Is a vector space a subspace of itself?vector space and its subspaceProve: The set of all polynomials p with p(2) = p(3) is a vector spaceProving a vector space over itself have no subspacesVector Space vs SubspaceProving a subset is a subspace of a Vector SpaceAre all vector spaces also a subspace?Understand the definition of a vector subspaceProve that, with vector addition and scalar multiplication well-defined, $V/W$ becomes a vector space over $k$.Is the set of all exponential functions a subspace of the vector space of all continuous functions?I've seen two definitions of subspace; one involving vector spaces and one requiring linear combinations

How can I fix this gap between bookcases I made?

Why do UK politicians seemingly ignore opinion polls on Brexit?

Information to fellow intern about hiring?

Where to refill my bottle in India?

Is Social Media Science Fiction?

Map list to bin numbers

aging parents with no investments

Symmetry in quantum mechanics

New order #4: World

What is the offset in a seaplane's hull?

Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?

COUNT(*) or MAX(id) - which is faster?

Doomsday-clock for my fantasy planet

What causes the sudden spool-up sound from an F-16 when enabling afterburner?

Can I find out the caloric content of bread by dehydrating it?

Why is my log file so massive? 22gb. I am running log backups

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Shall I use personal or official e-mail account when registering to external websites for work purpose?

LWC and complex parameters

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Prime joint compound before latex paint?

Was there ever an axiom rendered a theorem?

Extreme, but not acceptable situation and I can't start the work tomorrow morning



Is a vector space a subspace of itself?


vector space and its subspaceProve: The set of all polynomials p with p(2) = p(3) is a vector spaceProving a vector space over itself have no subspacesVector Space vs SubspaceProving a subset is a subspace of a Vector SpaceAre all vector spaces also a subspace?Understand the definition of a vector subspaceProve that, with vector addition and scalar multiplication well-defined, $V/W$ becomes a vector space over $k$.Is the set of all exponential functions a subspace of the vector space of all continuous functions?I've seen two definitions of subspace; one involving vector spaces and one requiring linear combinations













1












$begingroup$


We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    2 hours ago















1












$begingroup$


We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    2 hours ago













1












1








1


1



$begingroup$


We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.










share|cite|improve this question











$endgroup$




We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.







linear-algebra vector-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 50 mins ago









Eric Wofsey

192k14220352




192k14220352










asked 3 hours ago









mingming

4456




4456







  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    2 hours ago












  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    2 hours ago







1




1




$begingroup$
How do you define a subspace of a vector space?
$endgroup$
– Brian
3 hours ago




$begingroup$
How do you define a subspace of a vector space?
$endgroup$
– Brian
3 hours ago




1




1




$begingroup$
Is a set a subset of itself?? What’s V1-V10?
$endgroup$
– J. W. Tanner
3 hours ago





$begingroup$
Is a set a subset of itself?? What’s V1-V10?
$endgroup$
– J. W. Tanner
3 hours ago





1




1




$begingroup$
The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
$endgroup$
– Theo Bendit
3 hours ago




$begingroup$
The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
$endgroup$
– Theo Bendit
3 hours ago












$begingroup$
As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
$endgroup$
– Xander Henderson
2 hours ago




$begingroup$
As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
$endgroup$
– Xander Henderson
2 hours ago










2 Answers
2






active

oldest

votes


















7












$begingroup$

Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    I'm guessing that V1 - V10 are the axioms for proving vector spaces.



    To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



    There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



    Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



    I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



    You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180447%2fis-a-vector-space-a-subspace-of-itself%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






      share|cite|improve this answer









      $endgroup$

















        7












        $begingroup$

        Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






        share|cite|improve this answer









        $endgroup$















          7












          7








          7





          $begingroup$

          Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






          share|cite|improve this answer









          $endgroup$



          Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          José Carlos SantosJosé Carlos Santos

          173k23133241




          173k23133241





















              2












              $begingroup$

              I'm guessing that V1 - V10 are the axioms for proving vector spaces.



              To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



              There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



              Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



              I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



              You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                I'm guessing that V1 - V10 are the axioms for proving vector spaces.



                To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



                There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



                Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



                I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



                You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  I'm guessing that V1 - V10 are the axioms for proving vector spaces.



                  To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



                  There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



                  Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



                  I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



                  You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






                  share|cite|improve this answer









                  $endgroup$



                  I'm guessing that V1 - V10 are the axioms for proving vector spaces.



                  To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



                  There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



                  Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



                  I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



                  You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Theo BenditTheo Bendit

                  20.7k12354




                  20.7k12354



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180447%2fis-a-vector-space-a-subspace-of-itself%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                      Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                      Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)