Show a continuous function with $f(x)=y$ and $f(y)=x$ has a fixed point.Show that any continuous $f:[0,1] rightarrow [0,1]$ has a fixed point $zeta$Fixed point and period of continuous functionContinuous decreasing function has a fixed pointIVT and fixed point theorem$f$ is continuous, $f : X to X$, $X$ compact, and $f$ has an $epsilon$-fixed point for each $epsilon > 0$. Show $f$ has a fixed point.Showing that $f$ has a fixed point.Prove that a continuous function has a fixed pointContinuous function and fixed pointProve that $f:[0,1] to [0,1]$ has a fixed pointFor a continuous function $f$ satisfying $f(f(x))=x$ has exactly one fixed point
How is it possible to have an ability score that is less than 3?
Is it possible to make sharp wind that can cut stuff from afar?
How is this relation reflexive?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
whey we use polarized capacitor?
What exactly is the parasitic white layer that forms after iron parts are treated with ammonia?
How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)
A function which translates a sentence to title-case
Draw simple lines in Inkscape
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
Why is the design of haulage companies so “special”?
Work Breakdown with Tikz
A Journey Through Space and Time
How do I create uniquely male characters?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
If Manufacturer spice model and Datasheet give different values which should I use?
New order #4: World
Why is an old chain unsafe?
Infinite past with a beginning?
Copycat chess is back
Can I make popcorn with any corn?
Why is this code 6.5x slower with optimizations enabled?
What do you call a Matrix-like slowdown and camera movement effect?
What is the logic behind how bash tests for true/false?
Show a continuous function with $f(x)=y$ and $f(y)=x$ has a fixed point.
Show that any continuous $f:[0,1] rightarrow [0,1]$ has a fixed point $zeta$Fixed point and period of continuous functionContinuous decreasing function has a fixed pointIVT and fixed point theorem$f$ is continuous, $f : X to X$, $X$ compact, and $f$ has an $epsilon$-fixed point for each $epsilon > 0$. Show $f$ has a fixed point.Showing that $f$ has a fixed point.Prove that a continuous function has a fixed pointContinuous function and fixed pointProve that $f:[0,1] to [0,1]$ has a fixed pointFor a continuous function $f$ satisfying $f(f(x))=x$ has exactly one fixed point
$begingroup$
Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.
So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.
Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.
How do we show that $c$ is in $(x,y)$??
We know that $g(x)=f(x)-x=y-x neq 0$
and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?
real-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.
So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.
Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.
How do we show that $c$ is in $(x,y)$??
We know that $g(x)=f(x)-x=y-x neq 0$
and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?
real-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.
So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.
Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.
How do we show that $c$ is in $(x,y)$??
We know that $g(x)=f(x)-x=y-x neq 0$
and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?
real-analysis
$endgroup$
Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.
So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.
Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.
How do we show that $c$ is in $(x,y)$??
We know that $g(x)=f(x)-x=y-x neq 0$
and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?
real-analysis
real-analysis
edited 9 hours ago
YuiTo Cheng
2,3084937
2,3084937
asked 11 hours ago
big_math_boybig_math_boy
303
303
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by
$$g(t)=f(t)-t$$
for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.
Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.
$endgroup$
add a comment |
$begingroup$
Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.
Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.
Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178253%2fshow-a-continuous-function-with-fx-y-and-fy-x-has-a-fixed-point%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by
$$g(t)=f(t)-t$$
for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.
Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.
$endgroup$
add a comment |
$begingroup$
You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by
$$g(t)=f(t)-t$$
for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.
Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.
$endgroup$
add a comment |
$begingroup$
You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by
$$g(t)=f(t)-t$$
for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.
Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.
$endgroup$
You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by
$$g(t)=f(t)-t$$
for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.
Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.
answered 10 hours ago
blubblub
3,241829
3,241829
add a comment |
add a comment |
$begingroup$
Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.
Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.
Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.
$endgroup$
add a comment |
$begingroup$
Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.
Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.
Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.
$endgroup$
add a comment |
$begingroup$
Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.
Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.
Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.
$endgroup$
Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.
Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.
Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.
edited 10 hours ago
answered 11 hours ago
Martin RMartin R
30.8k33560
30.8k33560
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178253%2fshow-a-continuous-function-with-fx-y-and-fy-x-has-a-fixed-point%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown