Do quaternary sulfur dications exist?Why are many silver salts insoluble?Stability of Sulfides - backbonding?Why is an ionic bond a chemical and not a physical bond?Determine polarity of covalent bond with formal chargeWhy is an S-S bond stronger than an O-O bond?Why do nitro groups preferentially bond through the nitrogen rather than the oxygen?Can heteroatoms with lone pairs be chiral centres?Why can't oxalate ion donate two pairs of electrons from the two double-bonded oxygen atomsWill the carboxylate groups of the citrate anion undergo hydrogen bonding?Why does 1,3-dichloropropane not show stereoisomerism?

Huffman Code in C++

All of my Firefox add-ons been disabled suddenly, how can I re-enable them?

In "Avengers: Endgame", what does this name refer to?

Why is the blank symbol not considered part of the input alphabet of a Turing machine?

How long does it take a postcard to get from USA to Germany?

Efficient deletion of specific list entries

The selling of the sheep

Why would a military not separate its forces into different branches?

How did the Apollo guidance computer handle parity bit errors?

Ab major 9th chord in Bach

Antivirus for Ubuntu 18.04

What is the thing used to help pouring liquids called?

Why are condenser mics so much more expensive than dynamics?

What's the 2-minute timer on mobile Deutsche Bahn tickets?

Debian 9 server no sshd in auth.log

What does the phrase "go for the pin" mean here?

Can an Iranian citizen enter the USA on a Dutch passport?

How to deal with employer who keeps me at work after working hours

How is trade in services conducted under the WTO in the absence of the Doha conclusion?

Do Jedi mind tricks work on Ewoks?

Is crescere the correct word meaning to to grow or cultivate?

What happens if I accidentally leave an app running and click "Install Now" in Software Updater?

HSA - Continue to Invest?

Find the area of the smallest rectangle to contain squares of sizes up to n



Do quaternary sulfur dications exist?


Why are many silver salts insoluble?Stability of Sulfides - backbonding?Why is an ionic bond a chemical and not a physical bond?Determine polarity of covalent bond with formal chargeWhy is an S-S bond stronger than an O-O bond?Why do nitro groups preferentially bond through the nitrogen rather than the oxygen?Can heteroatoms with lone pairs be chiral centres?Why can't oxalate ion donate two pairs of electrons from the two double-bonded oxygen atomsWill the carboxylate groups of the citrate anion undergo hydrogen bonding?Why does 1,3-dichloropropane not show stereoisomerism?













1












$begingroup$


We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.



However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.



What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?










share|improve this question











$endgroup$
















    1












    $begingroup$


    We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.



    However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.



    What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?










    share|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.



      However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.



      What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?










      share|improve this question











      $endgroup$




      We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.



      However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.



      What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?







      organic-chemistry inorganic-chemistry ions organosulfur-compounds






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 55 mins ago









      orthocresol

      40.7k7120252




      40.7k7120252










      asked 1 hour ago









      user73910user73910

      1123




      1123




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:



          bis(2,2′-biphenylylene)sulfurane crystal structure



          Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
          mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.



          bis(2,2′-biphenylylene)sulfurane synthesis



          Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
          ii, 2,2'-dilithiobiphenyl in diethyl ether-THF




          Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).



          Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:



          bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) crystal structure fragment



          Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]



          The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.



          bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) synthesis



          Scheme 1




          Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].



          References



          1. Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.

          2. Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.

          3. Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.





          share|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I think OP is looking for something of the form $ce(R4S^2+)(X^-)2$, which isn't quite the same, albeit quite close...
            $endgroup$
            – orthocresol
            1 hour ago







          • 1




            $begingroup$
            @orthocresol I see; it seems like dx.doi.org/10.1021/ja971336k and dx.doi.org/10.1021/ja060497y would make a better answer then; I'm going to edit the more recent work in within the next hour:)
            $endgroup$
            – andselisk
            1 hour ago












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "431"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114887%2fdo-quaternary-sulfur-dications-exist%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:



          bis(2,2′-biphenylylene)sulfurane crystal structure



          Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
          mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.



          bis(2,2′-biphenylylene)sulfurane synthesis



          Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
          ii, 2,2'-dilithiobiphenyl in diethyl ether-THF




          Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).



          Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:



          bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) crystal structure fragment



          Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]



          The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.



          bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) synthesis



          Scheme 1




          Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].



          References



          1. Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.

          2. Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.

          3. Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.





          share|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I think OP is looking for something of the form $ce(R4S^2+)(X^-)2$, which isn't quite the same, albeit quite close...
            $endgroup$
            – orthocresol
            1 hour ago







          • 1




            $begingroup$
            @orthocresol I see; it seems like dx.doi.org/10.1021/ja971336k and dx.doi.org/10.1021/ja060497y would make a better answer then; I'm going to edit the more recent work in within the next hour:)
            $endgroup$
            – andselisk
            1 hour ago
















          2












          $begingroup$

          Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:



          bis(2,2′-biphenylylene)sulfurane crystal structure



          Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
          mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.



          bis(2,2′-biphenylylene)sulfurane synthesis



          Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
          ii, 2,2'-dilithiobiphenyl in diethyl ether-THF




          Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).



          Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:



          bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) crystal structure fragment



          Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]



          The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.



          bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) synthesis



          Scheme 1




          Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].



          References



          1. Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.

          2. Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.

          3. Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.





          share|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I think OP is looking for something of the form $ce(R4S^2+)(X^-)2$, which isn't quite the same, albeit quite close...
            $endgroup$
            – orthocresol
            1 hour ago







          • 1




            $begingroup$
            @orthocresol I see; it seems like dx.doi.org/10.1021/ja971336k and dx.doi.org/10.1021/ja060497y would make a better answer then; I'm going to edit the more recent work in within the next hour:)
            $endgroup$
            – andselisk
            1 hour ago














          2












          2








          2





          $begingroup$

          Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:



          bis(2,2′-biphenylylene)sulfurane crystal structure



          Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
          mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.



          bis(2,2′-biphenylylene)sulfurane synthesis



          Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
          ii, 2,2'-dilithiobiphenyl in diethyl ether-THF




          Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).



          Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:



          bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) crystal structure fragment



          Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]



          The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.



          bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) synthesis



          Scheme 1




          Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].



          References



          1. Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.

          2. Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.

          3. Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.





          share|improve this answer











          $endgroup$



          Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:



          bis(2,2′-biphenylylene)sulfurane crystal structure



          Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
          mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.



          bis(2,2′-biphenylylene)sulfurane synthesis



          Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
          ii, 2,2'-dilithiobiphenyl in diethyl ether-THF




          Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).



          Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:



          bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) crystal structure fragment



          Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.




          Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]



          The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.



          bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) synthesis



          Scheme 1




          Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].



          References



          1. Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.

          2. Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.

          3. Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 9 mins ago

























          answered 1 hour ago









          andseliskandselisk

          20.6k669133




          20.6k669133







          • 1




            $begingroup$
            I think OP is looking for something of the form $ce(R4S^2+)(X^-)2$, which isn't quite the same, albeit quite close...
            $endgroup$
            – orthocresol
            1 hour ago







          • 1




            $begingroup$
            @orthocresol I see; it seems like dx.doi.org/10.1021/ja971336k and dx.doi.org/10.1021/ja060497y would make a better answer then; I'm going to edit the more recent work in within the next hour:)
            $endgroup$
            – andselisk
            1 hour ago













          • 1




            $begingroup$
            I think OP is looking for something of the form $ce(R4S^2+)(X^-)2$, which isn't quite the same, albeit quite close...
            $endgroup$
            – orthocresol
            1 hour ago







          • 1




            $begingroup$
            @orthocresol I see; it seems like dx.doi.org/10.1021/ja971336k and dx.doi.org/10.1021/ja060497y would make a better answer then; I'm going to edit the more recent work in within the next hour:)
            $endgroup$
            – andselisk
            1 hour ago








          1




          1




          $begingroup$
          I think OP is looking for something of the form $ce(R4S^2+)(X^-)2$, which isn't quite the same, albeit quite close...
          $endgroup$
          – orthocresol
          1 hour ago





          $begingroup$
          I think OP is looking for something of the form $ce(R4S^2+)(X^-)2$, which isn't quite the same, albeit quite close...
          $endgroup$
          – orthocresol
          1 hour ago





          1




          1




          $begingroup$
          @orthocresol I see; it seems like dx.doi.org/10.1021/ja971336k and dx.doi.org/10.1021/ja060497y would make a better answer then; I'm going to edit the more recent work in within the next hour:)
          $endgroup$
          – andselisk
          1 hour ago





          $begingroup$
          @orthocresol I see; it seems like dx.doi.org/10.1021/ja971336k and dx.doi.org/10.1021/ja060497y would make a better answer then; I'm going to edit the more recent work in within the next hour:)
          $endgroup$
          – andselisk
          1 hour ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Chemistry Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114887%2fdo-quaternary-sulfur-dications-exist%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

          Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

          Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)