Find the number of surjections from A to B.Pascal's relation theorem from the book Combinatorics, R. Merris; need some help in clarificationCombinatorics: How many solns to equation? (principle of inclusion / exclusion)Get the number of subset.Comparing probabilities of drawing balls of certain color, with and without replacementDifferent ways of picking sets producing different results?Number of possibilities of permutation with repetitions with additional equal elements addedStuck trying to understand N Choose K formulaUnderstanding difference between ordered sequences with repetition and unordered sequences with repetitionIs there a relation between the triangular numbers and the combinations with repetition?A subset of three distinct positive integers, each less than 20, is selected. How many subsets will contain exactly one even number?

Need help identifying/translating a plaque in Tangier, Morocco

Finding files for which a command fails

Denied boarding due to overcrowding, Sparpreis ticket. What are my rights?

Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore

"My colleague's body is amazing"

Extreme, but not acceptable situation and I can't start the work tomorrow morning

How to move the player while also allowing forces to affect it

How to answer pointed "are you quitting" questioning when I don't want them to suspect

What is it called when one voice type sings a 'solo'?

Copycat chess is back

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

"listening to me about as much as you're listening to this pole here"

Could a US political party gain complete control over the government by removing checks & balances?

Why is my log file so massive? 22gb. I am running log backups

Unbreakable Formation vs. Cry of the Carnarium

Why airport relocation isn't done gradually?

Where to refill my bottle in India?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

New order #4: World

Map list to bin numbers

Find the number of surjections from A to B.

Is there any use for defining additional entity types in a SOQL FROM clause?



Find the number of surjections from A to B.


Pascal's relation theorem from the book Combinatorics, R. Merris; need some help in clarificationCombinatorics: How many solns to equation? (principle of inclusion / exclusion)Get the number of subset.Comparing probabilities of drawing balls of certain color, with and without replacementDifferent ways of picking sets producing different results?Number of possibilities of permutation with repetitions with additional equal elements addedStuck trying to understand N Choose K formulaUnderstanding difference between ordered sequences with repetition and unordered sequences with repetitionIs there a relation between the triangular numbers and the combinations with repetition?A subset of three distinct positive integers, each less than 20, is selected. How many subsets will contain exactly one even number?













2












$begingroup$


Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    4 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago















2












$begingroup$


Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    4 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago













2












2








2


2



$begingroup$


Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$




Where A = 1,2,3,4,5,6 and B = a,b,c,d,e.



My book says it's:



  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.

This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?







combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









ZakuZaku

1879




1879











  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    4 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago
















  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    4 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    4 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
    $endgroup$
    – fleablood
    3 hours ago















$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
4 hours ago




$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
4 hours ago












$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
4 hours ago




$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
4 hours ago




1




1




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
4 hours ago




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of $P,3,4,5,6$ onto $a,b,c,d,e$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
4 hours ago












$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
$endgroup$
– fleablood
3 hours ago




$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $=6choose 2*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$=6choose 2*5! $.
$endgroup$
– fleablood
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

How many ways can $A$ be partitioned into $5$ blocks?



Answer: $binom62 = 15$



Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
assigned to the $5$ element set $B$?



Answer: $5! =120$



How many surjective functions from $A$ onto $B$ are there?



Answer: $15 times 120 = 1800$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Think of it this way:



    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



    There are $6choose 2 $ possible pairs that can be $alpha $.



    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



      And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



      So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



      (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



      In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



      Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2ffind-the-number-of-surjections-from-a-to-b%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        How many ways can $A$ be partitioned into $5$ blocks?



        Answer: $binom62 = 15$



        Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
        assigned to the $5$ element set $B$?



        Answer: $5! =120$



        How many surjective functions from $A$ onto $B$ are there?



        Answer: $15 times 120 = 1800$






        share|cite|improve this answer









        $endgroup$

















          2












          $begingroup$

          How many ways can $A$ be partitioned into $5$ blocks?



          Answer: $binom62 = 15$



          Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
          assigned to the $5$ element set $B$?



          Answer: $5! =120$



          How many surjective functions from $A$ onto $B$ are there?



          Answer: $15 times 120 = 1800$






          share|cite|improve this answer









          $endgroup$















            2












            2








            2





            $begingroup$

            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom62 = 15$



            Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$






            share|cite|improve this answer









            $endgroup$



            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom62 = 15$



            Given any $5text-block$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 3 hours ago









            CopyPasteItCopyPasteIt

            4,3271828




            4,3271828





















                2












                $begingroup$

                Think of it this way:



                There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                There are $6choose 2 $ possible pairs that can be $alpha $.



                And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Think of it this way:



                  There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                  There are $6choose 2 $ possible pairs that can be $alpha $.



                  And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are $6choose 2 $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                    share|cite|improve this answer









                    $endgroup$



                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are $6choose 2 $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 3 hours ago









                    fleabloodfleablood

                    73.9k22891




                    73.9k22891





















                        1












                        $begingroup$

                        (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                        And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                        So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                        (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                        In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                        Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






                        share|cite|improve this answer











                        $endgroup$

















                          1












                          $begingroup$

                          (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                          And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                          So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                          (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                          In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                          Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






                          share|cite|improve this answer











                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                            And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                            So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                            (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                            In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                            Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.






                            share|cite|improve this answer











                            $endgroup$



                            (i). Select a $2$-member $A_1subset A.$ There are $binom 62$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom 51$ ways to do this. There are $binom 62binom 51$ such pairs $(A_1,B_1)$ and for each pair there is a set $F(A_1,B_1)$ of $4!$ surjections $f:Ato B$ such that $f(x):xin A_1=B_1.$



                            And if $(A_1, B_1)ne (A'_1, B'_1)$ then the sets $F(A_1,B_1), F(A'_1,B'_1)$ are disjoint.



                            So there are at least $binom 62binom 514!=(15)(5)(4!)=(15)(5!)=1800$ surjections.



                            (ii). Every surjection $f:Ato B$ belongs to some $F(A_1,B_1)$ so there are at most $1800$ surjections.



                            In other words: (i) we didn't count any $f$ more than once, and (ii) we didn't fail to count any $f$.



                            Remark. The "mysterious" $5!$ came from two sources: The product of the number $binom 51$ of $B_1$'s and the number $4$! of bijections from a $4$-member set to another.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited 6 mins ago

























                            answered 31 mins ago









                            DanielWainfleetDanielWainfleet

                            35.8k31648




                            35.8k31648



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2ffind-the-number-of-surjections-from-a-to-b%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)