.
            $endgroup$
            – zbicyclist
            8 hours ago













            $begingroup$
            Thank you! I guess my question was also - what component of normalizing/standardizing would give rise to these differences in results? Also, the challenge with my dataset is that it is unlabelled (and impossible to label otherwise, common for biological data), and so we are trying to use unsupervised clustering to figure out how many clusters exist. We are currently not weighting the features, but including feature selection.
            $endgroup$
            – Elicen
            8 hours ago




            $begingroup$
            Thank you! I guess my question was also - what component of normalizing/standardizing would give rise to these differences in results? Also, the challenge with my dataset is that it is unlabelled (and impossible to label otherwise, common for biological data), and so we are trying to use unsupervised clustering to figure out how many clusters exist. We are currently not weighting the features, but including feature selection.
            $endgroup$
            – Elicen
            8 hours ago












            $begingroup$
            Normalizing usually is much worse because of outliers. Standardization is much more robust.
            $endgroup$
            – Anony-Mousse
            6 hours ago




            $begingroup$
            Normalizing usually is much worse because of outliers. Standardization is much more robust.
            $endgroup$
            – Anony-Mousse
            6 hours ago













            1












            $begingroup$

            I think standard scaling mostly depends on the model being used, and normalizing depend on how the data is originated



            Most of distance based models e.g. k-means need standard scaling so that large-scaled features don't dominate the variation. Same goes to PCA.



            About the normalization, it mostly depends on the data. For example, if you have sensor data (each time step being a variable) with different scaling, you need to L2 normalize the data to bring them into the same scale. Or if you are working on customer recommendation and your entry are the number of times they bought each item (items being variables), you might need to L2 normalize the items if you don't want people who buy a lot to skew the feature.



            Personally, I think if the variables are well-defined, their log might result in losing interpretaility. So if you get good looking clusters without the log transform, I'd stick to it.






            share|cite|improve this answer









            $endgroup$

















              1












              $begingroup$

              I think standard scaling mostly depends on the model being used, and normalizing depend on how the data is originated



              Most of distance based models e.g. k-means need standard scaling so that large-scaled features don't dominate the variation. Same goes to PCA.



              About the normalization, it mostly depends on the data. For example, if you have sensor data (each time step being a variable) with different scaling, you need to L2 normalize the data to bring them into the same scale. Or if you are working on customer recommendation and your entry are the number of times they bought each item (items being variables), you might need to L2 normalize the items if you don't want people who buy a lot to skew the feature.



              Personally, I think if the variables are well-defined, their log might result in losing interpretaility. So if you get good looking clusters without the log transform, I'd stick to it.






              share|cite|improve this answer









              $endgroup$















                1












                1








                1





                $begingroup$

                I think standard scaling mostly depends on the model being used, and normalizing depend on how the data is originated



                Most of distance based models e.g. k-means need standard scaling so that large-scaled features don't dominate the variation. Same goes to PCA.



                About the normalization, it mostly depends on the data. For example, if you have sensor data (each time step being a variable) with different scaling, you need to L2 normalize the data to bring them into the same scale. Or if you are working on customer recommendation and your entry are the number of times they bought each item (items being variables), you might need to L2 normalize the items if you don't want people who buy a lot to skew the feature.



                Personally, I think if the variables are well-defined, their log might result in losing interpretaility. So if you get good looking clusters without the log transform, I'd stick to it.






                share|cite|improve this answer









                $endgroup$



                I think standard scaling mostly depends on the model being used, and normalizing depend on how the data is originated



                Most of distance based models e.g. k-means need standard scaling so that large-scaled features don't dominate the variation. Same goes to PCA.



                About the normalization, it mostly depends on the data. For example, if you have sensor data (each time step being a variable) with different scaling, you need to L2 normalize the data to bring them into the same scale. Or if you are working on customer recommendation and your entry are the number of times they bought each item (items being variables), you might need to L2 normalize the items if you don't want people who buy a lot to skew the feature.



                Personally, I think if the variables are well-defined, their log might result in losing interpretaility. So if you get good looking clusters without the log transform, I'd stick to it.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 8 hours ago









                aghdaghd

                255 bronze badges




                255 bronze badges




















                    Elicen is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Elicen is a new contributor. Be nice, and check out our Code of Conduct.












                    Elicen is a new contributor. Be nice, and check out our Code of Conduct.











                    Elicen is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f417339%2fdata-standardization-vs-normalization-for-clustering-analysis%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                    Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                    Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거