How to Analytically Solve this PDE?How to solve this PDE?Coordinate method for solving first order linear PDESolving a PDE: basic first-order hyperbolic equation $u_t = -u_x$PDE/ODE question, nonhomogeneousHow to solve this linear hyperbolic PDE analytically?How to solve this Quasi-linear PDE?Question on PDE concepts (Introductory course)A way of solving this PDE? (Other than method of characteristics)When solving PDE, why this ansatz?How can you solve this PDE analytically?

Which comes first? Multiple Imputation, Splitting into train/test, or Standardization/Normalization

Russian equivalents of "no love lost"

How to project 3d image in the planes xy, xz, yz?

Passing multiple files through stdin (over ssh)

Scrum Master role: Reporting?

Frame failure sudden death?

What makes an item an artifact?

"You've got another thing coming" - translation into French

Find the Factorial From the Given Prime Relationship

BGP multihome issue

Trapping Rain Water

Should I give professor gift at the beginning of my PhD?

Confusion about off peak timings of London trains

What makes Ada the language of choice for the ISS's safety-critical systems?

Is using haveibeenpwned to validate password strength rational?

How can I most clearly write a homebrew item that affects the ground below its radius after the initial explosion it creates?

Were Alexander the Great and Hephaestion lovers?

Watts vs. Volt Amps

My coworkers think I had a long honeymoon. Actually I was diagnosed with cancer. How do I talk about it?

At what point in time did Dumbledore ask Snape for this favor?

Does an ice chest packed full of frozen food need ice?

How did students remember what to practise between lessons without any sheet music?

How Can I Tell The Difference Between Unmarked Sugar and Stevia?

Why would future John risk sending back a T-800 to save his younger self?



How to Analytically Solve this PDE?


How to solve this PDE?Coordinate method for solving first order linear PDESolving a PDE: basic first-order hyperbolic equation $u_t = -u_x$PDE/ODE question, nonhomogeneousHow to solve this linear hyperbolic PDE analytically?How to solve this Quasi-linear PDE?Question on PDE concepts (Introductory course)A way of solving this PDE? (Other than method of characteristics)When solving PDE, why this ansatz?How can you solve this PDE analytically?













2












$begingroup$


Thanks for looking at my question. I'm working through/self-studying the second edition of Partial Differential Equations: An Introduction by Walter A. Strauss.



On page three, example two, he says



"Solve the PDE $u_xx + u = 0$. Again, its really an ODE with an extra variable y. We know how to solve the ODE, so the solution is $u = f(y)cos(x) + g(y)sin(x)$, where again $f(y)$ and $g(y)$ are two arbitrary functions of $y$. You can easily check this formula by differentiating twice to verify that $u_xx = -u$."



What I don't understand is how he gets $u = f(y)cos(x) + g(y)sin(x)$.



He says it's basically just an ODE with an extra variable y, but I'm not quite seeing that. I was able to understand Example 1 before it and Example 3 after it, and I can sort of see that this PDE is similar to the ODE form $y'' + y = 0$, but it's just been a hot minute since I've solved an ODE like this. I see it's homogenous, and one could use the method of integrating factors for it, but since this is a PDE I'm not sure how to solve this. My initial guess of $C_1e^r_1t + C_2e^r_2t$ didn't work, so I'm not sure how they got what they got for $u$. I get that when you integrate with respect to $x$ the constant you get is a function of $y$, but that's all I understand about this problem. Could someone show me how Walter got his solution for $u$, please? Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    You're usually given boundary conditions.
    $endgroup$
    – Shogun
    5 hours ago















2












$begingroup$


Thanks for looking at my question. I'm working through/self-studying the second edition of Partial Differential Equations: An Introduction by Walter A. Strauss.



On page three, example two, he says



"Solve the PDE $u_xx + u = 0$. Again, its really an ODE with an extra variable y. We know how to solve the ODE, so the solution is $u = f(y)cos(x) + g(y)sin(x)$, where again $f(y)$ and $g(y)$ are two arbitrary functions of $y$. You can easily check this formula by differentiating twice to verify that $u_xx = -u$."



What I don't understand is how he gets $u = f(y)cos(x) + g(y)sin(x)$.



He says it's basically just an ODE with an extra variable y, but I'm not quite seeing that. I was able to understand Example 1 before it and Example 3 after it, and I can sort of see that this PDE is similar to the ODE form $y'' + y = 0$, but it's just been a hot minute since I've solved an ODE like this. I see it's homogenous, and one could use the method of integrating factors for it, but since this is a PDE I'm not sure how to solve this. My initial guess of $C_1e^r_1t + C_2e^r_2t$ didn't work, so I'm not sure how they got what they got for $u$. I get that when you integrate with respect to $x$ the constant you get is a function of $y$, but that's all I understand about this problem. Could someone show me how Walter got his solution for $u$, please? Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    You're usually given boundary conditions.
    $endgroup$
    – Shogun
    5 hours ago













2












2








2


1



$begingroup$


Thanks for looking at my question. I'm working through/self-studying the second edition of Partial Differential Equations: An Introduction by Walter A. Strauss.



On page three, example two, he says



"Solve the PDE $u_xx + u = 0$. Again, its really an ODE with an extra variable y. We know how to solve the ODE, so the solution is $u = f(y)cos(x) + g(y)sin(x)$, where again $f(y)$ and $g(y)$ are two arbitrary functions of $y$. You can easily check this formula by differentiating twice to verify that $u_xx = -u$."



What I don't understand is how he gets $u = f(y)cos(x) + g(y)sin(x)$.



He says it's basically just an ODE with an extra variable y, but I'm not quite seeing that. I was able to understand Example 1 before it and Example 3 after it, and I can sort of see that this PDE is similar to the ODE form $y'' + y = 0$, but it's just been a hot minute since I've solved an ODE like this. I see it's homogenous, and one could use the method of integrating factors for it, but since this is a PDE I'm not sure how to solve this. My initial guess of $C_1e^r_1t + C_2e^r_2t$ didn't work, so I'm not sure how they got what they got for $u$. I get that when you integrate with respect to $x$ the constant you get is a function of $y$, but that's all I understand about this problem. Could someone show me how Walter got his solution for $u$, please? Thanks.










share|cite|improve this question











$endgroup$




Thanks for looking at my question. I'm working through/self-studying the second edition of Partial Differential Equations: An Introduction by Walter A. Strauss.



On page three, example two, he says



"Solve the PDE $u_xx + u = 0$. Again, its really an ODE with an extra variable y. We know how to solve the ODE, so the solution is $u = f(y)cos(x) + g(y)sin(x)$, where again $f(y)$ and $g(y)$ are two arbitrary functions of $y$. You can easily check this formula by differentiating twice to verify that $u_xx = -u$."



What I don't understand is how he gets $u = f(y)cos(x) + g(y)sin(x)$.



He says it's basically just an ODE with an extra variable y, but I'm not quite seeing that. I was able to understand Example 1 before it and Example 3 after it, and I can sort of see that this PDE is similar to the ODE form $y'' + y = 0$, but it's just been a hot minute since I've solved an ODE like this. I see it's homogenous, and one could use the method of integrating factors for it, but since this is a PDE I'm not sure how to solve this. My initial guess of $C_1e^r_1t + C_2e^r_2t$ didn't work, so I'm not sure how they got what they got for $u$. I get that when you integrate with respect to $x$ the constant you get is a function of $y$, but that's all I understand about this problem. Could someone show me how Walter got his solution for $u$, please? Thanks.







ordinary-differential-equations pde






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 8 hours ago







Matthew Graham

















asked 8 hours ago









Matthew GrahamMatthew Graham

18612




18612











  • $begingroup$
    You're usually given boundary conditions.
    $endgroup$
    – Shogun
    5 hours ago
















  • $begingroup$
    You're usually given boundary conditions.
    $endgroup$
    – Shogun
    5 hours ago















$begingroup$
You're usually given boundary conditions.
$endgroup$
– Shogun
5 hours ago




$begingroup$
You're usually given boundary conditions.
$endgroup$
– Shogun
5 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

We want to solve $fracpartial^2partial x^2 u(x,y)+u(x,y)=0.$ As you said, we can solve this like an ODE. Let us consider a guess $u(x,y)=c(y)e^rx.$ We make $c$ depend on $y$ because $c(y)$ is still constant in $x$, which is the variable that we're differentiating in. Plugging in such a guess, we get the characteristic equation
$$r^2+1=0,$$ which has imaginary roots at $pm i$, which yields the solution
$$u(x,y)=c(y)cos x+b(y)sin x.$$ So, the mistakes in your interpretation were that your guess should depend on $y$ and that your guess was a perfectly valid one, but you must consider complex roots here.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks for the answer, it is definitely helpful and nicely written. This is a dumb question, but I get where the $r^2$ comes from, but why do you keep the $r$ term? Shouldn't that correspond to the first derivative of a function? Something like $y'' + y' = 0$? Why is it not some constant term, like $a$? Wait, would it correspond to $1$ which creates the complex roots $+i$ and $-i$ which is where the solution comes from? Is that it?
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    I made a typo, fixed!
    $endgroup$
    – cmk
    8 hours ago










  • $begingroup$
    Ah, I see it now, yeah, makes sense now. Is there a way to solve for $c(y)$ and $b(y)$ or would we need initial conditions for those? I was just thinking of Euler's formula which looks similar to the solution here.
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    You're correct, we need (boundary) condition to find our coefficients. As for Euler's formula, this is what allows us to get from our solution $c(y)e^rx$, with $r$ imaginary, to solutions of the form of $sin x$ and $cos x$.
    $endgroup$
    – cmk
    8 hours ago


















4












$begingroup$

Fix an arbitrary value for $y$, say $y_0$. Then let $f(x) =u(x,y_0)$. You can immediately see that $f''+f=0$. This is very common ODE and most people just know that $sin$ and $cos$ are solutions, but if you're unhappy with that you can get there with $exp(omega x)$ solutions and some algebra.



Now we know that $f(x) = A sin(x) + B cos(x)$ for an arbitrary $y_0$. The only thing that can change when we change $y_0$ are the values of constants $A,B$.



This finally leads to conclusion $u(x,y) = A(y)sin(x) + B(y)cos(x)$ and the $A,B$ now functions of $y$ are determined by boundary conditions.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks for the answer. I can see it now.
    $endgroup$
    – Matthew Graham
    8 hours ago


















3












$begingroup$

There are a few facts that are always treated as "obvious" in ODEs (because, presumably, you've been thinking about them non-stop since Calc I):



  • The derivative of a constant (with respect to any independent variable) is zero.

  • The derivative of a polynomial (with respect to its variable) reduces the degree by one.

  • The derivative of $f(x) = mathrme^kx$ with respect to $x$ is a constant multiple of $f$. (Precisely, $dfracmathrmdmathrmdx mathrme^kx = k mathrme^kx$.)

  • The second derivatives of $g(x) = sin kx$ and $h(x) = cos kx$ with respect to $x$ are constant multiples of $g$ and $h$, respectively. (Precisely, $dfracmathrmd^2mathrmdx^2 sin kx = -k^2 sin x$, and similarly for cosine.) Additionally, odd order derivatives of $g$ and $h$ swap them.

So, when you see "the second derivative of $y$ is the negative of $y$", you should be thinking "sine and cosine" pretty much immediately.



The bullet point about sine and cosine can be rolled into the one about exponentials, so you could have gotten there with your characteristic equation method, but you need to recall what exponentiation does to complex numbers. In particular, you recall $mathrme^mathrmix = cos x + mathrmi sin x$. So what would happen with your characteristic equation is, from
$$ y'' + y = 0 $$
you have the characteristic equation
$$ x^2 + 1 = 0 text. $$
Then the characteristic roots are $pm mathrmi$, so the solutions (with arbitrary constants $c_1$ and $c_2$) are $c_1 mathrme^mathrmi x$ and $c_2 mathrme^-mathrmi x$. These are sines and cosines in disguise: beginalign*
mathrme^mathrmi x &= cos x + mathrmi sin x \
mathrme^-mathrmi x &= cos x - mathrmi sin x text.
endalign*






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ahh, yes, thanks for the answer. I appreciate the thoroughness and how well written it is. Yeah, those facts are definitely at play here. It all makes sense now though.
    $endgroup$
    – Matthew Graham
    8 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3249846%2fhow-to-analytically-solve-this-pde%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We want to solve $fracpartial^2partial x^2 u(x,y)+u(x,y)=0.$ As you said, we can solve this like an ODE. Let us consider a guess $u(x,y)=c(y)e^rx.$ We make $c$ depend on $y$ because $c(y)$ is still constant in $x$, which is the variable that we're differentiating in. Plugging in such a guess, we get the characteristic equation
$$r^2+1=0,$$ which has imaginary roots at $pm i$, which yields the solution
$$u(x,y)=c(y)cos x+b(y)sin x.$$ So, the mistakes in your interpretation were that your guess should depend on $y$ and that your guess was a perfectly valid one, but you must consider complex roots here.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks for the answer, it is definitely helpful and nicely written. This is a dumb question, but I get where the $r^2$ comes from, but why do you keep the $r$ term? Shouldn't that correspond to the first derivative of a function? Something like $y'' + y' = 0$? Why is it not some constant term, like $a$? Wait, would it correspond to $1$ which creates the complex roots $+i$ and $-i$ which is where the solution comes from? Is that it?
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    I made a typo, fixed!
    $endgroup$
    – cmk
    8 hours ago










  • $begingroup$
    Ah, I see it now, yeah, makes sense now. Is there a way to solve for $c(y)$ and $b(y)$ or would we need initial conditions for those? I was just thinking of Euler's formula which looks similar to the solution here.
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    You're correct, we need (boundary) condition to find our coefficients. As for Euler's formula, this is what allows us to get from our solution $c(y)e^rx$, with $r$ imaginary, to solutions of the form of $sin x$ and $cos x$.
    $endgroup$
    – cmk
    8 hours ago















3












$begingroup$

We want to solve $fracpartial^2partial x^2 u(x,y)+u(x,y)=0.$ As you said, we can solve this like an ODE. Let us consider a guess $u(x,y)=c(y)e^rx.$ We make $c$ depend on $y$ because $c(y)$ is still constant in $x$, which is the variable that we're differentiating in. Plugging in such a guess, we get the characteristic equation
$$r^2+1=0,$$ which has imaginary roots at $pm i$, which yields the solution
$$u(x,y)=c(y)cos x+b(y)sin x.$$ So, the mistakes in your interpretation were that your guess should depend on $y$ and that your guess was a perfectly valid one, but you must consider complex roots here.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks for the answer, it is definitely helpful and nicely written. This is a dumb question, but I get where the $r^2$ comes from, but why do you keep the $r$ term? Shouldn't that correspond to the first derivative of a function? Something like $y'' + y' = 0$? Why is it not some constant term, like $a$? Wait, would it correspond to $1$ which creates the complex roots $+i$ and $-i$ which is where the solution comes from? Is that it?
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    I made a typo, fixed!
    $endgroup$
    – cmk
    8 hours ago










  • $begingroup$
    Ah, I see it now, yeah, makes sense now. Is there a way to solve for $c(y)$ and $b(y)$ or would we need initial conditions for those? I was just thinking of Euler's formula which looks similar to the solution here.
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    You're correct, we need (boundary) condition to find our coefficients. As for Euler's formula, this is what allows us to get from our solution $c(y)e^rx$, with $r$ imaginary, to solutions of the form of $sin x$ and $cos x$.
    $endgroup$
    – cmk
    8 hours ago













3












3








3





$begingroup$

We want to solve $fracpartial^2partial x^2 u(x,y)+u(x,y)=0.$ As you said, we can solve this like an ODE. Let us consider a guess $u(x,y)=c(y)e^rx.$ We make $c$ depend on $y$ because $c(y)$ is still constant in $x$, which is the variable that we're differentiating in. Plugging in such a guess, we get the characteristic equation
$$r^2+1=0,$$ which has imaginary roots at $pm i$, which yields the solution
$$u(x,y)=c(y)cos x+b(y)sin x.$$ So, the mistakes in your interpretation were that your guess should depend on $y$ and that your guess was a perfectly valid one, but you must consider complex roots here.






share|cite|improve this answer











$endgroup$



We want to solve $fracpartial^2partial x^2 u(x,y)+u(x,y)=0.$ As you said, we can solve this like an ODE. Let us consider a guess $u(x,y)=c(y)e^rx.$ We make $c$ depend on $y$ because $c(y)$ is still constant in $x$, which is the variable that we're differentiating in. Plugging in such a guess, we get the characteristic equation
$$r^2+1=0,$$ which has imaginary roots at $pm i$, which yields the solution
$$u(x,y)=c(y)cos x+b(y)sin x.$$ So, the mistakes in your interpretation were that your guess should depend on $y$ and that your guess was a perfectly valid one, but you must consider complex roots here.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 8 hours ago

























answered 8 hours ago









cmkcmk

1,482214




1,482214











  • $begingroup$
    Thanks for the answer, it is definitely helpful and nicely written. This is a dumb question, but I get where the $r^2$ comes from, but why do you keep the $r$ term? Shouldn't that correspond to the first derivative of a function? Something like $y'' + y' = 0$? Why is it not some constant term, like $a$? Wait, would it correspond to $1$ which creates the complex roots $+i$ and $-i$ which is where the solution comes from? Is that it?
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    I made a typo, fixed!
    $endgroup$
    – cmk
    8 hours ago










  • $begingroup$
    Ah, I see it now, yeah, makes sense now. Is there a way to solve for $c(y)$ and $b(y)$ or would we need initial conditions for those? I was just thinking of Euler's formula which looks similar to the solution here.
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    You're correct, we need (boundary) condition to find our coefficients. As for Euler's formula, this is what allows us to get from our solution $c(y)e^rx$, with $r$ imaginary, to solutions of the form of $sin x$ and $cos x$.
    $endgroup$
    – cmk
    8 hours ago
















  • $begingroup$
    Thanks for the answer, it is definitely helpful and nicely written. This is a dumb question, but I get where the $r^2$ comes from, but why do you keep the $r$ term? Shouldn't that correspond to the first derivative of a function? Something like $y'' + y' = 0$? Why is it not some constant term, like $a$? Wait, would it correspond to $1$ which creates the complex roots $+i$ and $-i$ which is where the solution comes from? Is that it?
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    I made a typo, fixed!
    $endgroup$
    – cmk
    8 hours ago










  • $begingroup$
    Ah, I see it now, yeah, makes sense now. Is there a way to solve for $c(y)$ and $b(y)$ or would we need initial conditions for those? I was just thinking of Euler's formula which looks similar to the solution here.
    $endgroup$
    – Matthew Graham
    8 hours ago










  • $begingroup$
    You're correct, we need (boundary) condition to find our coefficients. As for Euler's formula, this is what allows us to get from our solution $c(y)e^rx$, with $r$ imaginary, to solutions of the form of $sin x$ and $cos x$.
    $endgroup$
    – cmk
    8 hours ago















$begingroup$
Thanks for the answer, it is definitely helpful and nicely written. This is a dumb question, but I get where the $r^2$ comes from, but why do you keep the $r$ term? Shouldn't that correspond to the first derivative of a function? Something like $y'' + y' = 0$? Why is it not some constant term, like $a$? Wait, would it correspond to $1$ which creates the complex roots $+i$ and $-i$ which is where the solution comes from? Is that it?
$endgroup$
– Matthew Graham
8 hours ago




$begingroup$
Thanks for the answer, it is definitely helpful and nicely written. This is a dumb question, but I get where the $r^2$ comes from, but why do you keep the $r$ term? Shouldn't that correspond to the first derivative of a function? Something like $y'' + y' = 0$? Why is it not some constant term, like $a$? Wait, would it correspond to $1$ which creates the complex roots $+i$ and $-i$ which is where the solution comes from? Is that it?
$endgroup$
– Matthew Graham
8 hours ago












$begingroup$
I made a typo, fixed!
$endgroup$
– cmk
8 hours ago




$begingroup$
I made a typo, fixed!
$endgroup$
– cmk
8 hours ago












$begingroup$
Ah, I see it now, yeah, makes sense now. Is there a way to solve for $c(y)$ and $b(y)$ or would we need initial conditions for those? I was just thinking of Euler's formula which looks similar to the solution here.
$endgroup$
– Matthew Graham
8 hours ago




$begingroup$
Ah, I see it now, yeah, makes sense now. Is there a way to solve for $c(y)$ and $b(y)$ or would we need initial conditions for those? I was just thinking of Euler's formula which looks similar to the solution here.
$endgroup$
– Matthew Graham
8 hours ago












$begingroup$
You're correct, we need (boundary) condition to find our coefficients. As for Euler's formula, this is what allows us to get from our solution $c(y)e^rx$, with $r$ imaginary, to solutions of the form of $sin x$ and $cos x$.
$endgroup$
– cmk
8 hours ago




$begingroup$
You're correct, we need (boundary) condition to find our coefficients. As for Euler's formula, this is what allows us to get from our solution $c(y)e^rx$, with $r$ imaginary, to solutions of the form of $sin x$ and $cos x$.
$endgroup$
– cmk
8 hours ago











4












$begingroup$

Fix an arbitrary value for $y$, say $y_0$. Then let $f(x) =u(x,y_0)$. You can immediately see that $f''+f=0$. This is very common ODE and most people just know that $sin$ and $cos$ are solutions, but if you're unhappy with that you can get there with $exp(omega x)$ solutions and some algebra.



Now we know that $f(x) = A sin(x) + B cos(x)$ for an arbitrary $y_0$. The only thing that can change when we change $y_0$ are the values of constants $A,B$.



This finally leads to conclusion $u(x,y) = A(y)sin(x) + B(y)cos(x)$ and the $A,B$ now functions of $y$ are determined by boundary conditions.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks for the answer. I can see it now.
    $endgroup$
    – Matthew Graham
    8 hours ago















4












$begingroup$

Fix an arbitrary value for $y$, say $y_0$. Then let $f(x) =u(x,y_0)$. You can immediately see that $f''+f=0$. This is very common ODE and most people just know that $sin$ and $cos$ are solutions, but if you're unhappy with that you can get there with $exp(omega x)$ solutions and some algebra.



Now we know that $f(x) = A sin(x) + B cos(x)$ for an arbitrary $y_0$. The only thing that can change when we change $y_0$ are the values of constants $A,B$.



This finally leads to conclusion $u(x,y) = A(y)sin(x) + B(y)cos(x)$ and the $A,B$ now functions of $y$ are determined by boundary conditions.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks for the answer. I can see it now.
    $endgroup$
    – Matthew Graham
    8 hours ago













4












4








4





$begingroup$

Fix an arbitrary value for $y$, say $y_0$. Then let $f(x) =u(x,y_0)$. You can immediately see that $f''+f=0$. This is very common ODE and most people just know that $sin$ and $cos$ are solutions, but if you're unhappy with that you can get there with $exp(omega x)$ solutions and some algebra.



Now we know that $f(x) = A sin(x) + B cos(x)$ for an arbitrary $y_0$. The only thing that can change when we change $y_0$ are the values of constants $A,B$.



This finally leads to conclusion $u(x,y) = A(y)sin(x) + B(y)cos(x)$ and the $A,B$ now functions of $y$ are determined by boundary conditions.






share|cite|improve this answer









$endgroup$



Fix an arbitrary value for $y$, say $y_0$. Then let $f(x) =u(x,y_0)$. You can immediately see that $f''+f=0$. This is very common ODE and most people just know that $sin$ and $cos$ are solutions, but if you're unhappy with that you can get there with $exp(omega x)$ solutions and some algebra.



Now we know that $f(x) = A sin(x) + B cos(x)$ for an arbitrary $y_0$. The only thing that can change when we change $y_0$ are the values of constants $A,B$.



This finally leads to conclusion $u(x,y) = A(y)sin(x) + B(y)cos(x)$ and the $A,B$ now functions of $y$ are determined by boundary conditions.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 8 hours ago









RadostRadost

1,24916




1,24916











  • $begingroup$
    Thanks for the answer. I can see it now.
    $endgroup$
    – Matthew Graham
    8 hours ago
















  • $begingroup$
    Thanks for the answer. I can see it now.
    $endgroup$
    – Matthew Graham
    8 hours ago















$begingroup$
Thanks for the answer. I can see it now.
$endgroup$
– Matthew Graham
8 hours ago




$begingroup$
Thanks for the answer. I can see it now.
$endgroup$
– Matthew Graham
8 hours ago











3












$begingroup$

There are a few facts that are always treated as "obvious" in ODEs (because, presumably, you've been thinking about them non-stop since Calc I):



  • The derivative of a constant (with respect to any independent variable) is zero.

  • The derivative of a polynomial (with respect to its variable) reduces the degree by one.

  • The derivative of $f(x) = mathrme^kx$ with respect to $x$ is a constant multiple of $f$. (Precisely, $dfracmathrmdmathrmdx mathrme^kx = k mathrme^kx$.)

  • The second derivatives of $g(x) = sin kx$ and $h(x) = cos kx$ with respect to $x$ are constant multiples of $g$ and $h$, respectively. (Precisely, $dfracmathrmd^2mathrmdx^2 sin kx = -k^2 sin x$, and similarly for cosine.) Additionally, odd order derivatives of $g$ and $h$ swap them.

So, when you see "the second derivative of $y$ is the negative of $y$", you should be thinking "sine and cosine" pretty much immediately.



The bullet point about sine and cosine can be rolled into the one about exponentials, so you could have gotten there with your characteristic equation method, but you need to recall what exponentiation does to complex numbers. In particular, you recall $mathrme^mathrmix = cos x + mathrmi sin x$. So what would happen with your characteristic equation is, from
$$ y'' + y = 0 $$
you have the characteristic equation
$$ x^2 + 1 = 0 text. $$
Then the characteristic roots are $pm mathrmi$, so the solutions (with arbitrary constants $c_1$ and $c_2$) are $c_1 mathrme^mathrmi x$ and $c_2 mathrme^-mathrmi x$. These are sines and cosines in disguise: beginalign*
mathrme^mathrmi x &= cos x + mathrmi sin x \
mathrme^-mathrmi x &= cos x - mathrmi sin x text.
endalign*






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ahh, yes, thanks for the answer. I appreciate the thoroughness and how well written it is. Yeah, those facts are definitely at play here. It all makes sense now though.
    $endgroup$
    – Matthew Graham
    8 hours ago















3












$begingroup$

There are a few facts that are always treated as "obvious" in ODEs (because, presumably, you've been thinking about them non-stop since Calc I):



  • The derivative of a constant (with respect to any independent variable) is zero.

  • The derivative of a polynomial (with respect to its variable) reduces the degree by one.

  • The derivative of $f(x) = mathrme^kx$ with respect to $x$ is a constant multiple of $f$. (Precisely, $dfracmathrmdmathrmdx mathrme^kx = k mathrme^kx$.)

  • The second derivatives of $g(x) = sin kx$ and $h(x) = cos kx$ with respect to $x$ are constant multiples of $g$ and $h$, respectively. (Precisely, $dfracmathrmd^2mathrmdx^2 sin kx = -k^2 sin x$, and similarly for cosine.) Additionally, odd order derivatives of $g$ and $h$ swap them.

So, when you see "the second derivative of $y$ is the negative of $y$", you should be thinking "sine and cosine" pretty much immediately.



The bullet point about sine and cosine can be rolled into the one about exponentials, so you could have gotten there with your characteristic equation method, but you need to recall what exponentiation does to complex numbers. In particular, you recall $mathrme^mathrmix = cos x + mathrmi sin x$. So what would happen with your characteristic equation is, from
$$ y'' + y = 0 $$
you have the characteristic equation
$$ x^2 + 1 = 0 text. $$
Then the characteristic roots are $pm mathrmi$, so the solutions (with arbitrary constants $c_1$ and $c_2$) are $c_1 mathrme^mathrmi x$ and $c_2 mathrme^-mathrmi x$. These are sines and cosines in disguise: beginalign*
mathrme^mathrmi x &= cos x + mathrmi sin x \
mathrme^-mathrmi x &= cos x - mathrmi sin x text.
endalign*






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ahh, yes, thanks for the answer. I appreciate the thoroughness and how well written it is. Yeah, those facts are definitely at play here. It all makes sense now though.
    $endgroup$
    – Matthew Graham
    8 hours ago













3












3








3





$begingroup$

There are a few facts that are always treated as "obvious" in ODEs (because, presumably, you've been thinking about them non-stop since Calc I):



  • The derivative of a constant (with respect to any independent variable) is zero.

  • The derivative of a polynomial (with respect to its variable) reduces the degree by one.

  • The derivative of $f(x) = mathrme^kx$ with respect to $x$ is a constant multiple of $f$. (Precisely, $dfracmathrmdmathrmdx mathrme^kx = k mathrme^kx$.)

  • The second derivatives of $g(x) = sin kx$ and $h(x) = cos kx$ with respect to $x$ are constant multiples of $g$ and $h$, respectively. (Precisely, $dfracmathrmd^2mathrmdx^2 sin kx = -k^2 sin x$, and similarly for cosine.) Additionally, odd order derivatives of $g$ and $h$ swap them.

So, when you see "the second derivative of $y$ is the negative of $y$", you should be thinking "sine and cosine" pretty much immediately.



The bullet point about sine and cosine can be rolled into the one about exponentials, so you could have gotten there with your characteristic equation method, but you need to recall what exponentiation does to complex numbers. In particular, you recall $mathrme^mathrmix = cos x + mathrmi sin x$. So what would happen with your characteristic equation is, from
$$ y'' + y = 0 $$
you have the characteristic equation
$$ x^2 + 1 = 0 text. $$
Then the characteristic roots are $pm mathrmi$, so the solutions (with arbitrary constants $c_1$ and $c_2$) are $c_1 mathrme^mathrmi x$ and $c_2 mathrme^-mathrmi x$. These are sines and cosines in disguise: beginalign*
mathrme^mathrmi x &= cos x + mathrmi sin x \
mathrme^-mathrmi x &= cos x - mathrmi sin x text.
endalign*






share|cite|improve this answer









$endgroup$



There are a few facts that are always treated as "obvious" in ODEs (because, presumably, you've been thinking about them non-stop since Calc I):



  • The derivative of a constant (with respect to any independent variable) is zero.

  • The derivative of a polynomial (with respect to its variable) reduces the degree by one.

  • The derivative of $f(x) = mathrme^kx$ with respect to $x$ is a constant multiple of $f$. (Precisely, $dfracmathrmdmathrmdx mathrme^kx = k mathrme^kx$.)

  • The second derivatives of $g(x) = sin kx$ and $h(x) = cos kx$ with respect to $x$ are constant multiples of $g$ and $h$, respectively. (Precisely, $dfracmathrmd^2mathrmdx^2 sin kx = -k^2 sin x$, and similarly for cosine.) Additionally, odd order derivatives of $g$ and $h$ swap them.

So, when you see "the second derivative of $y$ is the negative of $y$", you should be thinking "sine and cosine" pretty much immediately.



The bullet point about sine and cosine can be rolled into the one about exponentials, so you could have gotten there with your characteristic equation method, but you need to recall what exponentiation does to complex numbers. In particular, you recall $mathrme^mathrmix = cos x + mathrmi sin x$. So what would happen with your characteristic equation is, from
$$ y'' + y = 0 $$
you have the characteristic equation
$$ x^2 + 1 = 0 text. $$
Then the characteristic roots are $pm mathrmi$, so the solutions (with arbitrary constants $c_1$ and $c_2$) are $c_1 mathrme^mathrmi x$ and $c_2 mathrme^-mathrmi x$. These are sines and cosines in disguise: beginalign*
mathrme^mathrmi x &= cos x + mathrmi sin x \
mathrme^-mathrmi x &= cos x - mathrmi sin x text.
endalign*







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 8 hours ago









Eric TowersEric Towers

34.5k22371




34.5k22371











  • $begingroup$
    Ahh, yes, thanks for the answer. I appreciate the thoroughness and how well written it is. Yeah, those facts are definitely at play here. It all makes sense now though.
    $endgroup$
    – Matthew Graham
    8 hours ago
















  • $begingroup$
    Ahh, yes, thanks for the answer. I appreciate the thoroughness and how well written it is. Yeah, those facts are definitely at play here. It all makes sense now though.
    $endgroup$
    – Matthew Graham
    8 hours ago















$begingroup$
Ahh, yes, thanks for the answer. I appreciate the thoroughness and how well written it is. Yeah, those facts are definitely at play here. It all makes sense now though.
$endgroup$
– Matthew Graham
8 hours ago




$begingroup$
Ahh, yes, thanks for the answer. I appreciate the thoroughness and how well written it is. Yeah, those facts are definitely at play here. It all makes sense now though.
$endgroup$
– Matthew Graham
8 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3249846%2fhow-to-analytically-solve-this-pde%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거