Is torque as fundamental a concept as force?Shelf always tipping over when pushed, thanks to normal forceUnderstanding Newton's Laws of MotionCalculate force between rotating objectsWhat is force? The basic intuitionTorque/moment of force fundamentallyStatic equilibrium- when do you use forces and when do you use torques?

Function of the separated, individual solar cells on Telstar 1 and 2? Why were they "special"?

Datasets of Large Molecules

Polarity of gas discharge tubes?

The 7-numbers crossword

How can an F-22 Raptor reach supersonic speeds without having supersonic inlets?

How to solve this inequality , when there is a irrational power?

What happens if you just start drawing from the Deck of Many Things without declaring any number of cards?

Quick Slitherlink Puzzles: KPK and 123

D Scale Question

From non-IT background to being a programmer

Table alignment (make the content centre)

Turn off Google Chrome's Notification for "Flash Player will no longer be supported after December 2020."

How to run a command 1 out of N times in Bash

In Toy Story, are toys the only inanimate objects that become alive? And if so, why?

Is it rude to ask my opponent to resign an online game when they have a lost endgame?

How can I portray a character with no fear of death, without them sounding utterly bored?

Can a human variant take proficiency in initiative?

Replace a motion-sensor/timer with simple single pole switch

Was there an original and definitive use of alternate dimensions/realities in fiction?

Why do fuses burn at a specific current?

Missing $ inserted. Extra }, or forgotten $. Missing } inserted

Tasha's Hideous Laughter used on a deaf person?

How would a disabled person earn their living in a medieval-type town?

Can my UK debt be collected because I have to return to US?



Is torque as fundamental a concept as force?


Shelf always tipping over when pushed, thanks to normal forceUnderstanding Newton's Laws of MotionCalculate force between rotating objectsWhat is force? The basic intuitionTorque/moment of force fundamentallyStatic equilibrium- when do you use forces and when do you use torques?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








8












$begingroup$


I used to think that torque and force were equally “fundamental”. In other words, my understanding was that we usually use Cartesian coordinates in many common problems because it is a convenient system, so as a result instantaneous forces which act in straight lines seem “easier” mathematically but torques require some extra “baggage”. This baggage includes typically teaching that torque is defined in terms of force.



But if say we happened to choose polar coordinates for the problem the situation would appear the other way around. So it would be arbitrary if we chose to define forces in terms of torques instead.



But later on I learned that angular momentum is conserved independently of regular linear momentum (IIRC). This makes it seem much less certain that one should define either torque in terms of force or vice versa — it gives the impression they are more distinct than it first seemed.



That said, as far as I know a lot of physics is about defining & describing “fundamental forces” — not “fundamental torques”.



So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?










share|cite|improve this question











$endgroup$













  • $begingroup$
    Torque isn't something that arises when we move to polar coordinates. They exist no matter how we choose to represent coordinates. Additionally, you can work with forces in polar coordinates without even referring to torque. Why do you think this, exactly?
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    @AaronStevens I was only referring to the choice of coordinate system potentially being more convenient depending on whether you chose to express a particular problem in terms of force or torque.
    $endgroup$
    – DaveInCaz
    4 hours ago

















8












$begingroup$


I used to think that torque and force were equally “fundamental”. In other words, my understanding was that we usually use Cartesian coordinates in many common problems because it is a convenient system, so as a result instantaneous forces which act in straight lines seem “easier” mathematically but torques require some extra “baggage”. This baggage includes typically teaching that torque is defined in terms of force.



But if say we happened to choose polar coordinates for the problem the situation would appear the other way around. So it would be arbitrary if we chose to define forces in terms of torques instead.



But later on I learned that angular momentum is conserved independently of regular linear momentum (IIRC). This makes it seem much less certain that one should define either torque in terms of force or vice versa — it gives the impression they are more distinct than it first seemed.



That said, as far as I know a lot of physics is about defining & describing “fundamental forces” — not “fundamental torques”.



So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?










share|cite|improve this question











$endgroup$













  • $begingroup$
    Torque isn't something that arises when we move to polar coordinates. They exist no matter how we choose to represent coordinates. Additionally, you can work with forces in polar coordinates without even referring to torque. Why do you think this, exactly?
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    @AaronStevens I was only referring to the choice of coordinate system potentially being more convenient depending on whether you chose to express a particular problem in terms of force or torque.
    $endgroup$
    – DaveInCaz
    4 hours ago













8












8








8


1



$begingroup$


I used to think that torque and force were equally “fundamental”. In other words, my understanding was that we usually use Cartesian coordinates in many common problems because it is a convenient system, so as a result instantaneous forces which act in straight lines seem “easier” mathematically but torques require some extra “baggage”. This baggage includes typically teaching that torque is defined in terms of force.



But if say we happened to choose polar coordinates for the problem the situation would appear the other way around. So it would be arbitrary if we chose to define forces in terms of torques instead.



But later on I learned that angular momentum is conserved independently of regular linear momentum (IIRC). This makes it seem much less certain that one should define either torque in terms of force or vice versa — it gives the impression they are more distinct than it first seemed.



That said, as far as I know a lot of physics is about defining & describing “fundamental forces” — not “fundamental torques”.



So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?










share|cite|improve this question











$endgroup$




I used to think that torque and force were equally “fundamental”. In other words, my understanding was that we usually use Cartesian coordinates in many common problems because it is a convenient system, so as a result instantaneous forces which act in straight lines seem “easier” mathematically but torques require some extra “baggage”. This baggage includes typically teaching that torque is defined in terms of force.



But if say we happened to choose polar coordinates for the problem the situation would appear the other way around. So it would be arbitrary if we chose to define forces in terms of torques instead.



But later on I learned that angular momentum is conserved independently of regular linear momentum (IIRC). This makes it seem much less certain that one should define either torque in terms of force or vice versa — it gives the impression they are more distinct than it first seemed.



That said, as far as I know a lot of physics is about defining & describing “fundamental forces” — not “fundamental torques”.



So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?







newtonian-mechanics forces torque






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago









Qmechanic

113k13 gold badges223 silver badges1340 bronze badges




113k13 gold badges223 silver badges1340 bronze badges










asked 8 hours ago









DaveInCazDaveInCaz

1709 bronze badges




1709 bronze badges














  • $begingroup$
    Torque isn't something that arises when we move to polar coordinates. They exist no matter how we choose to represent coordinates. Additionally, you can work with forces in polar coordinates without even referring to torque. Why do you think this, exactly?
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    @AaronStevens I was only referring to the choice of coordinate system potentially being more convenient depending on whether you chose to express a particular problem in terms of force or torque.
    $endgroup$
    – DaveInCaz
    4 hours ago
















  • $begingroup$
    Torque isn't something that arises when we move to polar coordinates. They exist no matter how we choose to represent coordinates. Additionally, you can work with forces in polar coordinates without even referring to torque. Why do you think this, exactly?
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    @AaronStevens I was only referring to the choice of coordinate system potentially being more convenient depending on whether you chose to express a particular problem in terms of force or torque.
    $endgroup$
    – DaveInCaz
    4 hours ago















$begingroup$
Torque isn't something that arises when we move to polar coordinates. They exist no matter how we choose to represent coordinates. Additionally, you can work with forces in polar coordinates without even referring to torque. Why do you think this, exactly?
$endgroup$
– Aaron Stevens
6 hours ago





$begingroup$
Torque isn't something that arises when we move to polar coordinates. They exist no matter how we choose to represent coordinates. Additionally, you can work with forces in polar coordinates without even referring to torque. Why do you think this, exactly?
$endgroup$
– Aaron Stevens
6 hours ago













$begingroup$
@AaronStevens I was only referring to the choice of coordinate system potentially being more convenient depending on whether you chose to express a particular problem in terms of force or torque.
$endgroup$
– DaveInCaz
4 hours ago




$begingroup$
@AaronStevens I was only referring to the choice of coordinate system potentially being more convenient depending on whether you chose to express a particular problem in terms of force or torque.
$endgroup$
– DaveInCaz
4 hours ago










4 Answers
4






active

oldest

votes


















2













$begingroup$

No, torque is not a fundamental quantity. it's only job is to describe where in space a force is acting through (the line of action). Torque just describes a force at a distance. Given a force $boldsymbolF$ and a torque $boldsymboltau$ you can tell that the force acts along a line in space with direction defined by $boldsymbolF$, but location defined by $boldsymboltau$ as follows $$ boldsymbolr = frac boldsymbolF times boldsymboltau boldsymbolF $$



It might be easier to discuss angular momentum first, since torque is the time derivative of angular momentum, just as force is the time derivative of linear momentum.



For a single particle with linear momentum $boldsymbolp = mboldsymbolv$ located at some instant at a point $boldsymbolr$ the angular momentum is $$ boldsymbolL = boldsymbolr times boldsymbolp$$



So where is the momentum line in space? The momentum line is called the axis of percussion. It is located at



$$ boldsymbolr = frac boldsymbolp times boldsymbolL boldsymbolp = fracboldsymbolp times ( boldsymbolr times boldsymbolp) = frac boldsymbolr (boldsymbolp cdot boldsymbolp) - boldsymbolp ( boldsymbolp cdot boldsymbolr) = boldsymbolr frac^2 = r ; checkmark $$



provided that the point $boldsymbolr$ is perpendicular to the momentum $boldsymbolp$. Such a point can always be found, and it is the point on the line closest to the origin.



The conservation law for angular momentum (coupled with the conservation law for linear momentum) just states that not only the magnitude and direction of momentum is conserved but also the line in space where moment acts through is also conserved.



In summary, the common quantities in mechanics are interpreted as follows



$$ beginarrayl
textconcept & textvalue & textmoment\
hline textrotation axis & textrot. velocity, boldsymbolomega & textvelocity, boldsymbolv = boldsymbolrtimes boldsymbolomega \
textline of action & textforce, boldsymbolF & texttorque, boldsymboltau = boldsymbolr times boldsymbolF \
textaxis of percussion & textmomentum, boldsymbolp & textang. momentum, boldsymbolL = boldsymbolr times boldsymbolp
endarray $$



The stuff under the value column are fundamental quantities that give us the magnitude of something (as well as the direction). The stuff under the moment column are secondary quantities that depend on where they are measured and give use the relative location of the fundamental quantities. Hence the terms torque = moment of force, velocity = moment of rotation and angular momentum = moment of momentum. All that means is that these quantities are $boldsymbolr times text(something fundamental)$ and they describe the moment arm to this something.



In statics, for example, we learn to balance forces and moments, which should be interpreted as balancing the force magnitude and the line of action of the force.






share|cite|improve this answer









$endgroup$














  • $begingroup$
    Your first equation suggests that $mathbf F$ is always perpendicular to $mathbf r$. But this certainly is not always true. Am I missing something?
    $endgroup$
    – Aaron Stevens
    2 hours ago


















1













$begingroup$

I would argue that force is more fundamental concept than torque. This is mainly because torques is, for lack of a better term, a property of forces. Also, the torque produced by a force depends on your subjective choice of which point you are calculating the torque about. This is all captured in the definition of torque
$$boldsymboltau=mathbf rtimesmathbf F$$
where $mathbf F$ is the force vector and $mathbf r$ is the vector pointing from the point about which you are calculating the torque to the point where the force is applied.



Note that this defines torque in terms of a force, but you cannot determine a force from a torque. For a given $boldsymboltau$ and a given $mathbf r$ there is not a unique force $mathbf F$. Therefore, this also gives the impression that force is a more fundamental concept.



Also note that the definition of torque does not depend on if we are using polar coordinates or not. You can discuss forces in polar coordinates without referring to torque, and you can talk about torques in Cartesian coordinates.



So torque is not fundamental, however that doesn't mean it's not useful. It is useful in looking at how forces cause extended bodies to move (or not move), and it is useful when motion has rotational symmetry about some point (i.e. when angular momentum is conserved).






share|cite|improve this answer









$endgroup$






















    0













    $begingroup$

    Just what is fundamental? Torque is certainly more than just force with additional “baggage”. And it’s more than just about coordinate systems. Torque and force are not a matter of either or. Both are needed for the analysis of motion and equilibrium.



    Moment, which is another term for torque, is a fundamental concept in statics. For example in statics both forces and moments are needed to determine static equilibrium . Forces cause straight line motion. Moments cause rotational motion. The requirements for equilibrium are that the sum of both the moments and forces have to be zero. And it goes beyond statics. Bending moments and shear forces are fundamental to the study of mechanics of materials.



    You will learn to appreciate the difference if and when you study statics , dynamics, and mechanics of materials.



    Hope this helps






    share|cite|improve this answer











    $endgroup$














    • $begingroup$
      I would argue that when we're talking about fundamental point particles, torque is just a matter of coordinate systems, and only becomes necessary when we consider composite systems.
      $endgroup$
      – Danny
      6 hours ago











    • $begingroup$
      @Danny what do you mean by saying that torque is just a matter of coordinate systems?
      $endgroup$
      – Aaron Stevens
      6 hours ago






    • 2




      $begingroup$
      @BobD Certainly torques make life a whole lot simpler for extended bodies, but I would argue that the concept of force is more fundamental than torque, as torque is defined in terms of force, but not the other way around. Couldn't one argue that a zero net torque is just a simpler way of saying that the net force acting on every part of the body must be $0$?
      $endgroup$
      – Aaron Stevens
      6 hours ago











    • $begingroup$
      @AaronStevens I wasn't arguing that torque isn't derived from force or that torque is equally "fundamental" as force. For that matter I'm not sure we can say forces in general are "fundamental" in the same manner as the strong nuclear, weak nuclear, electromagnetic and gravitational forces. Instead my focus was on the OP statement "So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?" It's the ideal of either or use of force and torque to solve problem I addressed.
      $endgroup$
      – Bob D
      6 hours ago






    • 1




      $begingroup$
      @AaronStevens You never know.I've given up trying to figure out why
      $endgroup$
      – Bob D
      2 hours ago


















    0













    $begingroup$

    Transfer of angular momentum is fundamental, and does not reduce to a force being applied.



    For example: "...by utilizing transfer of photon spin angular momentum, it is also possible to set objects into rotational motion simply by targeting them with a beam of circularly polarized light"



    Source: https://pubs.acs.org/doi/abs/10.1021/nl4010817






    share|cite








    New contributor



    Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    $endgroup$

















      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "151"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f499753%2fis-torque-as-fundamental-a-concept-as-force%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2













      $begingroup$

      No, torque is not a fundamental quantity. it's only job is to describe where in space a force is acting through (the line of action). Torque just describes a force at a distance. Given a force $boldsymbolF$ and a torque $boldsymboltau$ you can tell that the force acts along a line in space with direction defined by $boldsymbolF$, but location defined by $boldsymboltau$ as follows $$ boldsymbolr = frac boldsymbolF times boldsymboltau boldsymbolF $$



      It might be easier to discuss angular momentum first, since torque is the time derivative of angular momentum, just as force is the time derivative of linear momentum.



      For a single particle with linear momentum $boldsymbolp = mboldsymbolv$ located at some instant at a point $boldsymbolr$ the angular momentum is $$ boldsymbolL = boldsymbolr times boldsymbolp$$



      So where is the momentum line in space? The momentum line is called the axis of percussion. It is located at



      $$ boldsymbolr = frac boldsymbolp times boldsymbolL boldsymbolp = fracboldsymbolp times ( boldsymbolr times boldsymbolp) = frac boldsymbolr (boldsymbolp cdot boldsymbolp) - boldsymbolp ( boldsymbolp cdot boldsymbolr) = boldsymbolr frac^2 = r ; checkmark $$



      provided that the point $boldsymbolr$ is perpendicular to the momentum $boldsymbolp$. Such a point can always be found, and it is the point on the line closest to the origin.



      The conservation law for angular momentum (coupled with the conservation law for linear momentum) just states that not only the magnitude and direction of momentum is conserved but also the line in space where moment acts through is also conserved.



      In summary, the common quantities in mechanics are interpreted as follows



      $$ beginarrayl
      textconcept & textvalue & textmoment\
      hline textrotation axis & textrot. velocity, boldsymbolomega & textvelocity, boldsymbolv = boldsymbolrtimes boldsymbolomega \
      textline of action & textforce, boldsymbolF & texttorque, boldsymboltau = boldsymbolr times boldsymbolF \
      textaxis of percussion & textmomentum, boldsymbolp & textang. momentum, boldsymbolL = boldsymbolr times boldsymbolp
      endarray $$



      The stuff under the value column are fundamental quantities that give us the magnitude of something (as well as the direction). The stuff under the moment column are secondary quantities that depend on where they are measured and give use the relative location of the fundamental quantities. Hence the terms torque = moment of force, velocity = moment of rotation and angular momentum = moment of momentum. All that means is that these quantities are $boldsymbolr times text(something fundamental)$ and they describe the moment arm to this something.



      In statics, for example, we learn to balance forces and moments, which should be interpreted as balancing the force magnitude and the line of action of the force.






      share|cite|improve this answer









      $endgroup$














      • $begingroup$
        Your first equation suggests that $mathbf F$ is always perpendicular to $mathbf r$. But this certainly is not always true. Am I missing something?
        $endgroup$
        – Aaron Stevens
        2 hours ago















      2













      $begingroup$

      No, torque is not a fundamental quantity. it's only job is to describe where in space a force is acting through (the line of action). Torque just describes a force at a distance. Given a force $boldsymbolF$ and a torque $boldsymboltau$ you can tell that the force acts along a line in space with direction defined by $boldsymbolF$, but location defined by $boldsymboltau$ as follows $$ boldsymbolr = frac boldsymbolF times boldsymboltau boldsymbolF $$



      It might be easier to discuss angular momentum first, since torque is the time derivative of angular momentum, just as force is the time derivative of linear momentum.



      For a single particle with linear momentum $boldsymbolp = mboldsymbolv$ located at some instant at a point $boldsymbolr$ the angular momentum is $$ boldsymbolL = boldsymbolr times boldsymbolp$$



      So where is the momentum line in space? The momentum line is called the axis of percussion. It is located at



      $$ boldsymbolr = frac boldsymbolp times boldsymbolL boldsymbolp = fracboldsymbolp times ( boldsymbolr times boldsymbolp) = frac boldsymbolr (boldsymbolp cdot boldsymbolp) - boldsymbolp ( boldsymbolp cdot boldsymbolr) = boldsymbolr frac^2 = r ; checkmark $$



      provided that the point $boldsymbolr$ is perpendicular to the momentum $boldsymbolp$. Such a point can always be found, and it is the point on the line closest to the origin.



      The conservation law for angular momentum (coupled with the conservation law for linear momentum) just states that not only the magnitude and direction of momentum is conserved but also the line in space where moment acts through is also conserved.



      In summary, the common quantities in mechanics are interpreted as follows



      $$ beginarrayl
      textconcept & textvalue & textmoment\
      hline textrotation axis & textrot. velocity, boldsymbolomega & textvelocity, boldsymbolv = boldsymbolrtimes boldsymbolomega \
      textline of action & textforce, boldsymbolF & texttorque, boldsymboltau = boldsymbolr times boldsymbolF \
      textaxis of percussion & textmomentum, boldsymbolp & textang. momentum, boldsymbolL = boldsymbolr times boldsymbolp
      endarray $$



      The stuff under the value column are fundamental quantities that give us the magnitude of something (as well as the direction). The stuff under the moment column are secondary quantities that depend on where they are measured and give use the relative location of the fundamental quantities. Hence the terms torque = moment of force, velocity = moment of rotation and angular momentum = moment of momentum. All that means is that these quantities are $boldsymbolr times text(something fundamental)$ and they describe the moment arm to this something.



      In statics, for example, we learn to balance forces and moments, which should be interpreted as balancing the force magnitude and the line of action of the force.






      share|cite|improve this answer









      $endgroup$














      • $begingroup$
        Your first equation suggests that $mathbf F$ is always perpendicular to $mathbf r$. But this certainly is not always true. Am I missing something?
        $endgroup$
        – Aaron Stevens
        2 hours ago













      2














      2










      2







      $begingroup$

      No, torque is not a fundamental quantity. it's only job is to describe where in space a force is acting through (the line of action). Torque just describes a force at a distance. Given a force $boldsymbolF$ and a torque $boldsymboltau$ you can tell that the force acts along a line in space with direction defined by $boldsymbolF$, but location defined by $boldsymboltau$ as follows $$ boldsymbolr = frac boldsymbolF times boldsymboltau boldsymbolF $$



      It might be easier to discuss angular momentum first, since torque is the time derivative of angular momentum, just as force is the time derivative of linear momentum.



      For a single particle with linear momentum $boldsymbolp = mboldsymbolv$ located at some instant at a point $boldsymbolr$ the angular momentum is $$ boldsymbolL = boldsymbolr times boldsymbolp$$



      So where is the momentum line in space? The momentum line is called the axis of percussion. It is located at



      $$ boldsymbolr = frac boldsymbolp times boldsymbolL boldsymbolp = fracboldsymbolp times ( boldsymbolr times boldsymbolp) = frac boldsymbolr (boldsymbolp cdot boldsymbolp) - boldsymbolp ( boldsymbolp cdot boldsymbolr) = boldsymbolr frac^2 = r ; checkmark $$



      provided that the point $boldsymbolr$ is perpendicular to the momentum $boldsymbolp$. Such a point can always be found, and it is the point on the line closest to the origin.



      The conservation law for angular momentum (coupled with the conservation law for linear momentum) just states that not only the magnitude and direction of momentum is conserved but also the line in space where moment acts through is also conserved.



      In summary, the common quantities in mechanics are interpreted as follows



      $$ beginarrayl
      textconcept & textvalue & textmoment\
      hline textrotation axis & textrot. velocity, boldsymbolomega & textvelocity, boldsymbolv = boldsymbolrtimes boldsymbolomega \
      textline of action & textforce, boldsymbolF & texttorque, boldsymboltau = boldsymbolr times boldsymbolF \
      textaxis of percussion & textmomentum, boldsymbolp & textang. momentum, boldsymbolL = boldsymbolr times boldsymbolp
      endarray $$



      The stuff under the value column are fundamental quantities that give us the magnitude of something (as well as the direction). The stuff under the moment column are secondary quantities that depend on where they are measured and give use the relative location of the fundamental quantities. Hence the terms torque = moment of force, velocity = moment of rotation and angular momentum = moment of momentum. All that means is that these quantities are $boldsymbolr times text(something fundamental)$ and they describe the moment arm to this something.



      In statics, for example, we learn to balance forces and moments, which should be interpreted as balancing the force magnitude and the line of action of the force.






      share|cite|improve this answer









      $endgroup$



      No, torque is not a fundamental quantity. it's only job is to describe where in space a force is acting through (the line of action). Torque just describes a force at a distance. Given a force $boldsymbolF$ and a torque $boldsymboltau$ you can tell that the force acts along a line in space with direction defined by $boldsymbolF$, but location defined by $boldsymboltau$ as follows $$ boldsymbolr = frac boldsymbolF times boldsymboltau boldsymbolF $$



      It might be easier to discuss angular momentum first, since torque is the time derivative of angular momentum, just as force is the time derivative of linear momentum.



      For a single particle with linear momentum $boldsymbolp = mboldsymbolv$ located at some instant at a point $boldsymbolr$ the angular momentum is $$ boldsymbolL = boldsymbolr times boldsymbolp$$



      So where is the momentum line in space? The momentum line is called the axis of percussion. It is located at



      $$ boldsymbolr = frac boldsymbolp times boldsymbolL boldsymbolp = fracboldsymbolp times ( boldsymbolr times boldsymbolp) = frac boldsymbolr (boldsymbolp cdot boldsymbolp) - boldsymbolp ( boldsymbolp cdot boldsymbolr) = boldsymbolr frac^2 = r ; checkmark $$



      provided that the point $boldsymbolr$ is perpendicular to the momentum $boldsymbolp$. Such a point can always be found, and it is the point on the line closest to the origin.



      The conservation law for angular momentum (coupled with the conservation law for linear momentum) just states that not only the magnitude and direction of momentum is conserved but also the line in space where moment acts through is also conserved.



      In summary, the common quantities in mechanics are interpreted as follows



      $$ beginarrayl
      textconcept & textvalue & textmoment\
      hline textrotation axis & textrot. velocity, boldsymbolomega & textvelocity, boldsymbolv = boldsymbolrtimes boldsymbolomega \
      textline of action & textforce, boldsymbolF & texttorque, boldsymboltau = boldsymbolr times boldsymbolF \
      textaxis of percussion & textmomentum, boldsymbolp & textang. momentum, boldsymbolL = boldsymbolr times boldsymbolp
      endarray $$



      The stuff under the value column are fundamental quantities that give us the magnitude of something (as well as the direction). The stuff under the moment column are secondary quantities that depend on where they are measured and give use the relative location of the fundamental quantities. Hence the terms torque = moment of force, velocity = moment of rotation and angular momentum = moment of momentum. All that means is that these quantities are $boldsymbolr times text(something fundamental)$ and they describe the moment arm to this something.



      In statics, for example, we learn to balance forces and moments, which should be interpreted as balancing the force magnitude and the line of action of the force.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      ja72ja72

      21.8k4 gold badges36 silver badges107 bronze badges




      21.8k4 gold badges36 silver badges107 bronze badges














      • $begingroup$
        Your first equation suggests that $mathbf F$ is always perpendicular to $mathbf r$. But this certainly is not always true. Am I missing something?
        $endgroup$
        – Aaron Stevens
        2 hours ago
















      • $begingroup$
        Your first equation suggests that $mathbf F$ is always perpendicular to $mathbf r$. But this certainly is not always true. Am I missing something?
        $endgroup$
        – Aaron Stevens
        2 hours ago















      $begingroup$
      Your first equation suggests that $mathbf F$ is always perpendicular to $mathbf r$. But this certainly is not always true. Am I missing something?
      $endgroup$
      – Aaron Stevens
      2 hours ago




      $begingroup$
      Your first equation suggests that $mathbf F$ is always perpendicular to $mathbf r$. But this certainly is not always true. Am I missing something?
      $endgroup$
      – Aaron Stevens
      2 hours ago













      1













      $begingroup$

      I would argue that force is more fundamental concept than torque. This is mainly because torques is, for lack of a better term, a property of forces. Also, the torque produced by a force depends on your subjective choice of which point you are calculating the torque about. This is all captured in the definition of torque
      $$boldsymboltau=mathbf rtimesmathbf F$$
      where $mathbf F$ is the force vector and $mathbf r$ is the vector pointing from the point about which you are calculating the torque to the point where the force is applied.



      Note that this defines torque in terms of a force, but you cannot determine a force from a torque. For a given $boldsymboltau$ and a given $mathbf r$ there is not a unique force $mathbf F$. Therefore, this also gives the impression that force is a more fundamental concept.



      Also note that the definition of torque does not depend on if we are using polar coordinates or not. You can discuss forces in polar coordinates without referring to torque, and you can talk about torques in Cartesian coordinates.



      So torque is not fundamental, however that doesn't mean it's not useful. It is useful in looking at how forces cause extended bodies to move (or not move), and it is useful when motion has rotational symmetry about some point (i.e. when angular momentum is conserved).






      share|cite|improve this answer









      $endgroup$



















        1













        $begingroup$

        I would argue that force is more fundamental concept than torque. This is mainly because torques is, for lack of a better term, a property of forces. Also, the torque produced by a force depends on your subjective choice of which point you are calculating the torque about. This is all captured in the definition of torque
        $$boldsymboltau=mathbf rtimesmathbf F$$
        where $mathbf F$ is the force vector and $mathbf r$ is the vector pointing from the point about which you are calculating the torque to the point where the force is applied.



        Note that this defines torque in terms of a force, but you cannot determine a force from a torque. For a given $boldsymboltau$ and a given $mathbf r$ there is not a unique force $mathbf F$. Therefore, this also gives the impression that force is a more fundamental concept.



        Also note that the definition of torque does not depend on if we are using polar coordinates or not. You can discuss forces in polar coordinates without referring to torque, and you can talk about torques in Cartesian coordinates.



        So torque is not fundamental, however that doesn't mean it's not useful. It is useful in looking at how forces cause extended bodies to move (or not move), and it is useful when motion has rotational symmetry about some point (i.e. when angular momentum is conserved).






        share|cite|improve this answer









        $endgroup$

















          1














          1










          1







          $begingroup$

          I would argue that force is more fundamental concept than torque. This is mainly because torques is, for lack of a better term, a property of forces. Also, the torque produced by a force depends on your subjective choice of which point you are calculating the torque about. This is all captured in the definition of torque
          $$boldsymboltau=mathbf rtimesmathbf F$$
          where $mathbf F$ is the force vector and $mathbf r$ is the vector pointing from the point about which you are calculating the torque to the point where the force is applied.



          Note that this defines torque in terms of a force, but you cannot determine a force from a torque. For a given $boldsymboltau$ and a given $mathbf r$ there is not a unique force $mathbf F$. Therefore, this also gives the impression that force is a more fundamental concept.



          Also note that the definition of torque does not depend on if we are using polar coordinates or not. You can discuss forces in polar coordinates without referring to torque, and you can talk about torques in Cartesian coordinates.



          So torque is not fundamental, however that doesn't mean it's not useful. It is useful in looking at how forces cause extended bodies to move (or not move), and it is useful when motion has rotational symmetry about some point (i.e. when angular momentum is conserved).






          share|cite|improve this answer









          $endgroup$



          I would argue that force is more fundamental concept than torque. This is mainly because torques is, for lack of a better term, a property of forces. Also, the torque produced by a force depends on your subjective choice of which point you are calculating the torque about. This is all captured in the definition of torque
          $$boldsymboltau=mathbf rtimesmathbf F$$
          where $mathbf F$ is the force vector and $mathbf r$ is the vector pointing from the point about which you are calculating the torque to the point where the force is applied.



          Note that this defines torque in terms of a force, but you cannot determine a force from a torque. For a given $boldsymboltau$ and a given $mathbf r$ there is not a unique force $mathbf F$. Therefore, this also gives the impression that force is a more fundamental concept.



          Also note that the definition of torque does not depend on if we are using polar coordinates or not. You can discuss forces in polar coordinates without referring to torque, and you can talk about torques in Cartesian coordinates.



          So torque is not fundamental, however that doesn't mean it's not useful. It is useful in looking at how forces cause extended bodies to move (or not move), and it is useful when motion has rotational symmetry about some point (i.e. when angular momentum is conserved).







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Aaron StevensAaron Stevens

          22.1k4 gold badges41 silver badges78 bronze badges




          22.1k4 gold badges41 silver badges78 bronze badges
























              0













              $begingroup$

              Just what is fundamental? Torque is certainly more than just force with additional “baggage”. And it’s more than just about coordinate systems. Torque and force are not a matter of either or. Both are needed for the analysis of motion and equilibrium.



              Moment, which is another term for torque, is a fundamental concept in statics. For example in statics both forces and moments are needed to determine static equilibrium . Forces cause straight line motion. Moments cause rotational motion. The requirements for equilibrium are that the sum of both the moments and forces have to be zero. And it goes beyond statics. Bending moments and shear forces are fundamental to the study of mechanics of materials.



              You will learn to appreciate the difference if and when you study statics , dynamics, and mechanics of materials.



              Hope this helps






              share|cite|improve this answer











              $endgroup$














              • $begingroup$
                I would argue that when we're talking about fundamental point particles, torque is just a matter of coordinate systems, and only becomes necessary when we consider composite systems.
                $endgroup$
                – Danny
                6 hours ago











              • $begingroup$
                @Danny what do you mean by saying that torque is just a matter of coordinate systems?
                $endgroup$
                – Aaron Stevens
                6 hours ago






              • 2




                $begingroup$
                @BobD Certainly torques make life a whole lot simpler for extended bodies, but I would argue that the concept of force is more fundamental than torque, as torque is defined in terms of force, but not the other way around. Couldn't one argue that a zero net torque is just a simpler way of saying that the net force acting on every part of the body must be $0$?
                $endgroup$
                – Aaron Stevens
                6 hours ago











              • $begingroup$
                @AaronStevens I wasn't arguing that torque isn't derived from force or that torque is equally "fundamental" as force. For that matter I'm not sure we can say forces in general are "fundamental" in the same manner as the strong nuclear, weak nuclear, electromagnetic and gravitational forces. Instead my focus was on the OP statement "So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?" It's the ideal of either or use of force and torque to solve problem I addressed.
                $endgroup$
                – Bob D
                6 hours ago






              • 1




                $begingroup$
                @AaronStevens You never know.I've given up trying to figure out why
                $endgroup$
                – Bob D
                2 hours ago















              0













              $begingroup$

              Just what is fundamental? Torque is certainly more than just force with additional “baggage”. And it’s more than just about coordinate systems. Torque and force are not a matter of either or. Both are needed for the analysis of motion and equilibrium.



              Moment, which is another term for torque, is a fundamental concept in statics. For example in statics both forces and moments are needed to determine static equilibrium . Forces cause straight line motion. Moments cause rotational motion. The requirements for equilibrium are that the sum of both the moments and forces have to be zero. And it goes beyond statics. Bending moments and shear forces are fundamental to the study of mechanics of materials.



              You will learn to appreciate the difference if and when you study statics , dynamics, and mechanics of materials.



              Hope this helps






              share|cite|improve this answer











              $endgroup$














              • $begingroup$
                I would argue that when we're talking about fundamental point particles, torque is just a matter of coordinate systems, and only becomes necessary when we consider composite systems.
                $endgroup$
                – Danny
                6 hours ago











              • $begingroup$
                @Danny what do you mean by saying that torque is just a matter of coordinate systems?
                $endgroup$
                – Aaron Stevens
                6 hours ago






              • 2




                $begingroup$
                @BobD Certainly torques make life a whole lot simpler for extended bodies, but I would argue that the concept of force is more fundamental than torque, as torque is defined in terms of force, but not the other way around. Couldn't one argue that a zero net torque is just a simpler way of saying that the net force acting on every part of the body must be $0$?
                $endgroup$
                – Aaron Stevens
                6 hours ago











              • $begingroup$
                @AaronStevens I wasn't arguing that torque isn't derived from force or that torque is equally "fundamental" as force. For that matter I'm not sure we can say forces in general are "fundamental" in the same manner as the strong nuclear, weak nuclear, electromagnetic and gravitational forces. Instead my focus was on the OP statement "So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?" It's the ideal of either or use of force and torque to solve problem I addressed.
                $endgroup$
                – Bob D
                6 hours ago






              • 1




                $begingroup$
                @AaronStevens You never know.I've given up trying to figure out why
                $endgroup$
                – Bob D
                2 hours ago













              0














              0










              0







              $begingroup$

              Just what is fundamental? Torque is certainly more than just force with additional “baggage”. And it’s more than just about coordinate systems. Torque and force are not a matter of either or. Both are needed for the analysis of motion and equilibrium.



              Moment, which is another term for torque, is a fundamental concept in statics. For example in statics both forces and moments are needed to determine static equilibrium . Forces cause straight line motion. Moments cause rotational motion. The requirements for equilibrium are that the sum of both the moments and forces have to be zero. And it goes beyond statics. Bending moments and shear forces are fundamental to the study of mechanics of materials.



              You will learn to appreciate the difference if and when you study statics , dynamics, and mechanics of materials.



              Hope this helps






              share|cite|improve this answer











              $endgroup$



              Just what is fundamental? Torque is certainly more than just force with additional “baggage”. And it’s more than just about coordinate systems. Torque and force are not a matter of either or. Both are needed for the analysis of motion and equilibrium.



              Moment, which is another term for torque, is a fundamental concept in statics. For example in statics both forces and moments are needed to determine static equilibrium . Forces cause straight line motion. Moments cause rotational motion. The requirements for equilibrium are that the sum of both the moments and forces have to be zero. And it goes beyond statics. Bending moments and shear forces are fundamental to the study of mechanics of materials.



              You will learn to appreciate the difference if and when you study statics , dynamics, and mechanics of materials.



              Hope this helps







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 8 hours ago

























              answered 8 hours ago









              Bob DBob D

              12.4k3 gold badges10 silver badges37 bronze badges




              12.4k3 gold badges10 silver badges37 bronze badges














              • $begingroup$
                I would argue that when we're talking about fundamental point particles, torque is just a matter of coordinate systems, and only becomes necessary when we consider composite systems.
                $endgroup$
                – Danny
                6 hours ago











              • $begingroup$
                @Danny what do you mean by saying that torque is just a matter of coordinate systems?
                $endgroup$
                – Aaron Stevens
                6 hours ago






              • 2




                $begingroup$
                @BobD Certainly torques make life a whole lot simpler for extended bodies, but I would argue that the concept of force is more fundamental than torque, as torque is defined in terms of force, but not the other way around. Couldn't one argue that a zero net torque is just a simpler way of saying that the net force acting on every part of the body must be $0$?
                $endgroup$
                – Aaron Stevens
                6 hours ago











              • $begingroup$
                @AaronStevens I wasn't arguing that torque isn't derived from force or that torque is equally "fundamental" as force. For that matter I'm not sure we can say forces in general are "fundamental" in the same manner as the strong nuclear, weak nuclear, electromagnetic and gravitational forces. Instead my focus was on the OP statement "So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?" It's the ideal of either or use of force and torque to solve problem I addressed.
                $endgroup$
                – Bob D
                6 hours ago






              • 1




                $begingroup$
                @AaronStevens You never know.I've given up trying to figure out why
                $endgroup$
                – Bob D
                2 hours ago
















              • $begingroup$
                I would argue that when we're talking about fundamental point particles, torque is just a matter of coordinate systems, and only becomes necessary when we consider composite systems.
                $endgroup$
                – Danny
                6 hours ago











              • $begingroup$
                @Danny what do you mean by saying that torque is just a matter of coordinate systems?
                $endgroup$
                – Aaron Stevens
                6 hours ago






              • 2




                $begingroup$
                @BobD Certainly torques make life a whole lot simpler for extended bodies, but I would argue that the concept of force is more fundamental than torque, as torque is defined in terms of force, but not the other way around. Couldn't one argue that a zero net torque is just a simpler way of saying that the net force acting on every part of the body must be $0$?
                $endgroup$
                – Aaron Stevens
                6 hours ago











              • $begingroup$
                @AaronStevens I wasn't arguing that torque isn't derived from force or that torque is equally "fundamental" as force. For that matter I'm not sure we can say forces in general are "fundamental" in the same manner as the strong nuclear, weak nuclear, electromagnetic and gravitational forces. Instead my focus was on the OP statement "So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?" It's the ideal of either or use of force and torque to solve problem I addressed.
                $endgroup$
                – Bob D
                6 hours ago






              • 1




                $begingroup$
                @AaronStevens You never know.I've given up trying to figure out why
                $endgroup$
                – Bob D
                2 hours ago















              $begingroup$
              I would argue that when we're talking about fundamental point particles, torque is just a matter of coordinate systems, and only becomes necessary when we consider composite systems.
              $endgroup$
              – Danny
              6 hours ago





              $begingroup$
              I would argue that when we're talking about fundamental point particles, torque is just a matter of coordinate systems, and only becomes necessary when we consider composite systems.
              $endgroup$
              – Danny
              6 hours ago













              $begingroup$
              @Danny what do you mean by saying that torque is just a matter of coordinate systems?
              $endgroup$
              – Aaron Stevens
              6 hours ago




              $begingroup$
              @Danny what do you mean by saying that torque is just a matter of coordinate systems?
              $endgroup$
              – Aaron Stevens
              6 hours ago




              2




              2




              $begingroup$
              @BobD Certainly torques make life a whole lot simpler for extended bodies, but I would argue that the concept of force is more fundamental than torque, as torque is defined in terms of force, but not the other way around. Couldn't one argue that a zero net torque is just a simpler way of saying that the net force acting on every part of the body must be $0$?
              $endgroup$
              – Aaron Stevens
              6 hours ago





              $begingroup$
              @BobD Certainly torques make life a whole lot simpler for extended bodies, but I would argue that the concept of force is more fundamental than torque, as torque is defined in terms of force, but not the other way around. Couldn't one argue that a zero net torque is just a simpler way of saying that the net force acting on every part of the body must be $0$?
              $endgroup$
              – Aaron Stevens
              6 hours ago













              $begingroup$
              @AaronStevens I wasn't arguing that torque isn't derived from force or that torque is equally "fundamental" as force. For that matter I'm not sure we can say forces in general are "fundamental" in the same manner as the strong nuclear, weak nuclear, electromagnetic and gravitational forces. Instead my focus was on the OP statement "So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?" It's the ideal of either or use of force and torque to solve problem I addressed.
              $endgroup$
              – Bob D
              6 hours ago




              $begingroup$
              @AaronStevens I wasn't arguing that torque isn't derived from force or that torque is equally "fundamental" as force. For that matter I'm not sure we can say forces in general are "fundamental" in the same manner as the strong nuclear, weak nuclear, electromagnetic and gravitational forces. Instead my focus was on the OP statement "So is choosing to use either force or torque as the basis of laws & problems arbitrary? Or is there an actual fundamental rationale to when one or the other should be used?" It's the ideal of either or use of force and torque to solve problem I addressed.
              $endgroup$
              – Bob D
              6 hours ago




              1




              1




              $begingroup$
              @AaronStevens You never know.I've given up trying to figure out why
              $endgroup$
              – Bob D
              2 hours ago




              $begingroup$
              @AaronStevens You never know.I've given up trying to figure out why
              $endgroup$
              – Bob D
              2 hours ago











              0













              $begingroup$

              Transfer of angular momentum is fundamental, and does not reduce to a force being applied.



              For example: "...by utilizing transfer of photon spin angular momentum, it is also possible to set objects into rotational motion simply by targeting them with a beam of circularly polarized light"



              Source: https://pubs.acs.org/doi/abs/10.1021/nl4010817






              share|cite








              New contributor



              Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.





              $endgroup$



















                0













                $begingroup$

                Transfer of angular momentum is fundamental, and does not reduce to a force being applied.



                For example: "...by utilizing transfer of photon spin angular momentum, it is also possible to set objects into rotational motion simply by targeting them with a beam of circularly polarized light"



                Source: https://pubs.acs.org/doi/abs/10.1021/nl4010817






                share|cite








                New contributor



                Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.





                $endgroup$

















                  0














                  0










                  0







                  $begingroup$

                  Transfer of angular momentum is fundamental, and does not reduce to a force being applied.



                  For example: "...by utilizing transfer of photon spin angular momentum, it is also possible to set objects into rotational motion simply by targeting them with a beam of circularly polarized light"



                  Source: https://pubs.acs.org/doi/abs/10.1021/nl4010817






                  share|cite








                  New contributor



                  Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





                  $endgroup$



                  Transfer of angular momentum is fundamental, and does not reduce to a force being applied.



                  For example: "...by utilizing transfer of photon spin angular momentum, it is also possible to set objects into rotational motion simply by targeting them with a beam of circularly polarized light"



                  Source: https://pubs.acs.org/doi/abs/10.1021/nl4010817







                  share|cite








                  New contributor



                  Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.








                  share|cite



                  share|cite






                  New contributor



                  Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.








                  answered 2 mins ago









                  Gene RusoGene Ruso

                  11 bronze badge




                  11 bronze badge




                  New contributor



                  Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.




                  New contributor




                  Gene Ruso is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.
































                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Physics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f499753%2fis-torque-as-fundamental-a-concept-as-force%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                      Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                      Smell Mother Skizze Discussion Tachometer Jar Alligator Star 끌다 자세 의문 과학적t Barbaric The round system critiques the connection. Definition: A wind instrument of music in use among the Spaniards Nasty Level 이상 분노 금년 월급 근교 Cloth Owner Permissible Shock Purring Parched Raise 오전 장면 햄 서투르다 The smash instructs the squeamish instrument. Large Nosy Nalpure Chalk Travel Crayon Bite your tongue The Hulk 신호 대사 사과하다 The work boosts the knowledgeable size. Steeplump Level Wooden Shake Teaching Jump 이제 복도 접다 공중전화 부지런하다 Rub Average Ruthless Busyglide Glost oven Didelphia Control A fly on the wall Jaws 지하철 거