Spin vs orbital angular momenta in QFTAddition of Angular Momementa in deeply bound situations, proton spin crisisHow does spin appear in QFT?Total angular momentum in QFTDoes orbital angular mometum has no meaning for single photons?Spin Orbital Coupling matrix in p-orbital basisSpin operators in QMSpin and orbital angular momentum parity transformation in 2DHow is the product $Lcdot S$ between orbital and spin angular momentum operators defined? Do they act on the same or different Hilbert spaces?Decay of spin-1 particle into two spin-0 particlesAngular momentum coupling

Where to place an artificial gland in the human body?

This message is flooding my syslog, how to find where it comes from?

What does "see" in "the Holy See" mean?

Is it normal practice to screen share with a client?

What do teaching faculty do during semester breaks?

Grid/table with lots of buttons

Replacing tongue and groove floorboards: but can't find a match

How do I stop my characters falling in love?

Can the Artificer's infusions stack? Returning weapon + radiant weapon?

How were the LM astronauts supported during the moon landing and ascent? What were the max G's on them during these phases?

The seven story archetypes. Are they truly all of them?

How important is a good quality camera for good photography?

Why are there not any MRI machines available in Interstellar?

powerhouse of ideas

Why is my read in of data taking so long?

How do campaign rallies gain candidates votes?

Why are so many countries still in the Commonwealth?

Is it better to memorize verb's 1st person perfect tense?

What exactly makes a General Products hull nearly indestructible?

"I you already know": is this proper English?

(1 of 11: Numberlink) What is Pyramid Cult's Favorite Activity?

401(k) investment after being fired. Do I own it?

Difficulty pronouncing "maths", "baths", "hundredths", "sixths"

Why is chess failing to attract big name sponsors?



Spin vs orbital angular momenta in QFT


Addition of Angular Momementa in deeply bound situations, proton spin crisisHow does spin appear in QFT?Total angular momentum in QFTDoes orbital angular mometum has no meaning for single photons?Spin Orbital Coupling matrix in p-orbital basisSpin operators in QMSpin and orbital angular momentum parity transformation in 2DHow is the product $Lcdot S$ between orbital and spin angular momentum operators defined? Do they act on the same or different Hilbert spaces?Decay of spin-1 particle into two spin-0 particlesAngular momentum coupling






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








6












$begingroup$


I couldn't find past answers that quite match what I wanted, so I will try to ask in slightly different manner. In QM, we have total angular momentum operator $vecJ$ (I dropped the hat for convenience)
beginalign
vecJ = vecL +vecS
endalign

where $vecL$ is for orbital angular momentum and $vecS$ is for spin angular momentum. For hydrogen atom, this (not addition, but rather $vecL^2$ and $L_z$) gives us two of three quantum numbers, thus we often label the state for fixed energy as $left|l,mright>$ (for some reason $m$ is used in standard texts instead of, say, $s$). I think I understand how they work in QM, or at least the fact that $vecJ,vecL,vecS$ all share the same commutation relations (i.e. share the same Lie algebra structure). The addition comes from when one has stuffs like spin-orbit coupling and the like.



In QFT, stuff starts to get a bit/lot confusing. First, angular momentum operator is really used to label states in the irreducible unitary representation of the Poincare group, which is written as $left|p,sigmaright>$ (or $Psi_p,s$ following Weinberg); it is an operator in the sense that it appears as a representation of rotation element of the group. Wigner's classification then gives us that we also label states with two quantum numbers: we sometimes also write this as $left|m,jright>$, where $m$ is the rest mass and $j$ is the spin. Nowhere in any of these constructions do I see the conventional orbital angular momentum (in the text by Schwartz Chapter 11, for example, he made a comment when there is no angular momentum, so he got the "easy" case of $vecJ=vecS$.) In standard QM, we clearly distinguish two versions of angular momenta and their eigenvalues.



Question: does orbital angular momentum make sense in QFT and how does it arise if it does? Should I think of $vec L$ as furnishing some kind of tensor product representation so that I should be labelling states with $left|m,j,sright>$ or something? Another possibility is that one simply does not work with addition of angular momenta in QFT, especially in free theory, but I would like to have an explanation on why this should or should not be the case. I may have understood something really basic but I can't fish out exactly what.



Note: I believe the usual thing about spin-orbit coupling should not work, because that's QM (think about hydrogen atom) and strictly speaking QFT, unless we do something more (2-particle states?). In those cases, the operator $vecL$ even comes from $vecrtimesvecp$ which does not appear naturally in QFT (what's $vecr$ in QFT?). I don't think I should go and define $vecL:=vecrtimesvechatpi$, where $hatpi$ is the conjugate momentum of the field.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Why is "that not QFT?" Angular momentum, both spin and orbital, is strongly related to rotational symmetry. (Paging E. Noether. Will E. Noether please pick up a white house phone.) You still have symmetry in QFT. You still get the same reps of the rotation group.
    $endgroup$
    – puppetsock
    8 hours ago

















6












$begingroup$


I couldn't find past answers that quite match what I wanted, so I will try to ask in slightly different manner. In QM, we have total angular momentum operator $vecJ$ (I dropped the hat for convenience)
beginalign
vecJ = vecL +vecS
endalign

where $vecL$ is for orbital angular momentum and $vecS$ is for spin angular momentum. For hydrogen atom, this (not addition, but rather $vecL^2$ and $L_z$) gives us two of three quantum numbers, thus we often label the state for fixed energy as $left|l,mright>$ (for some reason $m$ is used in standard texts instead of, say, $s$). I think I understand how they work in QM, or at least the fact that $vecJ,vecL,vecS$ all share the same commutation relations (i.e. share the same Lie algebra structure). The addition comes from when one has stuffs like spin-orbit coupling and the like.



In QFT, stuff starts to get a bit/lot confusing. First, angular momentum operator is really used to label states in the irreducible unitary representation of the Poincare group, which is written as $left|p,sigmaright>$ (or $Psi_p,s$ following Weinberg); it is an operator in the sense that it appears as a representation of rotation element of the group. Wigner's classification then gives us that we also label states with two quantum numbers: we sometimes also write this as $left|m,jright>$, where $m$ is the rest mass and $j$ is the spin. Nowhere in any of these constructions do I see the conventional orbital angular momentum (in the text by Schwartz Chapter 11, for example, he made a comment when there is no angular momentum, so he got the "easy" case of $vecJ=vecS$.) In standard QM, we clearly distinguish two versions of angular momenta and their eigenvalues.



Question: does orbital angular momentum make sense in QFT and how does it arise if it does? Should I think of $vec L$ as furnishing some kind of tensor product representation so that I should be labelling states with $left|m,j,sright>$ or something? Another possibility is that one simply does not work with addition of angular momenta in QFT, especially in free theory, but I would like to have an explanation on why this should or should not be the case. I may have understood something really basic but I can't fish out exactly what.



Note: I believe the usual thing about spin-orbit coupling should not work, because that's QM (think about hydrogen atom) and strictly speaking QFT, unless we do something more (2-particle states?). In those cases, the operator $vecL$ even comes from $vecrtimesvecp$ which does not appear naturally in QFT (what's $vecr$ in QFT?). I don't think I should go and define $vecL:=vecrtimesvechatpi$, where $hatpi$ is the conjugate momentum of the field.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Why is "that not QFT?" Angular momentum, both spin and orbital, is strongly related to rotational symmetry. (Paging E. Noether. Will E. Noether please pick up a white house phone.) You still have symmetry in QFT. You still get the same reps of the rotation group.
    $endgroup$
    – puppetsock
    8 hours ago













6












6








6


4



$begingroup$


I couldn't find past answers that quite match what I wanted, so I will try to ask in slightly different manner. In QM, we have total angular momentum operator $vecJ$ (I dropped the hat for convenience)
beginalign
vecJ = vecL +vecS
endalign

where $vecL$ is for orbital angular momentum and $vecS$ is for spin angular momentum. For hydrogen atom, this (not addition, but rather $vecL^2$ and $L_z$) gives us two of three quantum numbers, thus we often label the state for fixed energy as $left|l,mright>$ (for some reason $m$ is used in standard texts instead of, say, $s$). I think I understand how they work in QM, or at least the fact that $vecJ,vecL,vecS$ all share the same commutation relations (i.e. share the same Lie algebra structure). The addition comes from when one has stuffs like spin-orbit coupling and the like.



In QFT, stuff starts to get a bit/lot confusing. First, angular momentum operator is really used to label states in the irreducible unitary representation of the Poincare group, which is written as $left|p,sigmaright>$ (or $Psi_p,s$ following Weinberg); it is an operator in the sense that it appears as a representation of rotation element of the group. Wigner's classification then gives us that we also label states with two quantum numbers: we sometimes also write this as $left|m,jright>$, where $m$ is the rest mass and $j$ is the spin. Nowhere in any of these constructions do I see the conventional orbital angular momentum (in the text by Schwartz Chapter 11, for example, he made a comment when there is no angular momentum, so he got the "easy" case of $vecJ=vecS$.) In standard QM, we clearly distinguish two versions of angular momenta and their eigenvalues.



Question: does orbital angular momentum make sense in QFT and how does it arise if it does? Should I think of $vec L$ as furnishing some kind of tensor product representation so that I should be labelling states with $left|m,j,sright>$ or something? Another possibility is that one simply does not work with addition of angular momenta in QFT, especially in free theory, but I would like to have an explanation on why this should or should not be the case. I may have understood something really basic but I can't fish out exactly what.



Note: I believe the usual thing about spin-orbit coupling should not work, because that's QM (think about hydrogen atom) and strictly speaking QFT, unless we do something more (2-particle states?). In those cases, the operator $vecL$ even comes from $vecrtimesvecp$ which does not appear naturally in QFT (what's $vecr$ in QFT?). I don't think I should go and define $vecL:=vecrtimesvechatpi$, where $hatpi$ is the conjugate momentum of the field.










share|cite|improve this question











$endgroup$




I couldn't find past answers that quite match what I wanted, so I will try to ask in slightly different manner. In QM, we have total angular momentum operator $vecJ$ (I dropped the hat for convenience)
beginalign
vecJ = vecL +vecS
endalign

where $vecL$ is for orbital angular momentum and $vecS$ is for spin angular momentum. For hydrogen atom, this (not addition, but rather $vecL^2$ and $L_z$) gives us two of three quantum numbers, thus we often label the state for fixed energy as $left|l,mright>$ (for some reason $m$ is used in standard texts instead of, say, $s$). I think I understand how they work in QM, or at least the fact that $vecJ,vecL,vecS$ all share the same commutation relations (i.e. share the same Lie algebra structure). The addition comes from when one has stuffs like spin-orbit coupling and the like.



In QFT, stuff starts to get a bit/lot confusing. First, angular momentum operator is really used to label states in the irreducible unitary representation of the Poincare group, which is written as $left|p,sigmaright>$ (or $Psi_p,s$ following Weinberg); it is an operator in the sense that it appears as a representation of rotation element of the group. Wigner's classification then gives us that we also label states with two quantum numbers: we sometimes also write this as $left|m,jright>$, where $m$ is the rest mass and $j$ is the spin. Nowhere in any of these constructions do I see the conventional orbital angular momentum (in the text by Schwartz Chapter 11, for example, he made a comment when there is no angular momentum, so he got the "easy" case of $vecJ=vecS$.) In standard QM, we clearly distinguish two versions of angular momenta and their eigenvalues.



Question: does orbital angular momentum make sense in QFT and how does it arise if it does? Should I think of $vec L$ as furnishing some kind of tensor product representation so that I should be labelling states with $left|m,j,sright>$ or something? Another possibility is that one simply does not work with addition of angular momenta in QFT, especially in free theory, but I would like to have an explanation on why this should or should not be the case. I may have understood something really basic but I can't fish out exactly what.



Note: I believe the usual thing about spin-orbit coupling should not work, because that's QM (think about hydrogen atom) and strictly speaking QFT, unless we do something more (2-particle states?). In those cases, the operator $vecL$ even comes from $vecrtimesvecp$ which does not appear naturally in QFT (what's $vecr$ in QFT?). I don't think I should go and define $vecL:=vecrtimesvechatpi$, where $hatpi$ is the conjugate momentum of the field.







quantum-field-theory angular-momentum quantum-spin spinors






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







Everiana

















asked 9 hours ago









EverianaEveriana

5252 silver badges14 bronze badges




5252 silver badges14 bronze badges











  • $begingroup$
    Why is "that not QFT?" Angular momentum, both spin and orbital, is strongly related to rotational symmetry. (Paging E. Noether. Will E. Noether please pick up a white house phone.) You still have symmetry in QFT. You still get the same reps of the rotation group.
    $endgroup$
    – puppetsock
    8 hours ago
















  • $begingroup$
    Why is "that not QFT?" Angular momentum, both spin and orbital, is strongly related to rotational symmetry. (Paging E. Noether. Will E. Noether please pick up a white house phone.) You still have symmetry in QFT. You still get the same reps of the rotation group.
    $endgroup$
    – puppetsock
    8 hours ago















$begingroup$
Why is "that not QFT?" Angular momentum, both spin and orbital, is strongly related to rotational symmetry. (Paging E. Noether. Will E. Noether please pick up a white house phone.) You still have symmetry in QFT. You still get the same reps of the rotation group.
$endgroup$
– puppetsock
8 hours ago




$begingroup$
Why is "that not QFT?" Angular momentum, both spin and orbital, is strongly related to rotational symmetry. (Paging E. Noether. Will E. Noether please pick up a white house phone.) You still have symmetry in QFT. You still get the same reps of the rotation group.
$endgroup$
– puppetsock
8 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

Since you mention Weinberg, have a look at section 7.4, especially (7.4.10). Under a homogeneous Lorentz transformation generated by the anti-symmetric tensor $omega^munu$, a field transforms like
$$Psi^ell mapsto Psi^ell + (mathcalJ_munu)^ell_m omega^munu Psi^m$$
i.e. with the representative of $omega^munu$ in whatever representation $Psi$ belongs to. Then according to Noether's theorem
$$ 0 = partial^kappa left[fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m right] - frac12(T_munu - T_numu) tag7.4.10$$
where $T_munu$ is the Noether current of translations, i.e., the canonical stress-energy tensor.



Now, $T_munu$ is itself conserved, $partial^mu T_munu = 0$, so
$$partial^kappa (x_mu T_kappanu - x_nu T_kappa mu) = T_munu - T_numu$$ and we can write (7.4.10) as
$$
0 = partial^kappa left[
fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m
- frac12(x_mu T_kappanu - x_nu T_kappa mu)
right ]
$$

and this is quite clearly expressing that spin plus orbital angular momentum is conserved.



Read further in Weinberg 7.4 and see also the second section of the Wikipedia page on the Belinfante-Rosenfeld tensor.






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    Orbital angular momentum has to do with position. It is the 'ordinary' angular momentum $rtimes p$ we learned about in Physics 101 whereas spin is an extra internal angular momentum that doesn't have to do with position. Now there is one extra label you forgot on your Wigner one particle state basis. That is the momentum $p$.



    When we rotate the state $p$ rotates too, so the angular momentum operator should have a part related to the momentum operator. If we have a wavepacket superposition this extra piece will act like the 'ordinary' orbital angular momentum part.



    This is accounted for automatically if you find the angular momentum operator in terms of fields via the Lagrangian. The angular momentum density will look something like $x^lambda T^munu-x^mu T^lambdanu$ where $T$ is the energy momentum tensor, plus an aditional 'spin' part if the fundamental field(s) in your Lagrangian have non-trivial rotation properties.






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      If you think about Wigner's classification, then one-particle states are irreducible representations of the Poincare group, as you said. To label these representations you need the Casimir invariants of Poincare - the particle's mass and the little group Casimir, which for massive particles corresponds to the symmetries in is its rest frame, the SO(3) rotation group. That's how you get spin and that's all the angular momentum you have in one-particle states. Orbital angular momentum requires the concept of distance, which for 1-particle states does not exist.



      However, if you consider two-particle states you can just take it as a tensor product between 2 one-particle states with 2 different spin labels. OR, you can take it as a single state with definite energy-momentum and total angular momentum label. This angular momentum is just the Clebsch-Gordon sum of both spins and the orbital angular momentum between the particles. How you move from one description to the other is by going to the center of mass of the two particles. Here you have to specify the direction of the relative linear momentum on the 2-sphere, this two-angle dependence can be expanded into spherical harmonics, eigenfunctions of angular momentum.



      As a concrete example, consider two spin-0 bosons. This 2-particle state depends on 6 variables, 2x linear momentum vectors. If you go to CM frame this state depends on the total linear momentum and the relative momentum. The absolute value of the relative momentum can be put into the total Energy, and you're only missing the orientation of the relative momentum. The 2 angle dependence can be traded for (l,m) by a spherical harmonic decomposition. If the particles have internal spin then you can sum these spins using Clebsch-Gordon coefficients, to get the usual total angular momentum 'j'. You can then check that these 'j' states are indeed eigeinstates of the 2-particle representation of the rotation generators of the Poincare group.






      share|cite|improve this answer








      New contributor



      Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      $endgroup$















        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "151"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f493792%2fspin-vs-orbital-angular-momenta-in-qft%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        Since you mention Weinberg, have a look at section 7.4, especially (7.4.10). Under a homogeneous Lorentz transformation generated by the anti-symmetric tensor $omega^munu$, a field transforms like
        $$Psi^ell mapsto Psi^ell + (mathcalJ_munu)^ell_m omega^munu Psi^m$$
        i.e. with the representative of $omega^munu$ in whatever representation $Psi$ belongs to. Then according to Noether's theorem
        $$ 0 = partial^kappa left[fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m right] - frac12(T_munu - T_numu) tag7.4.10$$
        where $T_munu$ is the Noether current of translations, i.e., the canonical stress-energy tensor.



        Now, $T_munu$ is itself conserved, $partial^mu T_munu = 0$, so
        $$partial^kappa (x_mu T_kappanu - x_nu T_kappa mu) = T_munu - T_numu$$ and we can write (7.4.10) as
        $$
        0 = partial^kappa left[
        fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m
        - frac12(x_mu T_kappanu - x_nu T_kappa mu)
        right ]
        $$

        and this is quite clearly expressing that spin plus orbital angular momentum is conserved.



        Read further in Weinberg 7.4 and see also the second section of the Wikipedia page on the Belinfante-Rosenfeld tensor.






        share|cite|improve this answer











        $endgroup$

















          3












          $begingroup$

          Since you mention Weinberg, have a look at section 7.4, especially (7.4.10). Under a homogeneous Lorentz transformation generated by the anti-symmetric tensor $omega^munu$, a field transforms like
          $$Psi^ell mapsto Psi^ell + (mathcalJ_munu)^ell_m omega^munu Psi^m$$
          i.e. with the representative of $omega^munu$ in whatever representation $Psi$ belongs to. Then according to Noether's theorem
          $$ 0 = partial^kappa left[fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m right] - frac12(T_munu - T_numu) tag7.4.10$$
          where $T_munu$ is the Noether current of translations, i.e., the canonical stress-energy tensor.



          Now, $T_munu$ is itself conserved, $partial^mu T_munu = 0$, so
          $$partial^kappa (x_mu T_kappanu - x_nu T_kappa mu) = T_munu - T_numu$$ and we can write (7.4.10) as
          $$
          0 = partial^kappa left[
          fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m
          - frac12(x_mu T_kappanu - x_nu T_kappa mu)
          right ]
          $$

          and this is quite clearly expressing that spin plus orbital angular momentum is conserved.



          Read further in Weinberg 7.4 and see also the second section of the Wikipedia page on the Belinfante-Rosenfeld tensor.






          share|cite|improve this answer











          $endgroup$















            3












            3








            3





            $begingroup$

            Since you mention Weinberg, have a look at section 7.4, especially (7.4.10). Under a homogeneous Lorentz transformation generated by the anti-symmetric tensor $omega^munu$, a field transforms like
            $$Psi^ell mapsto Psi^ell + (mathcalJ_munu)^ell_m omega^munu Psi^m$$
            i.e. with the representative of $omega^munu$ in whatever representation $Psi$ belongs to. Then according to Noether's theorem
            $$ 0 = partial^kappa left[fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m right] - frac12(T_munu - T_numu) tag7.4.10$$
            where $T_munu$ is the Noether current of translations, i.e., the canonical stress-energy tensor.



            Now, $T_munu$ is itself conserved, $partial^mu T_munu = 0$, so
            $$partial^kappa (x_mu T_kappanu - x_nu T_kappa mu) = T_munu - T_numu$$ and we can write (7.4.10) as
            $$
            0 = partial^kappa left[
            fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m
            - frac12(x_mu T_kappanu - x_nu T_kappa mu)
            right ]
            $$

            and this is quite clearly expressing that spin plus orbital angular momentum is conserved.



            Read further in Weinberg 7.4 and see also the second section of the Wikipedia page on the Belinfante-Rosenfeld tensor.






            share|cite|improve this answer











            $endgroup$



            Since you mention Weinberg, have a look at section 7.4, especially (7.4.10). Under a homogeneous Lorentz transformation generated by the anti-symmetric tensor $omega^munu$, a field transforms like
            $$Psi^ell mapsto Psi^ell + (mathcalJ_munu)^ell_m omega^munu Psi^m$$
            i.e. with the representative of $omega^munu$ in whatever representation $Psi$ belongs to. Then according to Noether's theorem
            $$ 0 = partial^kappa left[fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m right] - frac12(T_munu - T_numu) tag7.4.10$$
            where $T_munu$ is the Noether current of translations, i.e., the canonical stress-energy tensor.



            Now, $T_munu$ is itself conserved, $partial^mu T_munu = 0$, so
            $$partial^kappa (x_mu T_kappanu - x_nu T_kappa mu) = T_munu - T_numu$$ and we can write (7.4.10) as
            $$
            0 = partial^kappa left[
            fraci2 fracpartial mathcalLpartial (partial^kappa Psi^ell) (mathcalJ_munu)^ell_m Psi^m
            - frac12(x_mu T_kappanu - x_nu T_kappa mu)
            right ]
            $$

            and this is quite clearly expressing that spin plus orbital angular momentum is conserved.



            Read further in Weinberg 7.4 and see also the second section of the Wikipedia page on the Belinfante-Rosenfeld tensor.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 4 hours ago

























            answered 5 hours ago









            Robin EkmanRobin Ekman

            12.2k1 gold badge22 silver badges48 bronze badges




            12.2k1 gold badge22 silver badges48 bronze badges























                2












                $begingroup$

                Orbital angular momentum has to do with position. It is the 'ordinary' angular momentum $rtimes p$ we learned about in Physics 101 whereas spin is an extra internal angular momentum that doesn't have to do with position. Now there is one extra label you forgot on your Wigner one particle state basis. That is the momentum $p$.



                When we rotate the state $p$ rotates too, so the angular momentum operator should have a part related to the momentum operator. If we have a wavepacket superposition this extra piece will act like the 'ordinary' orbital angular momentum part.



                This is accounted for automatically if you find the angular momentum operator in terms of fields via the Lagrangian. The angular momentum density will look something like $x^lambda T^munu-x^mu T^lambdanu$ where $T$ is the energy momentum tensor, plus an aditional 'spin' part if the fundamental field(s) in your Lagrangian have non-trivial rotation properties.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Orbital angular momentum has to do with position. It is the 'ordinary' angular momentum $rtimes p$ we learned about in Physics 101 whereas spin is an extra internal angular momentum that doesn't have to do with position. Now there is one extra label you forgot on your Wigner one particle state basis. That is the momentum $p$.



                  When we rotate the state $p$ rotates too, so the angular momentum operator should have a part related to the momentum operator. If we have a wavepacket superposition this extra piece will act like the 'ordinary' orbital angular momentum part.



                  This is accounted for automatically if you find the angular momentum operator in terms of fields via the Lagrangian. The angular momentum density will look something like $x^lambda T^munu-x^mu T^lambdanu$ where $T$ is the energy momentum tensor, plus an aditional 'spin' part if the fundamental field(s) in your Lagrangian have non-trivial rotation properties.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Orbital angular momentum has to do with position. It is the 'ordinary' angular momentum $rtimes p$ we learned about in Physics 101 whereas spin is an extra internal angular momentum that doesn't have to do with position. Now there is one extra label you forgot on your Wigner one particle state basis. That is the momentum $p$.



                    When we rotate the state $p$ rotates too, so the angular momentum operator should have a part related to the momentum operator. If we have a wavepacket superposition this extra piece will act like the 'ordinary' orbital angular momentum part.



                    This is accounted for automatically if you find the angular momentum operator in terms of fields via the Lagrangian. The angular momentum density will look something like $x^lambda T^munu-x^mu T^lambdanu$ where $T$ is the energy momentum tensor, plus an aditional 'spin' part if the fundamental field(s) in your Lagrangian have non-trivial rotation properties.






                    share|cite|improve this answer









                    $endgroup$



                    Orbital angular momentum has to do with position. It is the 'ordinary' angular momentum $rtimes p$ we learned about in Physics 101 whereas spin is an extra internal angular momentum that doesn't have to do with position. Now there is one extra label you forgot on your Wigner one particle state basis. That is the momentum $p$.



                    When we rotate the state $p$ rotates too, so the angular momentum operator should have a part related to the momentum operator. If we have a wavepacket superposition this extra piece will act like the 'ordinary' orbital angular momentum part.



                    This is accounted for automatically if you find the angular momentum operator in terms of fields via the Lagrangian. The angular momentum density will look something like $x^lambda T^munu-x^mu T^lambdanu$ where $T$ is the energy momentum tensor, plus an aditional 'spin' part if the fundamental field(s) in your Lagrangian have non-trivial rotation properties.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 7 hours ago









                    octonionoctonion

                    4,3268 silver badges18 bronze badges




                    4,3268 silver badges18 bronze badges





















                        2












                        $begingroup$

                        If you think about Wigner's classification, then one-particle states are irreducible representations of the Poincare group, as you said. To label these representations you need the Casimir invariants of Poincare - the particle's mass and the little group Casimir, which for massive particles corresponds to the symmetries in is its rest frame, the SO(3) rotation group. That's how you get spin and that's all the angular momentum you have in one-particle states. Orbital angular momentum requires the concept of distance, which for 1-particle states does not exist.



                        However, if you consider two-particle states you can just take it as a tensor product between 2 one-particle states with 2 different spin labels. OR, you can take it as a single state with definite energy-momentum and total angular momentum label. This angular momentum is just the Clebsch-Gordon sum of both spins and the orbital angular momentum between the particles. How you move from one description to the other is by going to the center of mass of the two particles. Here you have to specify the direction of the relative linear momentum on the 2-sphere, this two-angle dependence can be expanded into spherical harmonics, eigenfunctions of angular momentum.



                        As a concrete example, consider two spin-0 bosons. This 2-particle state depends on 6 variables, 2x linear momentum vectors. If you go to CM frame this state depends on the total linear momentum and the relative momentum. The absolute value of the relative momentum can be put into the total Energy, and you're only missing the orientation of the relative momentum. The 2 angle dependence can be traded for (l,m) by a spherical harmonic decomposition. If the particles have internal spin then you can sum these spins using Clebsch-Gordon coefficients, to get the usual total angular momentum 'j'. You can then check that these 'j' states are indeed eigeinstates of the 2-particle representation of the rotation generators of the Poincare group.






                        share|cite|improve this answer








                        New contributor



                        Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.





                        $endgroup$

















                          2












                          $begingroup$

                          If you think about Wigner's classification, then one-particle states are irreducible representations of the Poincare group, as you said. To label these representations you need the Casimir invariants of Poincare - the particle's mass and the little group Casimir, which for massive particles corresponds to the symmetries in is its rest frame, the SO(3) rotation group. That's how you get spin and that's all the angular momentum you have in one-particle states. Orbital angular momentum requires the concept of distance, which for 1-particle states does not exist.



                          However, if you consider two-particle states you can just take it as a tensor product between 2 one-particle states with 2 different spin labels. OR, you can take it as a single state with definite energy-momentum and total angular momentum label. This angular momentum is just the Clebsch-Gordon sum of both spins and the orbital angular momentum between the particles. How you move from one description to the other is by going to the center of mass of the two particles. Here you have to specify the direction of the relative linear momentum on the 2-sphere, this two-angle dependence can be expanded into spherical harmonics, eigenfunctions of angular momentum.



                          As a concrete example, consider two spin-0 bosons. This 2-particle state depends on 6 variables, 2x linear momentum vectors. If you go to CM frame this state depends on the total linear momentum and the relative momentum. The absolute value of the relative momentum can be put into the total Energy, and you're only missing the orientation of the relative momentum. The 2 angle dependence can be traded for (l,m) by a spherical harmonic decomposition. If the particles have internal spin then you can sum these spins using Clebsch-Gordon coefficients, to get the usual total angular momentum 'j'. You can then check that these 'j' states are indeed eigeinstates of the 2-particle representation of the rotation generators of the Poincare group.






                          share|cite|improve this answer








                          New contributor



                          Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.





                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            If you think about Wigner's classification, then one-particle states are irreducible representations of the Poincare group, as you said. To label these representations you need the Casimir invariants of Poincare - the particle's mass and the little group Casimir, which for massive particles corresponds to the symmetries in is its rest frame, the SO(3) rotation group. That's how you get spin and that's all the angular momentum you have in one-particle states. Orbital angular momentum requires the concept of distance, which for 1-particle states does not exist.



                            However, if you consider two-particle states you can just take it as a tensor product between 2 one-particle states with 2 different spin labels. OR, you can take it as a single state with definite energy-momentum and total angular momentum label. This angular momentum is just the Clebsch-Gordon sum of both spins and the orbital angular momentum between the particles. How you move from one description to the other is by going to the center of mass of the two particles. Here you have to specify the direction of the relative linear momentum on the 2-sphere, this two-angle dependence can be expanded into spherical harmonics, eigenfunctions of angular momentum.



                            As a concrete example, consider two spin-0 bosons. This 2-particle state depends on 6 variables, 2x linear momentum vectors. If you go to CM frame this state depends on the total linear momentum and the relative momentum. The absolute value of the relative momentum can be put into the total Energy, and you're only missing the orientation of the relative momentum. The 2 angle dependence can be traded for (l,m) by a spherical harmonic decomposition. If the particles have internal spin then you can sum these spins using Clebsch-Gordon coefficients, to get the usual total angular momentum 'j'. You can then check that these 'j' states are indeed eigeinstates of the 2-particle representation of the rotation generators of the Poincare group.






                            share|cite|improve this answer








                            New contributor



                            Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





                            $endgroup$



                            If you think about Wigner's classification, then one-particle states are irreducible representations of the Poincare group, as you said. To label these representations you need the Casimir invariants of Poincare - the particle's mass and the little group Casimir, which for massive particles corresponds to the symmetries in is its rest frame, the SO(3) rotation group. That's how you get spin and that's all the angular momentum you have in one-particle states. Orbital angular momentum requires the concept of distance, which for 1-particle states does not exist.



                            However, if you consider two-particle states you can just take it as a tensor product between 2 one-particle states with 2 different spin labels. OR, you can take it as a single state with definite energy-momentum and total angular momentum label. This angular momentum is just the Clebsch-Gordon sum of both spins and the orbital angular momentum between the particles. How you move from one description to the other is by going to the center of mass of the two particles. Here you have to specify the direction of the relative linear momentum on the 2-sphere, this two-angle dependence can be expanded into spherical harmonics, eigenfunctions of angular momentum.



                            As a concrete example, consider two spin-0 bosons. This 2-particle state depends on 6 variables, 2x linear momentum vectors. If you go to CM frame this state depends on the total linear momentum and the relative momentum. The absolute value of the relative momentum can be put into the total Energy, and you're only missing the orientation of the relative momentum. The 2 angle dependence can be traded for (l,m) by a spherical harmonic decomposition. If the particles have internal spin then you can sum these spins using Clebsch-Gordon coefficients, to get the usual total angular momentum 'j'. You can then check that these 'j' states are indeed eigeinstates of the 2-particle representation of the rotation generators of the Poincare group.







                            share|cite|improve this answer








                            New contributor



                            Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.








                            share|cite|improve this answer



                            share|cite|improve this answer






                            New contributor



                            Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.








                            answered 5 hours ago









                            Miguel CorreiaMiguel Correia

                            212 bronze badges




                            212 bronze badges




                            New contributor



                            Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.




                            New contributor




                            Miguel Correia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f493792%2fspin-vs-orbital-angular-momenta-in-qft%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)