Ideas for colorfully and clearly highlighting graph edges according to weightsStandardForm on Graph edgesColoring edges of a graph according to their weight?Styling the edges of a graph according to the multiplicities of the edgesChanging edge weights in a graph using PropertyValueCannot get Mathematica to recognise Vertex Weights of GraphOther Ideas for Clickable Graph BuildupHow to style a graph according to the direction of the edges and the centrality of the vertices?FindShortestPath in a Random Geometric Graph: Quick Version?How to filter-out edges in a HighlightGraph[] visualization based on VertexCoordinates[]?Finding the dangling free part of a percolating cluster

COUNT(*) or MAX(id) - which is faster?

Need help identifying/translating a plaque in Tangier, Morocco

What is the offset in a seaplane's hull?

Where else does the Shulchan Aruch quote an authority by name?

Is Social Media Science Fiction?

What is the command to reset a PC without deleting any files

How could a lack of term limits lead to a "dictatorship?"

Was there ever an axiom rendered a theorem?

Check if two datetimes are between two others

Are cabin dividers used to "hide" the flex of the airplane?

How to move the player while also allowing forces to affect it

Symmetry in quantum mechanics

What is GPS' 19 year rollover and does it present a cybersecurity issue?

Is every set a filtered colimit of finite sets?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Ideas for 3rd eye abilities

Why was the "bread communication" in the arena of Catching Fire left out in the movie?

Is Fable (1996) connected in any way to the Fable franchise from Lionhead Studios?

What does it exactly mean if a random variable follows a distribution

Hosting Wordpress in a EC2 Load Balanced Instance

What causes the sudden spool-up sound from an F-16 when enabling afterburner?

"listening to me about as much as you're listening to this pole here"

What to wear for invited talk in Canada

Add an angle to a sphere



Ideas for colorfully and clearly highlighting graph edges according to weights


StandardForm on Graph edgesColoring edges of a graph according to their weight?Styling the edges of a graph according to the multiplicities of the edgesChanging edge weights in a graph using PropertyValueCannot get Mathematica to recognise Vertex Weights of GraphOther Ideas for Clickable Graph BuildupHow to style a graph according to the direction of the edges and the centrality of the vertices?FindShortestPath in a Random Geometric Graph: Quick Version?How to filter-out edges in a HighlightGraph[] visualization based on VertexCoordinates[]?Finding the dangling free part of a percolating cluster













5












$begingroup$


I am trying to figure out a way to include edgeweights in the visualisation of a graph in Mathematica, to find an idea for the drawing such that even for relatively large node numbers the graphs remain visually clear. But the basic built-in feature leads to rather messy layouts as soon as there are large number of nodes/edges. Here's an example below:



SeedRandom[100]
n = 500;
m = 1000;
edgeweights = 1./RandomReal[0.1, 1, m];
G = RandomGraph[n, m, EdgeWeight -> edgeweights]


Produces:
enter image description here



Including GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True into the definition of G produces:



enter image description here



It seems to simply draw the nodes whose connecting edge weight is larger closer to one another, which leads to a very dense embedded layout.



Would it be possible to:



  • Modulate the edge thickness and color [*] according to their weights? The weights do not necessarily have to be given in the graph definition (G), they could also simply be called for the purpose of the visualisation.

[*]: That is, the greater the weight, the thicker and the more brightly colored the edge. For normalization, we can use the maximal weight in the vector of edgeweights.










share|improve this question









$endgroup$
















    5












    $begingroup$


    I am trying to figure out a way to include edgeweights in the visualisation of a graph in Mathematica, to find an idea for the drawing such that even for relatively large node numbers the graphs remain visually clear. But the basic built-in feature leads to rather messy layouts as soon as there are large number of nodes/edges. Here's an example below:



    SeedRandom[100]
    n = 500;
    m = 1000;
    edgeweights = 1./RandomReal[0.1, 1, m];
    G = RandomGraph[n, m, EdgeWeight -> edgeweights]


    Produces:
    enter image description here



    Including GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True into the definition of G produces:



    enter image description here



    It seems to simply draw the nodes whose connecting edge weight is larger closer to one another, which leads to a very dense embedded layout.



    Would it be possible to:



    • Modulate the edge thickness and color [*] according to their weights? The weights do not necessarily have to be given in the graph definition (G), they could also simply be called for the purpose of the visualisation.

    [*]: That is, the greater the weight, the thicker and the more brightly colored the edge. For normalization, we can use the maximal weight in the vector of edgeweights.










    share|improve this question









    $endgroup$














      5












      5








      5





      $begingroup$


      I am trying to figure out a way to include edgeweights in the visualisation of a graph in Mathematica, to find an idea for the drawing such that even for relatively large node numbers the graphs remain visually clear. But the basic built-in feature leads to rather messy layouts as soon as there are large number of nodes/edges. Here's an example below:



      SeedRandom[100]
      n = 500;
      m = 1000;
      edgeweights = 1./RandomReal[0.1, 1, m];
      G = RandomGraph[n, m, EdgeWeight -> edgeweights]


      Produces:
      enter image description here



      Including GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True into the definition of G produces:



      enter image description here



      It seems to simply draw the nodes whose connecting edge weight is larger closer to one another, which leads to a very dense embedded layout.



      Would it be possible to:



      • Modulate the edge thickness and color [*] according to their weights? The weights do not necessarily have to be given in the graph definition (G), they could also simply be called for the purpose of the visualisation.

      [*]: That is, the greater the weight, the thicker and the more brightly colored the edge. For normalization, we can use the maximal weight in the vector of edgeweights.










      share|improve this question









      $endgroup$




      I am trying to figure out a way to include edgeweights in the visualisation of a graph in Mathematica, to find an idea for the drawing such that even for relatively large node numbers the graphs remain visually clear. But the basic built-in feature leads to rather messy layouts as soon as there are large number of nodes/edges. Here's an example below:



      SeedRandom[100]
      n = 500;
      m = 1000;
      edgeweights = 1./RandomReal[0.1, 1, m];
      G = RandomGraph[n, m, EdgeWeight -> edgeweights]


      Produces:
      enter image description here



      Including GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True into the definition of G produces:



      enter image description here



      It seems to simply draw the nodes whose connecting edge weight is larger closer to one another, which leads to a very dense embedded layout.



      Would it be possible to:



      • Modulate the edge thickness and color [*] according to their weights? The weights do not necessarily have to be given in the graph definition (G), they could also simply be called for the purpose of the visualisation.

      [*]: That is, the greater the weight, the thicker and the more brightly colored the edge. For normalization, we can use the maximal weight in the vector of edgeweights.







      graphics graphs-and-networks visualization






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 12 hours ago









      user929304user929304

      30629




      30629




















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          edgeStyle[weights_, thickbounds_:0.0001,0.01, colorf_:ColorData["SolarColors"]]:=
          Block[minmax, thickness, color,
          minmax = MinMax[weights];
          thickness = Thickness /@ Rescale[weights, minmax, thickbounds];
          color = colorf /@ Rescale[weights, minmax, 0, 1];
          Thread[Directive[Opacity[.7], CapForm["Round"], thickness, color]]
          ]


          Here's the example:



          Graph[G, EdgeStyle -> Thread[EdgeList[G] -> edgeStyle[edgeweights]], 
          VertexSize -> 1, VertexStyle -> Blue]


          enter image description here



          With different thickness and color:



          Graph[G, EdgeStyle -> 
          Thread[EdgeList[G] ->
          edgeStyle[edgeweights, 0.0001, 0.02,
          ColorData["BrightBands"]]], VertexSize -> 1, VertexStyle -> Blue]


          enter image description here






          share|improve this answer









          $endgroup$




















            3












            $begingroup$

            I do not think that any good way exists. Once a graph is large enough, it will always look like a hairball unless it has a clear structure that might be made visible. For example, this is a similarity graph of musicians. The musicians cluster into groups, and it is possible to make this structure visible. Your example graph, on the other hand, is completely random, with random edge weights. Since there are lots of nodes and edges, but no real information is contained within them, I do not think that it can be visualized in a meaningful way.



            Assuming that there is something to show, things you can try are:




            • Take edge weights into consideration when computing the layout. Look up individual graph layouts on the GraphLayout doc page, and see if they support weights. You have already found GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True, but it's still useful to mention this for other readers.



              The example I linked above was created by one of the authors of the igraph library. IGraph/M is a Mathematica interface to igraph (and much more), and exposes multiple layout algorithms that support weights. The above example was created using the DrL layout (IGLayoutDrL function in IGraph/M)




            • Visualize weights as not edge lengths, but edge weights or edge colours. You can do this with EdgeStyle. IGraph/M provides a very convenient way to do it:



              SeedRandom[137]
              g = RandomGraph[10, 20, EdgeWeight -> RandomReal[.1, 1, 20]]

              Graph[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/3]]] //
              IGEdgeMap[AbsoluteThickness[10 #] &, EdgeStyle -> IGEdgeProp[EdgeWeight]]


              enter image description here




            • Use colours in the same way.



              Graph[g, EdgeStyle -> Directive[CapForm["Round"], AbsoluteThickness[4]]] //
              IGEdgeMap[ColorData["RustTones"], EdgeStyle -> Rescale@*IGEdgeProp[EdgeWeight]]


              enter image description here




            • Use all of the above: edge length, edge thickness and edge colour.



              IGLayoutFruchtermanReingold[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/2]]] // 
              IGEdgeMap[
              Directive[ColorData["RustTones"][#], AbsoluteThickness[10 #]] &,
              EdgeStyle -> (#/Max[#] &)@*IGEdgeProp[EdgeWeight]]


              enter image description here




            • Cluster the graph vertices before visualizing them. The clustering can take weights into account.



              CommunityGraphPlot[g]


              enter image description here



              This related to what I said above. First, try to identify the structure, then explicitly make it visible.







            share|improve this answer









            $endgroup$




















              0












              $begingroup$

              When you have a lot of things to display in a small space you get a mess no matter what. But you can always try to make it better. I suggest 2 steps:



              1. Untangle a bit the mess with GraphLayout

              2. Avoid noise in style logic

              1. Untangle a bit the mess with GraphLayout



              I would use a proper GraphLayout for a specific cases. For instance, a general messy graph can benefit from "GravityEmbedding" which will be available in V12 (compare left and right images):



              RandomGraph[100,100,ImageSize->400,GraphLayout->#]&/@
              Automatic,"GravityEmbedding"


              enter image description here



              But on the other hand in case of trees you are better of with "RadialEmbedding"



              Graph[RandomInteger[#]<->#+1&/@Range[0,500],ImageSize->400,GraphLayout->#]&/@
              Automatic,"RadialEmbedding"


              enter image description here



              And so on depending on your specific graph structure.



              2. Avoid noise in style logic



              I recommend to read an article I wrote (even so your graphs are larger a lot of logic still holds):



              On design of styles for small weighted graphs: https://community.wolfram.com/groups/-/m/t/838652



              enter image description here






              share|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "387"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: false,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: null,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194811%2fideas-for-colorfully-and-clearly-highlighting-graph-edges-according-to-weights%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3












                $begingroup$

                edgeStyle[weights_, thickbounds_:0.0001,0.01, colorf_:ColorData["SolarColors"]]:=
                Block[minmax, thickness, color,
                minmax = MinMax[weights];
                thickness = Thickness /@ Rescale[weights, minmax, thickbounds];
                color = colorf /@ Rescale[weights, minmax, 0, 1];
                Thread[Directive[Opacity[.7], CapForm["Round"], thickness, color]]
                ]


                Here's the example:



                Graph[G, EdgeStyle -> Thread[EdgeList[G] -> edgeStyle[edgeweights]], 
                VertexSize -> 1, VertexStyle -> Blue]


                enter image description here



                With different thickness and color:



                Graph[G, EdgeStyle -> 
                Thread[EdgeList[G] ->
                edgeStyle[edgeweights, 0.0001, 0.02,
                ColorData["BrightBands"]]], VertexSize -> 1, VertexStyle -> Blue]


                enter image description here






                share|improve this answer









                $endgroup$

















                  3












                  $begingroup$

                  edgeStyle[weights_, thickbounds_:0.0001,0.01, colorf_:ColorData["SolarColors"]]:=
                  Block[minmax, thickness, color,
                  minmax = MinMax[weights];
                  thickness = Thickness /@ Rescale[weights, minmax, thickbounds];
                  color = colorf /@ Rescale[weights, minmax, 0, 1];
                  Thread[Directive[Opacity[.7], CapForm["Round"], thickness, color]]
                  ]


                  Here's the example:



                  Graph[G, EdgeStyle -> Thread[EdgeList[G] -> edgeStyle[edgeweights]], 
                  VertexSize -> 1, VertexStyle -> Blue]


                  enter image description here



                  With different thickness and color:



                  Graph[G, EdgeStyle -> 
                  Thread[EdgeList[G] ->
                  edgeStyle[edgeweights, 0.0001, 0.02,
                  ColorData["BrightBands"]]], VertexSize -> 1, VertexStyle -> Blue]


                  enter image description here






                  share|improve this answer









                  $endgroup$















                    3












                    3








                    3





                    $begingroup$

                    edgeStyle[weights_, thickbounds_:0.0001,0.01, colorf_:ColorData["SolarColors"]]:=
                    Block[minmax, thickness, color,
                    minmax = MinMax[weights];
                    thickness = Thickness /@ Rescale[weights, minmax, thickbounds];
                    color = colorf /@ Rescale[weights, minmax, 0, 1];
                    Thread[Directive[Opacity[.7], CapForm["Round"], thickness, color]]
                    ]


                    Here's the example:



                    Graph[G, EdgeStyle -> Thread[EdgeList[G] -> edgeStyle[edgeweights]], 
                    VertexSize -> 1, VertexStyle -> Blue]


                    enter image description here



                    With different thickness and color:



                    Graph[G, EdgeStyle -> 
                    Thread[EdgeList[G] ->
                    edgeStyle[edgeweights, 0.0001, 0.02,
                    ColorData["BrightBands"]]], VertexSize -> 1, VertexStyle -> Blue]


                    enter image description here






                    share|improve this answer









                    $endgroup$



                    edgeStyle[weights_, thickbounds_:0.0001,0.01, colorf_:ColorData["SolarColors"]]:=
                    Block[minmax, thickness, color,
                    minmax = MinMax[weights];
                    thickness = Thickness /@ Rescale[weights, minmax, thickbounds];
                    color = colorf /@ Rescale[weights, minmax, 0, 1];
                    Thread[Directive[Opacity[.7], CapForm["Round"], thickness, color]]
                    ]


                    Here's the example:



                    Graph[G, EdgeStyle -> Thread[EdgeList[G] -> edgeStyle[edgeweights]], 
                    VertexSize -> 1, VertexStyle -> Blue]


                    enter image description here



                    With different thickness and color:



                    Graph[G, EdgeStyle -> 
                    Thread[EdgeList[G] ->
                    edgeStyle[edgeweights, 0.0001, 0.02,
                    ColorData["BrightBands"]]], VertexSize -> 1, VertexStyle -> Blue]


                    enter image description here







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 11 hours ago









                    halmirhalmir

                    10.6k2544




                    10.6k2544





















                        3












                        $begingroup$

                        I do not think that any good way exists. Once a graph is large enough, it will always look like a hairball unless it has a clear structure that might be made visible. For example, this is a similarity graph of musicians. The musicians cluster into groups, and it is possible to make this structure visible. Your example graph, on the other hand, is completely random, with random edge weights. Since there are lots of nodes and edges, but no real information is contained within them, I do not think that it can be visualized in a meaningful way.



                        Assuming that there is something to show, things you can try are:




                        • Take edge weights into consideration when computing the layout. Look up individual graph layouts on the GraphLayout doc page, and see if they support weights. You have already found GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True, but it's still useful to mention this for other readers.



                          The example I linked above was created by one of the authors of the igraph library. IGraph/M is a Mathematica interface to igraph (and much more), and exposes multiple layout algorithms that support weights. The above example was created using the DrL layout (IGLayoutDrL function in IGraph/M)




                        • Visualize weights as not edge lengths, but edge weights or edge colours. You can do this with EdgeStyle. IGraph/M provides a very convenient way to do it:



                          SeedRandom[137]
                          g = RandomGraph[10, 20, EdgeWeight -> RandomReal[.1, 1, 20]]

                          Graph[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/3]]] //
                          IGEdgeMap[AbsoluteThickness[10 #] &, EdgeStyle -> IGEdgeProp[EdgeWeight]]


                          enter image description here




                        • Use colours in the same way.



                          Graph[g, EdgeStyle -> Directive[CapForm["Round"], AbsoluteThickness[4]]] //
                          IGEdgeMap[ColorData["RustTones"], EdgeStyle -> Rescale@*IGEdgeProp[EdgeWeight]]


                          enter image description here




                        • Use all of the above: edge length, edge thickness and edge colour.



                          IGLayoutFruchtermanReingold[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/2]]] // 
                          IGEdgeMap[
                          Directive[ColorData["RustTones"][#], AbsoluteThickness[10 #]] &,
                          EdgeStyle -> (#/Max[#] &)@*IGEdgeProp[EdgeWeight]]


                          enter image description here




                        • Cluster the graph vertices before visualizing them. The clustering can take weights into account.



                          CommunityGraphPlot[g]


                          enter image description here



                          This related to what I said above. First, try to identify the structure, then explicitly make it visible.







                        share|improve this answer









                        $endgroup$

















                          3












                          $begingroup$

                          I do not think that any good way exists. Once a graph is large enough, it will always look like a hairball unless it has a clear structure that might be made visible. For example, this is a similarity graph of musicians. The musicians cluster into groups, and it is possible to make this structure visible. Your example graph, on the other hand, is completely random, with random edge weights. Since there are lots of nodes and edges, but no real information is contained within them, I do not think that it can be visualized in a meaningful way.



                          Assuming that there is something to show, things you can try are:




                          • Take edge weights into consideration when computing the layout. Look up individual graph layouts on the GraphLayout doc page, and see if they support weights. You have already found GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True, but it's still useful to mention this for other readers.



                            The example I linked above was created by one of the authors of the igraph library. IGraph/M is a Mathematica interface to igraph (and much more), and exposes multiple layout algorithms that support weights. The above example was created using the DrL layout (IGLayoutDrL function in IGraph/M)




                          • Visualize weights as not edge lengths, but edge weights or edge colours. You can do this with EdgeStyle. IGraph/M provides a very convenient way to do it:



                            SeedRandom[137]
                            g = RandomGraph[10, 20, EdgeWeight -> RandomReal[.1, 1, 20]]

                            Graph[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/3]]] //
                            IGEdgeMap[AbsoluteThickness[10 #] &, EdgeStyle -> IGEdgeProp[EdgeWeight]]


                            enter image description here




                          • Use colours in the same way.



                            Graph[g, EdgeStyle -> Directive[CapForm["Round"], AbsoluteThickness[4]]] //
                            IGEdgeMap[ColorData["RustTones"], EdgeStyle -> Rescale@*IGEdgeProp[EdgeWeight]]


                            enter image description here




                          • Use all of the above: edge length, edge thickness and edge colour.



                            IGLayoutFruchtermanReingold[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/2]]] // 
                            IGEdgeMap[
                            Directive[ColorData["RustTones"][#], AbsoluteThickness[10 #]] &,
                            EdgeStyle -> (#/Max[#] &)@*IGEdgeProp[EdgeWeight]]


                            enter image description here




                          • Cluster the graph vertices before visualizing them. The clustering can take weights into account.



                            CommunityGraphPlot[g]


                            enter image description here



                            This related to what I said above. First, try to identify the structure, then explicitly make it visible.







                          share|improve this answer









                          $endgroup$















                            3












                            3








                            3





                            $begingroup$

                            I do not think that any good way exists. Once a graph is large enough, it will always look like a hairball unless it has a clear structure that might be made visible. For example, this is a similarity graph of musicians. The musicians cluster into groups, and it is possible to make this structure visible. Your example graph, on the other hand, is completely random, with random edge weights. Since there are lots of nodes and edges, but no real information is contained within them, I do not think that it can be visualized in a meaningful way.



                            Assuming that there is something to show, things you can try are:




                            • Take edge weights into consideration when computing the layout. Look up individual graph layouts on the GraphLayout doc page, and see if they support weights. You have already found GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True, but it's still useful to mention this for other readers.



                              The example I linked above was created by one of the authors of the igraph library. IGraph/M is a Mathematica interface to igraph (and much more), and exposes multiple layout algorithms that support weights. The above example was created using the DrL layout (IGLayoutDrL function in IGraph/M)




                            • Visualize weights as not edge lengths, but edge weights or edge colours. You can do this with EdgeStyle. IGraph/M provides a very convenient way to do it:



                              SeedRandom[137]
                              g = RandomGraph[10, 20, EdgeWeight -> RandomReal[.1, 1, 20]]

                              Graph[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/3]]] //
                              IGEdgeMap[AbsoluteThickness[10 #] &, EdgeStyle -> IGEdgeProp[EdgeWeight]]


                              enter image description here




                            • Use colours in the same way.



                              Graph[g, EdgeStyle -> Directive[CapForm["Round"], AbsoluteThickness[4]]] //
                              IGEdgeMap[ColorData["RustTones"], EdgeStyle -> Rescale@*IGEdgeProp[EdgeWeight]]


                              enter image description here




                            • Use all of the above: edge length, edge thickness and edge colour.



                              IGLayoutFruchtermanReingold[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/2]]] // 
                              IGEdgeMap[
                              Directive[ColorData["RustTones"][#], AbsoluteThickness[10 #]] &,
                              EdgeStyle -> (#/Max[#] &)@*IGEdgeProp[EdgeWeight]]


                              enter image description here




                            • Cluster the graph vertices before visualizing them. The clustering can take weights into account.



                              CommunityGraphPlot[g]


                              enter image description here



                              This related to what I said above. First, try to identify the structure, then explicitly make it visible.







                            share|improve this answer









                            $endgroup$



                            I do not think that any good way exists. Once a graph is large enough, it will always look like a hairball unless it has a clear structure that might be made visible. For example, this is a similarity graph of musicians. The musicians cluster into groups, and it is possible to make this structure visible. Your example graph, on the other hand, is completely random, with random edge weights. Since there are lots of nodes and edges, but no real information is contained within them, I do not think that it can be visualized in a meaningful way.



                            Assuming that there is something to show, things you can try are:




                            • Take edge weights into consideration when computing the layout. Look up individual graph layouts on the GraphLayout doc page, and see if they support weights. You have already found GraphLayout -> "SpringElectricalEmbedding", "EdgeWeighted" -> True, but it's still useful to mention this for other readers.



                              The example I linked above was created by one of the authors of the igraph library. IGraph/M is a Mathematica interface to igraph (and much more), and exposes multiple layout algorithms that support weights. The above example was created using the DrL layout (IGLayoutDrL function in IGraph/M)




                            • Visualize weights as not edge lengths, but edge weights or edge colours. You can do this with EdgeStyle. IGraph/M provides a very convenient way to do it:



                              SeedRandom[137]
                              g = RandomGraph[10, 20, EdgeWeight -> RandomReal[.1, 1, 20]]

                              Graph[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/3]]] //
                              IGEdgeMap[AbsoluteThickness[10 #] &, EdgeStyle -> IGEdgeProp[EdgeWeight]]


                              enter image description here




                            • Use colours in the same way.



                              Graph[g, EdgeStyle -> Directive[CapForm["Round"], AbsoluteThickness[4]]] //
                              IGEdgeMap[ColorData["RustTones"], EdgeStyle -> Rescale@*IGEdgeProp[EdgeWeight]]


                              enter image description here




                            • Use all of the above: edge length, edge thickness and edge colour.



                              IGLayoutFruchtermanReingold[g, EdgeStyle -> Directive[CapForm["Round"], Opacity[1/2]]] // 
                              IGEdgeMap[
                              Directive[ColorData["RustTones"][#], AbsoluteThickness[10 #]] &,
                              EdgeStyle -> (#/Max[#] &)@*IGEdgeProp[EdgeWeight]]


                              enter image description here




                            • Cluster the graph vertices before visualizing them. The clustering can take weights into account.



                              CommunityGraphPlot[g]


                              enter image description here



                              This related to what I said above. First, try to identify the structure, then explicitly make it visible.








                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 11 hours ago









                            SzabolcsSzabolcs

                            163k14448945




                            163k14448945





















                                0












                                $begingroup$

                                When you have a lot of things to display in a small space you get a mess no matter what. But you can always try to make it better. I suggest 2 steps:



                                1. Untangle a bit the mess with GraphLayout

                                2. Avoid noise in style logic

                                1. Untangle a bit the mess with GraphLayout



                                I would use a proper GraphLayout for a specific cases. For instance, a general messy graph can benefit from "GravityEmbedding" which will be available in V12 (compare left and right images):



                                RandomGraph[100,100,ImageSize->400,GraphLayout->#]&/@
                                Automatic,"GravityEmbedding"


                                enter image description here



                                But on the other hand in case of trees you are better of with "RadialEmbedding"



                                Graph[RandomInteger[#]<->#+1&/@Range[0,500],ImageSize->400,GraphLayout->#]&/@
                                Automatic,"RadialEmbedding"


                                enter image description here



                                And so on depending on your specific graph structure.



                                2. Avoid noise in style logic



                                I recommend to read an article I wrote (even so your graphs are larger a lot of logic still holds):



                                On design of styles for small weighted graphs: https://community.wolfram.com/groups/-/m/t/838652



                                enter image description here






                                share|improve this answer









                                $endgroup$

















                                  0












                                  $begingroup$

                                  When you have a lot of things to display in a small space you get a mess no matter what. But you can always try to make it better. I suggest 2 steps:



                                  1. Untangle a bit the mess with GraphLayout

                                  2. Avoid noise in style logic

                                  1. Untangle a bit the mess with GraphLayout



                                  I would use a proper GraphLayout for a specific cases. For instance, a general messy graph can benefit from "GravityEmbedding" which will be available in V12 (compare left and right images):



                                  RandomGraph[100,100,ImageSize->400,GraphLayout->#]&/@
                                  Automatic,"GravityEmbedding"


                                  enter image description here



                                  But on the other hand in case of trees you are better of with "RadialEmbedding"



                                  Graph[RandomInteger[#]<->#+1&/@Range[0,500],ImageSize->400,GraphLayout->#]&/@
                                  Automatic,"RadialEmbedding"


                                  enter image description here



                                  And so on depending on your specific graph structure.



                                  2. Avoid noise in style logic



                                  I recommend to read an article I wrote (even so your graphs are larger a lot of logic still holds):



                                  On design of styles for small weighted graphs: https://community.wolfram.com/groups/-/m/t/838652



                                  enter image description here






                                  share|improve this answer









                                  $endgroup$















                                    0












                                    0








                                    0





                                    $begingroup$

                                    When you have a lot of things to display in a small space you get a mess no matter what. But you can always try to make it better. I suggest 2 steps:



                                    1. Untangle a bit the mess with GraphLayout

                                    2. Avoid noise in style logic

                                    1. Untangle a bit the mess with GraphLayout



                                    I would use a proper GraphLayout for a specific cases. For instance, a general messy graph can benefit from "GravityEmbedding" which will be available in V12 (compare left and right images):



                                    RandomGraph[100,100,ImageSize->400,GraphLayout->#]&/@
                                    Automatic,"GravityEmbedding"


                                    enter image description here



                                    But on the other hand in case of trees you are better of with "RadialEmbedding"



                                    Graph[RandomInteger[#]<->#+1&/@Range[0,500],ImageSize->400,GraphLayout->#]&/@
                                    Automatic,"RadialEmbedding"


                                    enter image description here



                                    And so on depending on your specific graph structure.



                                    2. Avoid noise in style logic



                                    I recommend to read an article I wrote (even so your graphs are larger a lot of logic still holds):



                                    On design of styles for small weighted graphs: https://community.wolfram.com/groups/-/m/t/838652



                                    enter image description here






                                    share|improve this answer









                                    $endgroup$



                                    When you have a lot of things to display in a small space you get a mess no matter what. But you can always try to make it better. I suggest 2 steps:



                                    1. Untangle a bit the mess with GraphLayout

                                    2. Avoid noise in style logic

                                    1. Untangle a bit the mess with GraphLayout



                                    I would use a proper GraphLayout for a specific cases. For instance, a general messy graph can benefit from "GravityEmbedding" which will be available in V12 (compare left and right images):



                                    RandomGraph[100,100,ImageSize->400,GraphLayout->#]&/@
                                    Automatic,"GravityEmbedding"


                                    enter image description here



                                    But on the other hand in case of trees you are better of with "RadialEmbedding"



                                    Graph[RandomInteger[#]<->#+1&/@Range[0,500],ImageSize->400,GraphLayout->#]&/@
                                    Automatic,"RadialEmbedding"


                                    enter image description here



                                    And so on depending on your specific graph structure.



                                    2. Avoid noise in style logic



                                    I recommend to read an article I wrote (even so your graphs are larger a lot of logic still holds):



                                    On design of styles for small weighted graphs: https://community.wolfram.com/groups/-/m/t/838652



                                    enter image description here







                                    share|improve this answer












                                    share|improve this answer



                                    share|improve this answer










                                    answered 5 hours ago









                                    Vitaliy KaurovVitaliy Kaurov

                                    57.7k6162283




                                    57.7k6162283



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematica Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194811%2fideas-for-colorfully-and-clearly-highlighting-graph-edges-according-to-weights%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                                        Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                                        Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)