Show a continuous function with $f(x)=y$ and $f(y)=x$ has a fixed point.Show that any continuous $f:[0,1] rightarrow [0,1]$ has a fixed point $zeta$Fixed point and period of continuous functionContinuous decreasing function has a fixed pointIVT and fixed point theorem$f$ is continuous, $f : X to X$, $X$ compact, and $f$ has an $epsilon$-fixed point for each $epsilon > 0$. Show $f$ has a fixed point.Showing that $f$ has a fixed point.Prove that a continuous function has a fixed pointContinuous function and fixed pointProve that $f:[0,1] to [0,1]$ has a fixed pointFor a continuous function $f$ satisfying $f(f(x))=x$ has exactly one fixed point

How is it possible to have an ability score that is less than 3?

Is it possible to make sharp wind that can cut stuff from afar?

How is this relation reflexive?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

whey we use polarized capacitor?

What exactly is the parasitic white layer that forms after iron parts are treated with ammonia?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

A function which translates a sentence to title-case

Draw simple lines in Inkscape

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

Why is the design of haulage companies so “special”?

Work Breakdown with Tikz

A Journey Through Space and Time

How do I create uniquely male characters?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

If Manufacturer spice model and Datasheet give different values which should I use?

New order #4: World

Why is an old chain unsafe?

Infinite past with a beginning?

Copycat chess is back

Can I make popcorn with any corn?

Why is this code 6.5x slower with optimizations enabled?

What do you call a Matrix-like slowdown and camera movement effect?

What is the logic behind how bash tests for true/false?



Show a continuous function with $f(x)=y$ and $f(y)=x$ has a fixed point.


Show that any continuous $f:[0,1] rightarrow [0,1]$ has a fixed point $zeta$Fixed point and period of continuous functionContinuous decreasing function has a fixed pointIVT and fixed point theorem$f$ is continuous, $f : X to X$, $X$ compact, and $f$ has an $epsilon$-fixed point for each $epsilon > 0$. Show $f$ has a fixed point.Showing that $f$ has a fixed point.Prove that a continuous function has a fixed pointContinuous function and fixed pointProve that $f:[0,1] to [0,1]$ has a fixed pointFor a continuous function $f$ satisfying $f(f(x))=x$ has exactly one fixed point













3












$begingroup$


Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



How do we show that $c$ is in $(x,y)$??



We know that $g(x)=f(x)-x=y-x neq 0$
and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



    So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



    Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



    How do we show that $c$ is in $(x,y)$??



    We know that $g(x)=f(x)-x=y-x neq 0$
    and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



      So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



      Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



      How do we show that $c$ is in $(x,y)$??



      We know that $g(x)=f(x)-x=y-x neq 0$
      and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?










      share|cite|improve this question











      $endgroup$




      Suppose $a<b$ and $f:[a,b] to [a,b]$ be continous. Suppose that $x neq y$ in $[a,b]$ with $f(x)=y$ and $f(y)=x$. Prove that $f$ has a fixed point in $(x,y)$.



      So I was thinking of considering the function $g(x)=f(x)-x$, which we know is continuous. Then we also know that because $f(a) geq a$ that $g(a)=f(a)-a geq 0$. Similarly, because $f(b) leq b$ then $g(b)=f(b)-b leq 0$.



      Can we just use the fact that because $g(x)$ is continuous, $0 in [g(b),g(a)]$, the IVT says there exists $c in [a,b]$ such that $g(c)=f(c)-c=0$ so $f(c)=c$? Then we know $c$ is a fixed point.



      How do we show that $c$ is in $(x,y)$??



      We know that $g(x)=f(x)-x=y-x neq 0$
      and $g(y)=f(y)-y=x-y neq 0$ but we don't know that those are in $(a,b)$?







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 9 hours ago









      YuiTo Cheng

      2,3084937




      2,3084937










      asked 11 hours ago









      big_math_boybig_math_boy

      303




      303




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



          $$g(t)=f(t)-t$$



          for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



          Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






          share|cite|improve this answer









          $endgroup$




















            7












            $begingroup$

            Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



            Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



            Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178253%2fshow-a-continuous-function-with-fx-y-and-fy-x-has-a-fixed-point%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



              $$g(t)=f(t)-t$$



              for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



              Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



                $$g(t)=f(t)-t$$



                for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



                Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



                  $$g(t)=f(t)-t$$



                  for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



                  Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.






                  share|cite|improve this answer









                  $endgroup$



                  You've essentially stated the argument. But, rather restrict $f$ to $[x,y]$ (where w.l.o.g $x<y$). Then, define $g:[x,y]tomathbb R$ by



                  $$g(t)=f(t)-t$$



                  for any $tin [x,y]$. As $f$ is continuous on $[a,b]$ and $[x,y]subseteq [a,b]$, $g$ is continuous on $[x,y]$. Also, you have $g(x)=f(x)-x=y-x>0$ and $g(y)=f(y)-y=x-y<0$ as $x<y$.



                  Thus, by the intermediate value theorem, there is a $sin (x,y)$ such that $g(s)=0$, i.e. $f(s)=s$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 10 hours ago









                  blubblub

                  3,241829




                  3,241829





















                      7












                      $begingroup$

                      Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                      Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                      Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






                      share|cite|improve this answer











                      $endgroup$

















                        7












                        $begingroup$

                        Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                        Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                        Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






                        share|cite|improve this answer











                        $endgroup$















                          7












                          7








                          7





                          $begingroup$

                          Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                          Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                          Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.






                          share|cite|improve this answer











                          $endgroup$



                          Without loss of generality you can assume that $x < y$. Now consider $g(t) = f(t) - t$ not on the entire interval $[a, b]$ but only on $[x, y]$.



                          Then $ g(x) = y- x$ and $g(y) = x-y$ have opposite sign, so that you can apply the intermediate value theorem.



                          Note also that I have chosen a different variable name ($t$ instead of $x$) for defining $g$, in order to avoid confusion between that variable and the given (fixed) value $x$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 10 hours ago

























                          answered 11 hours ago









                          Martin RMartin R

                          30.8k33560




                          30.8k33560



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178253%2fshow-a-continuous-function-with-fx-y-and-fy-x-has-a-fixed-point%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              19. јануар Садржај Догађаји Рођења Смрти Празници и дани сећања Види још Референце Мени за навигацијуу

                              Israel Cuprins Etimologie | Istorie | Geografie | Politică | Demografie | Educație | Economie | Cultură | Note explicative | Note bibliografice | Bibliografie | Legături externe | Meniu de navigaresite web oficialfacebooktweeterGoogle+Instagramcanal YouTubeInstagramtextmodificaremodificarewww.technion.ac.ilnew.huji.ac.ilwww.weizmann.ac.ilwww1.biu.ac.ilenglish.tau.ac.ilwww.haifa.ac.ilin.bgu.ac.ilwww.openu.ac.ilwww.ariel.ac.ilCIA FactbookHarta Israelului"Negotiating Jerusalem," Palestine–Israel JournalThe Schizoid Nature of Modern Hebrew: A Slavic Language in Search of a Semitic Past„Arabic in Israel: an official language and a cultural bridge”„Latest Population Statistics for Israel”„Israel Population”„Tables”„Report for Selected Countries and Subjects”Human Development Report 2016: Human Development for Everyone„Distribution of family income - Gini index”The World FactbookJerusalem Law„Israel”„Israel”„Zionist Leaders: David Ben-Gurion 1886–1973”„The status of Jerusalem”„Analysis: Kadima's big plans”„Israel's Hard-Learned Lessons”„The Legacy of Undefined Borders, Tel Aviv Notes No. 40, 5 iunie 2002”„Israel Journal: A Land Without Borders”„Population”„Israel closes decade with population of 7.5 million”Time Series-DataBank„Selected Statistics on Jerusalem Day 2007 (Hebrew)”Golan belongs to Syria, Druze protestGlobal Survey 2006: Middle East Progress Amid Global Gains in FreedomWHO: Life expectancy in Israel among highest in the worldInternational Monetary Fund, World Economic Outlook Database, April 2011: Nominal GDP list of countries. Data for the year 2010.„Israel's accession to the OECD”Popular Opinion„On the Move”Hosea 12:5„Walking the Bible Timeline”„Palestine: History”„Return to Zion”An invention called 'the Jewish people' – Haaretz – Israel NewsoriginalJewish and Non-Jewish Population of Palestine-Israel (1517–2004)ImmigrationJewishvirtuallibrary.orgChapter One: The Heralders of Zionism„The birth of modern Israel: A scrap of paper that changed history”„League of Nations: The Mandate for Palestine, 24 iulie 1922”The Population of Palestine Prior to 1948originalBackground Paper No. 47 (ST/DPI/SER.A/47)History: Foreign DominationTwo Hundred and Seventh Plenary Meeting„Israel (Labor Zionism)”Population, by Religion and Population GroupThe Suez CrisisAdolf EichmannJustice Ministry Reply to Amnesty International Report„The Interregnum”Israel Ministry of Foreign Affairs – The Palestinian National Covenant- July 1968Research on terrorism: trends, achievements & failuresThe Routledge Atlas of the Arab–Israeli conflict: The Complete History of the Struggle and the Efforts to Resolve It"George Habash, Palestinian Terrorism Tactician, Dies at 82."„1973: Arab states attack Israeli forces”Agranat Commission„Has Israel Annexed East Jerusalem?”original„After 4 Years, Intifada Still Smolders”From the End of the Cold War to 2001originalThe Oslo Accords, 1993Israel-PLO Recognition – Exchange of Letters between PM Rabin and Chairman Arafat – Sept 9- 1993Foundation for Middle East PeaceSources of Population Growth: Total Israeli Population and Settler Population, 1991–2003original„Israel marks Rabin assassination”The Wye River Memorandumoriginal„West Bank barrier route disputed, Israeli missile kills 2”"Permanent Ceasefire to Be Based on Creation Of Buffer Zone Free of Armed Personnel Other than UN, Lebanese Forces"„Hezbollah kills 8 soldiers, kidnaps two in offensive on northern border”„Olmert confirms peace talks with Syria”„Battleground Gaza: Israeli ground forces invade the strip”„IDF begins Gaza troop withdrawal, hours after ending 3-week offensive”„THE LAND: Geography and Climate”„Area of districts, sub-districts, natural regions and lakes”„Israel - Geography”„Makhteshim Country”Israel and the Palestinian Territories„Makhtesh Ramon”„The Living Dead Sea”„Temperatures reach record high in Pakistan”„Climate Extremes In Israel”Israel in figures„Deuteronom”„JNF: 240 million trees planted since 1901”„Vegetation of Israel and Neighboring Countries”Environmental Law in Israel„Executive branch”„Israel's election process explained”„The Electoral System in Israel”„Constitution for Israel”„All 120 incoming Knesset members”„Statul ISRAEL”„The Judiciary: The Court System”„Israel's high court unique in region”„Israel and the International Criminal Court: A Legal Battlefield”„Localities and population, by population group, district, sub-district and natural region”„Israel: Districts, Major Cities, Urban Localities & Metropolitan Areas”„Israel-Egypt Relations: Background & Overview of Peace Treaty”„Solana to Haaretz: New Rules of War Needed for Age of Terror”„Israel's Announcement Regarding Settlements”„United Nations Security Council Resolution 497”„Security Council resolution 478 (1980) on the status of Jerusalem”„Arabs will ask U.N. to seek razing of Israeli wall”„Olmert: Willing to trade land for peace”„Mapping Peace between Syria and Israel”„Egypt: Israel must accept the land-for-peace formula”„Israel: Age structure from 2005 to 2015”„Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition”10.1016/S0140-6736(15)61340-X„World Health Statistics 2014”„Life expectancy for Israeli men world's 4th highest”„Family Structure and Well-Being Across Israel's Diverse Population”„Fertility among Jewish and Muslim Women in Israel, by Level of Religiosity, 1979-2009”„Israel leaders in birth rate, but poverty major challenge”„Ethnic Groups”„Israel's population: Over 8.5 million”„Israel - Ethnic groups”„Jews, by country of origin and age”„Minority Communities in Israel: Background & Overview”„Israel”„Language in Israel”„Selected Data from the 2011 Social Survey on Mastery of the Hebrew Language and Usage of Languages”„Religions”„5 facts about Israeli Druze, a unique religious and ethnic group”„Israël”Israel Country Study Guide„Haredi city in Negev – blessing or curse?”„New town Harish harbors hopes of being more than another Pleasantville”„List of localities, in alphabetical order”„Muncitorii români, doriți în Israel”„Prietenia româno-israeliană la nevoie se cunoaște”„The Higher Education System in Israel”„Middle East”„Academic Ranking of World Universities 2016”„Israel”„Israel”„Jewish Nobel Prize Winners”„All Nobel Prizes in Literature”„All Nobel Peace Prizes”„All Prizes in Economic Sciences”„All Nobel Prizes in Chemistry”„List of Fields Medallists”„Sakharov Prize”„Țara care și-a sfidat "destinul" și se bate umăr la umăr cu Silicon Valley”„Apple's R&D center in Israel grew to about 800 employees”„Tim Cook: Apple's Herzliya R&D center second-largest in world”„Lecții de economie de la Israel”„Land use”Israel Investment and Business GuideA Country Study: IsraelCentral Bureau of StatisticsFlorin Diaconu, „Kadima: Flexibilitate și pragmatism, dar nici un compromis în chestiuni vitale", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 71-72Florin Diaconu, „Likud: Dreapta israeliană constant opusă retrocedării teritoriilor cureite prin luptă în 1967", în Revista Institutului Diplomatic Român, anul I, numărul I, semestrul I, 2006, pp. 73-74MassadaIsraelul a crescut in 50 de ani cât alte state intr-un mileniuIsrael Government PortalIsraelIsraelIsraelmmmmmXX451232cb118646298(data)4027808-634110000 0004 0372 0767n7900328503691455-bb46-37e3-91d2-cb064a35ffcc1003570400564274ge1294033523775214929302638955X146498911146498911

                              Кастелфранко ди Сопра Становништво Референце Спољашње везе Мени за навигацију43°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.5588543°37′18″ СГШ; 11°33′32″ ИГД / 43.62156° СГШ; 11.55885° ИГД / 43.62156; 11.558853179688„The GeoNames geographical database”„Istituto Nazionale di Statistica”проширитиууWorldCat156923403n850174324558639-1cb14643287r(подаци)