Why is differential privacy defined over the exponential function?Estimator for sum of independent and identically distributed (iid) variablesWhat is a probabilistic function and where can I learn more about them?Exponential Concentration Inequality for Higher-order moments of Gaussian Random VariablesDifferential Privacy and Randomized Responses for Counting QueriesUnderstanding proof of Theorem 3.3 in Karp's “Probabilistic Recurrence Relations”Relation between variance and mutual informationJanson-type inequality, limited dependenceHeterogeneous Hoeffding/McDiarmidEmpirical Rademacher averages versus Hoeffdings bound

Could the government trigger by-elections to regain a majority?

Why is differential privacy defined over the exponential function?

Is there a basic list of ways in which a low-level Rogue can get advantage for sneak attack?

Will replacing a fake visa with a different fake visa cause me problems when applying for a legal study permit?

How to create a list of dictionaries from a dictionary with lists of different lengths

Tear out when plate making w/ a router

Is English tonal for some words, like "permit"?

How accurate is the new appraisal system?

How can I protect myself in case of a human attack like the murders of the hikers Jespersen and Ueland in Morocco?

I see your BIDMAS and raise you a BADMIS

Improbable Inequalities

What's the biggest difference between these two photos?

Awesomism and its awesome gods

Why would thermal imaging be used to locate the Chandrayaan-2 lander?

Are scroll bars dead in 2019?

Why was "leaping into the river" a valid trial outcome to prove one's innocence?

Calculate time difference between two dates

Why are some Mac apps not available on AppStore?

Is there any detail about ambulances in Star Wars?

How to split a string by the third .(dot) delimiter

Has any object launched from Earth gone into the Sun?

Are programming languages necessary/useful for operations research practitioner?

Georgian capital letter “Ⴒ” (“tar”) in pdfLaTeX

2.5 year old daughter refuses to take medicine



Why is differential privacy defined over the exponential function?


Estimator for sum of independent and identically distributed (iid) variablesWhat is a probabilistic function and where can I learn more about them?Exponential Concentration Inequality for Higher-order moments of Gaussian Random VariablesDifferential Privacy and Randomized Responses for Counting QueriesUnderstanding proof of Theorem 3.3 in Karp's “Probabilistic Recurrence Relations”Relation between variance and mutual informationJanson-type inequality, limited dependenceHeterogeneous Hoeffding/McDiarmidEmpirical Rademacher averages versus Hoeffdings bound






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


For adjacent database $D,D'$, a randomized algorithm $A$ is $varepsilon$-differential private when the following satisfies



$$fracPr(A(D) in S)Pr(A(D') in S) leq e^varepsilon,$$ where $S$ is any range of A.



Why is the exponential function is used for the upper bounding?



Is that related to Chernoff's inequality? Since most of the textbooks that I have ever seen do not explain why the exponential is used, I have no idea about that.










share|cite|improve this question









New contributor



user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




















    1












    $begingroup$


    For adjacent database $D,D'$, a randomized algorithm $A$ is $varepsilon$-differential private when the following satisfies



    $$fracPr(A(D) in S)Pr(A(D') in S) leq e^varepsilon,$$ where $S$ is any range of A.



    Why is the exponential function is used for the upper bounding?



    Is that related to Chernoff's inequality? Since most of the textbooks that I have ever seen do not explain why the exponential is used, I have no idea about that.










    share|cite|improve this question









    New contributor



    user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$
















      1












      1








      1





      $begingroup$


      For adjacent database $D,D'$, a randomized algorithm $A$ is $varepsilon$-differential private when the following satisfies



      $$fracPr(A(D) in S)Pr(A(D') in S) leq e^varepsilon,$$ where $S$ is any range of A.



      Why is the exponential function is used for the upper bounding?



      Is that related to Chernoff's inequality? Since most of the textbooks that I have ever seen do not explain why the exponential is used, I have no idea about that.










      share|cite|improve this question









      New contributor



      user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      For adjacent database $D,D'$, a randomized algorithm $A$ is $varepsilon$-differential private when the following satisfies



      $$fracPr(A(D) in S)Pr(A(D') in S) leq e^varepsilon,$$ where $S$ is any range of A.



      Why is the exponential function is used for the upper bounding?



      Is that related to Chernoff's inequality? Since most of the textbooks that I have ever seen do not explain why the exponential is used, I have no idea about that.







      pr.probability definitions privacy






      share|cite|improve this question









      New contributor



      user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|cite|improve this question









      New contributor



      user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago









      Clement C.

      2,65517 silver badges42 bronze badges




      2,65517 silver badges42 bronze badges






      New contributor



      user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 9 hours ago









      user9414424user9414424

      112 bronze badges




      112 bronze badges




      New contributor



      user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      user9414424 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.

























          1 Answer
          1






          active

          oldest

          votes


















          4














          $begingroup$

          This answer may be disappointing, but working on a log scale really mostly just makes the formulas nicer. The definition, as written, has the following important properties:



          • Composition: If $A(cdot)$ is an $varepsilon$-DP algorithm, and for any $a$ in the range of $A$, $A'(cdot, a)$ is an $varepsilon'$-DP algorithm, then the composed algorithm $A' circ A$, defined by $A'circ A(D) = A'(D, A(D))$, is $(varepsilon + varepsilon')$-DP.


          • Group Privacy: If $A$ is $varepsilon$-DP, then it satisfies $kvarepsilon$-DP on pairs of data sets that differ in at most $k$ data points.


          It may be more natural to define $varepsilon$-DP with $(1+varepsilon)$ in place of $e^varepsilon$, but then the formulas above would be far less nice. There is no real connection with Chernoff bounds here.



          Another reason is that this definition makes it more clear how the differential privacy definition is related to divergences between distributions. To see what I mean, let me define the privacy loss of an output $a$ of an algorithm $A$ (with respect to datasets $D$ and $D'$) as
          $$
          ell_D, D'(a) = logleft( fracPr[A(D) = a]Pr[A(D') = a]right).
          $$

          Then, the expectation $mathbbE[ell_D, D'(A(D))]$ is simply the KL-divergence between $A(D)$ and $A(D')$. The differential privacy condition asks that this KL-divergence is bounded by $varepsilon$, but in fact it asks much more: that the random variable $ell_D, D'(A(D))$ is bounded by $varepsilon$ everywhere in its support. There are also intermediate definitions which put bounds on moments of $ell_D, D'(A(D))$, and correspond to bounding Renyi divergences between $A(D)$ and $A(D')$.






          share|cite|improve this answer









          $endgroup$

















            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "114"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );







            user9414424 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded
















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcstheory.stackexchange.com%2fquestions%2f44507%2fwhy-is-differential-privacy-defined-over-the-exponential-function%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4














            $begingroup$

            This answer may be disappointing, but working on a log scale really mostly just makes the formulas nicer. The definition, as written, has the following important properties:



            • Composition: If $A(cdot)$ is an $varepsilon$-DP algorithm, and for any $a$ in the range of $A$, $A'(cdot, a)$ is an $varepsilon'$-DP algorithm, then the composed algorithm $A' circ A$, defined by $A'circ A(D) = A'(D, A(D))$, is $(varepsilon + varepsilon')$-DP.


            • Group Privacy: If $A$ is $varepsilon$-DP, then it satisfies $kvarepsilon$-DP on pairs of data sets that differ in at most $k$ data points.


            It may be more natural to define $varepsilon$-DP with $(1+varepsilon)$ in place of $e^varepsilon$, but then the formulas above would be far less nice. There is no real connection with Chernoff bounds here.



            Another reason is that this definition makes it more clear how the differential privacy definition is related to divergences between distributions. To see what I mean, let me define the privacy loss of an output $a$ of an algorithm $A$ (with respect to datasets $D$ and $D'$) as
            $$
            ell_D, D'(a) = logleft( fracPr[A(D) = a]Pr[A(D') = a]right).
            $$

            Then, the expectation $mathbbE[ell_D, D'(A(D))]$ is simply the KL-divergence between $A(D)$ and $A(D')$. The differential privacy condition asks that this KL-divergence is bounded by $varepsilon$, but in fact it asks much more: that the random variable $ell_D, D'(A(D))$ is bounded by $varepsilon$ everywhere in its support. There are also intermediate definitions which put bounds on moments of $ell_D, D'(A(D))$, and correspond to bounding Renyi divergences between $A(D)$ and $A(D')$.






            share|cite|improve this answer









            $endgroup$



















              4














              $begingroup$

              This answer may be disappointing, but working on a log scale really mostly just makes the formulas nicer. The definition, as written, has the following important properties:



              • Composition: If $A(cdot)$ is an $varepsilon$-DP algorithm, and for any $a$ in the range of $A$, $A'(cdot, a)$ is an $varepsilon'$-DP algorithm, then the composed algorithm $A' circ A$, defined by $A'circ A(D) = A'(D, A(D))$, is $(varepsilon + varepsilon')$-DP.


              • Group Privacy: If $A$ is $varepsilon$-DP, then it satisfies $kvarepsilon$-DP on pairs of data sets that differ in at most $k$ data points.


              It may be more natural to define $varepsilon$-DP with $(1+varepsilon)$ in place of $e^varepsilon$, but then the formulas above would be far less nice. There is no real connection with Chernoff bounds here.



              Another reason is that this definition makes it more clear how the differential privacy definition is related to divergences between distributions. To see what I mean, let me define the privacy loss of an output $a$ of an algorithm $A$ (with respect to datasets $D$ and $D'$) as
              $$
              ell_D, D'(a) = logleft( fracPr[A(D) = a]Pr[A(D') = a]right).
              $$

              Then, the expectation $mathbbE[ell_D, D'(A(D))]$ is simply the KL-divergence between $A(D)$ and $A(D')$. The differential privacy condition asks that this KL-divergence is bounded by $varepsilon$, but in fact it asks much more: that the random variable $ell_D, D'(A(D))$ is bounded by $varepsilon$ everywhere in its support. There are also intermediate definitions which put bounds on moments of $ell_D, D'(A(D))$, and correspond to bounding Renyi divergences between $A(D)$ and $A(D')$.






              share|cite|improve this answer









              $endgroup$

















                4














                4










                4







                $begingroup$

                This answer may be disappointing, but working on a log scale really mostly just makes the formulas nicer. The definition, as written, has the following important properties:



                • Composition: If $A(cdot)$ is an $varepsilon$-DP algorithm, and for any $a$ in the range of $A$, $A'(cdot, a)$ is an $varepsilon'$-DP algorithm, then the composed algorithm $A' circ A$, defined by $A'circ A(D) = A'(D, A(D))$, is $(varepsilon + varepsilon')$-DP.


                • Group Privacy: If $A$ is $varepsilon$-DP, then it satisfies $kvarepsilon$-DP on pairs of data sets that differ in at most $k$ data points.


                It may be more natural to define $varepsilon$-DP with $(1+varepsilon)$ in place of $e^varepsilon$, but then the formulas above would be far less nice. There is no real connection with Chernoff bounds here.



                Another reason is that this definition makes it more clear how the differential privacy definition is related to divergences between distributions. To see what I mean, let me define the privacy loss of an output $a$ of an algorithm $A$ (with respect to datasets $D$ and $D'$) as
                $$
                ell_D, D'(a) = logleft( fracPr[A(D) = a]Pr[A(D') = a]right).
                $$

                Then, the expectation $mathbbE[ell_D, D'(A(D))]$ is simply the KL-divergence between $A(D)$ and $A(D')$. The differential privacy condition asks that this KL-divergence is bounded by $varepsilon$, but in fact it asks much more: that the random variable $ell_D, D'(A(D))$ is bounded by $varepsilon$ everywhere in its support. There are also intermediate definitions which put bounds on moments of $ell_D, D'(A(D))$, and correspond to bounding Renyi divergences between $A(D)$ and $A(D')$.






                share|cite|improve this answer









                $endgroup$



                This answer may be disappointing, but working on a log scale really mostly just makes the formulas nicer. The definition, as written, has the following important properties:



                • Composition: If $A(cdot)$ is an $varepsilon$-DP algorithm, and for any $a$ in the range of $A$, $A'(cdot, a)$ is an $varepsilon'$-DP algorithm, then the composed algorithm $A' circ A$, defined by $A'circ A(D) = A'(D, A(D))$, is $(varepsilon + varepsilon')$-DP.


                • Group Privacy: If $A$ is $varepsilon$-DP, then it satisfies $kvarepsilon$-DP on pairs of data sets that differ in at most $k$ data points.


                It may be more natural to define $varepsilon$-DP with $(1+varepsilon)$ in place of $e^varepsilon$, but then the formulas above would be far less nice. There is no real connection with Chernoff bounds here.



                Another reason is that this definition makes it more clear how the differential privacy definition is related to divergences between distributions. To see what I mean, let me define the privacy loss of an output $a$ of an algorithm $A$ (with respect to datasets $D$ and $D'$) as
                $$
                ell_D, D'(a) = logleft( fracPr[A(D) = a]Pr[A(D') = a]right).
                $$

                Then, the expectation $mathbbE[ell_D, D'(A(D))]$ is simply the KL-divergence between $A(D)$ and $A(D')$. The differential privacy condition asks that this KL-divergence is bounded by $varepsilon$, but in fact it asks much more: that the random variable $ell_D, D'(A(D))$ is bounded by $varepsilon$ everywhere in its support. There are also intermediate definitions which put bounds on moments of $ell_D, D'(A(D))$, and correspond to bounding Renyi divergences between $A(D)$ and $A(D')$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 8 hours ago









                Sasho NikolovSasho Nikolov

                16.7k2 gold badges55 silver badges99 bronze badges




                16.7k2 gold badges55 silver badges99 bronze badges
























                    user9414424 is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded

















                    user9414424 is a new contributor. Be nice, and check out our Code of Conduct.












                    user9414424 is a new contributor. Be nice, and check out our Code of Conduct.











                    user9414424 is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Theoretical Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcstheory.stackexchange.com%2fquestions%2f44507%2fwhy-is-differential-privacy-defined-over-the-exponential-function%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                    Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                    Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)